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It is shown that the BKZ incompressible elastic fluid theory is in excellent agreement with experi-

mental results obtained in simple extension.

From single step stress-relaxation data. the stress-strain

response for a number of other simple extension histories are calculated from the theory and are

compared with experiments.
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1. Introduction

In 1963 Bernstein, Kearsley, and Zapas [1]' pre-
sented a theory of an elastic fluid which gave the
correct stress-relaxation response for a large variety
of elastomeric materials, including vulcanized rub-
bers. A principle attractiveness of this theory is
its relative simplicity: with a single integral in time,
it describes the stress-strain behavior for all types
of deformation histories. In the case of simple ex-
tension; it predicts the behavior in any uniaxial strain
history from the results of single step stress-relaxation
experiments which cover the same range of extension
and time. We designed a series of experiments to
check the validity of this theory and found, as is
shown in section 4 of this paper, excellent agreement
with experiment in all cases. We are aware that ex-
yeriments cannot prove a theory. From our results,
1wwever, we feel strongly that a single integral expres-
sion with a nonlinear integrand such as the BKZ elastic
fluid equation is sufficient to describe the stress-strain
behavior of elastomeric materials.

2. General Considerations

For an extensive description of the BKZ elastic
fluid, we refer the reader to the initial papers [1, 2].

Here we shall use only the definitions and deriva-
tions necessary for the description of uniaxial defor-
mations, i.e., simple extension of an incompressible
material. _

A particular motion of the material may be specified
by a relation between the Cartesian components of
the position of a particle at time ¢, xi(¢) and of its posi-
tion at time 7, x{(7),

xi(t) = xi(xx(7), t, T)

! Figures in brackets indicate the literature references at the end of this paper.
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The relative deformation gradients x;x(¢, 7) are defined

by

dxi(t)
Axk(T)

xik(t, )=

The left Cauchy-Green tensor cift, 7) is defined by
cijlt, T)=xult, Txjlt, 7)

where, in accordance with Cartesian tensor notation,
repeated indices indicate summation over the values
1, 2, 3. The principal invariants of ¢;(¢, 7) are

Ii(t, T)=§2|+§§+§§
Ift, 1= EE+ £+ 66

1K, vl) = Exete

Ai(2) Aa(2) .
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Ao(7)

where & =

In view of the condition of incompressibility which
requires that [I3(¢, 7)=1, the constitutive equation
for the BKZ elastic fluid can be written

U
[& cij(t, T)—a—c,.‘jl(t, 'r)] dr (1)
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where gjj are the components of the stress tensor, p is
some hydrostatic pressure, U is a function of Iy. L,
and t — 7,

U=Ul(t, 7, Ist, 7), t—7)

and ci‘j‘(t, 7) are the components of the inverse of ci(t,7).

We may describe isochoric uniaxial strain in a co-
ordinate system in which the x; direction corresponds
to the direction of strétch. Then the particle which
in some reference configuration is located at X;, X, X3



has a position at time ¢, x(¢) given by
xl(t) = }\(t)Xl
xa(t) = NV X,

x3(t) = )\nl/z(l)Xg.

The matrix of the left Cauchy-Green tensor ci(t, 7)
becomes

A%(t)
i 00
et = | o A2 o
Y\t )\([) (2)
A7)
00 35
and
N(¢) N(7)
=X o) 3
e D=3 T2 0 &
LM NG,
L, =250 %0

From (1), (2). and (3) we get

o(t) = o11(t) — o2a(t)

tIN(t) A7) A(t) >I
= [A_AD, (2, @)
L[Hr) Mt)] f (Am tmr)d

At dU  N1)oU
h ( )vt—‘r):2<(,—+——,—' .
A(7) aly ~ Nt) ol
Thus. if we know the function A, we can 1)rgdi('£ the
stress response to an uniaxial strain history.> For a

single step stress relaxation, for which A= 1 for
t < 0 and N(t)= \, a constant, for t = 0, eq (4) becomes

where

e (v—%) HO\, 1) (5)

where

H 0= 7 b, g 52)
t
and
dH(N, t
Bn, =— 2 D, (5h)
at

*For discussion of other strain histories we refer the reader to a recent paper by Bern-

stein [3].

I=1/X

FIGURE 1. A representative three dimensional plot of og=H(X, t).

In their 1963 article Bernstein, Kearsley, and Zapas
[1] plotted isochrones of a reduced stress or(\, f)

which they defined by

ol(t)

U'R(}\.t): 1
AZ__
A

It is evident from (5) that og(A, t) is identical with
H(\, t). A typical three dimensional plot of H versus
log time and 1/A is the surface shown in figure 1. We
see, then, that with the stress histories of single step
uniaxial strains we can measure H(A, t) and predict
the stress history of any uniaxial strain history.

3. Experimental Procedure

All our experiments in this work deal with uniaxial
deformations on strips with rectangular cross sections.
These strips measured about 17 ¢m long, 0.88 cm wide,
and 0.21 c¢m thick. The data were obtained on polyiso-
butylene VISTANEX L[-100 samples and on poly-
vinyl chloride samples (plasticized with 50 percent by
weight of tricresol phosphate). The stress-relaxation
experiments were conducted on a relaxometer whose
description has been given in a previous paper [1].
For the creep and recovery experiment we first allowed
the sample to creep for a predetermined amount of
time by attaching a known weight to the bottom clamp
of the sample. We then cut the sample at a place
very near the bottom clamp in order to assure an
almost instantaneous release of force on the sample
and measured the recovery. The constant rate of
strain measurements were obtained on an ‘“Instron”
machine.
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For creep, recovery and constant rate of strain
measurements, the motions of two marks on the
sample, initially 10 em apart, were obtained with the
aid of two cathetometers. The reference marks were
placed far enough away from the clamps to insure
that end effects would not disturb the measurements.
During the experiments two persons, one at each
cathetometer, took readings and a third person re-
corded the times. Through the use of graphical
interpolation, we were able to ascertain accurately
the deformation of the sample.

4. Results and Discussion

It has been reported previously by Bernstein,
Kearsley, and Zapas [1] that the reduced stress for
simple extension measurements can be represented
very well by the following equation

1
H(\, 1) = or(X, )= alt) (N> — 1)+x Bt)+ylt). (6)

Although we may obtain this equation by assuming a
pdrtlcular form of the potentldl function U, we shall
regard eq (6) as an empirical equation which describes
the surface H(\, t). Thus, for the sake of convenience,
without committing ourselves to any particular form
of U? we shall henceforth present and calculate our
data with the three material properties «(t), B(t), and
v(t) of eq (6). Values of these functions are given in
tables 1 and 2. In order to describe the data on plas-

TABLE 1. Po[wmbur\/( ne L—100 at 25 °C
Time Bt) X 10-% | y(t) X 10°3
min Dynes/cm* | Dyne. s/« m?*
p 1.76 b
4 1.68 5.1
o 1.63 4.45
10 1.50 3.75
20 1.29 3.00
40 1.064 2.38
60 0.940 24
100 770 1.75
120 .70 1.65

TABLE 2. Plasticized polyvinylchloride at 27 °C

Time ale) X 1077 | B(¢) X 1077 | —y(¢) X 107
min Dynes/cm* | Dynes/cm* | Dynes/cm*
0.6 2:53 5.28 4.36
1.0 2.38 4.89 4.01
2.0 2.21 4.61 3.64
4.0 2.08 4.39 3.54
6.0 2.02 4.29 3.45
10.0 1.94 4.17 3.34
20.0 1.85 4.04 3.23
40.0 1.78 3.96 3.13
60.0 1.74 3.85 3.07
100.0 1.70 3.77 3.01
120.0 1.68 3.74 2.99

3Recently a method of correlating results of experiments in biaxial extension and vis-
cometric flow has been presented w vhich utilizes an e mpirically determined U with three
material properties [4].

ticized PVC we needed all the three material functions.
For the polylwl)utylene however, nnly two were
needed. This is in agreement with previous work [1].

4.1. Double Step

Suppose that in a two step stress relaxation we take
the first step at time t=0 with extension ratio A and
the second step at t=t;, with extension ratio n, where
the extension ratios are taken with respect to the unde-
formed state. From eqs (4) and (5) we obtain for times
greater than t,

o(t)= (n —;) {Hm )

wn [ ()= () )
+7\(n3—1)[H N iTh H ! (7)

In figures 2, 3, and 4 we show the results of two step
stress-relaxation experiments for various values of
t1 and the ratio of m/\. The data are plotted taking
as zero time the time of each step. This is done to
emphasize the results at early times after the steps
which are the more critical data. The black points
represent the calculated values as obtained using
eqs (7) and (5). The agreement is excellent.

4.2. Triple Step

Consider now a triple step stress relaxation with
steps at times 0, ¢;, t» and extension ratios A\, m, &,
respectively.  For times ¢t >t we obtain from eq (4)

fe-gmee (5o
) G-l
)

In figure 5, the results of a triple step experiment
are shown plotted against the time after each step.
The black points represent the calculated values
obtained by using eq (5) for the first step, eq (7)
for the second step, and eq (8) for the third step.
The agreement is very satisfactory. The 3-to 4-per-
cent difference at the early times can be attributed
to experimental difficulties. Indeed, because of these
difficulties, we know the early time behavior for single
step stress relaxation only to within a few percent,
and it was these data that were used in calculating
our predicted values. The loading time, though small
(about 1 sec), may vary by a factor of two, and the
manner in which the deformation is applied resembles
a very fast ramp function rather than a step function.
The temperature change at the early times varies with
extension ratio. These effects could contribute signi-
ficantly at early times after the steps.

(8)
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FIGURE 2. Double step stress relaxation at 25 °C.
First step with extension ratio A, = 1.602 from 0 min to 60 min. Second step with exten-
sion ratio A\>=1.880 from 60 min to 130 min.
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FIGURE 3. Double step stress relaxation at 25 °C.
First step with extension ratio A;=1.272 from 0 min to 80 min. Second step with exten-
sion ratio A»=1.698 from 80 min to 125 min.

4.3. Creep and Recovery

In a creep experiment a constant stress or a constant
load (as in our experiment) is applied; and the resulting
deformation is measured as a function of time. A pre-
diction of the deformation with respect to time requires
an inversion of eq (1) or, for the case of simple exten-
sion, eq (4). Because this is an arduous task even
with the aid of a computer, we elected to check our

PIB L-100

0 x1078 (dynes/cm?)

[
|
|

log t (min)

FIGURE 4. Double step stress relaxation at 25 °C.
First step with extension ratio A; = 1.582 from 0 min to 40 min. Second step with exten-
sion ratio A,=1.870 from 40 min to 165 min.
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FIGURE 5. Triple step stress relaxation at 25 °C.
First step with extension ratio A= 1.255 from 0 min to 20 min. Second step with exten-
sion ratio A= 1.483 from 20 min to 60 min. Third step with extension ratio A =1.940 from
60 min to 125 min.

results by putting into the right-hand side of eq (4)
the measured deformation history up to time ¢ and cal-
culating the stress.

Equation (4) can be written as

_ 1 X)) A
ot =g o 0+ [ [355=50

N,
h()\(f) t ’T> dr.
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FIGURE 6. Creep of polyisobutylene L—100 at 25 °C.
The arrows point to the values of the load calculated using the measured history. The
actual load was 86 g. :
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FIGURE 7. Creep of plasticized polyvinylchloride at 27 °C.

The arrows are used as in figure 6. The actual load was 1270 g.

The first term of the right-hand side of this equation
is the stress necessary to hold a material at an exten-
sion ratio A at time ¢t after a single step deformation
(vide eq (5)). The second term may be taken as a
correction for deviations of the history of the defor-
mation from that of a single step stress-relaxation
experiment.

In figure 6 and figure 7 we exhibit the results of
creep experiments on polyisobutylene and plasticized
PVC. The line shows the value of \ as a function of
time interpolated from direct measurements. The
arrows point to values of the load predicted by eq
(9) and the measured history of A\ up to the indicated
times. For PIB L—100 the measured load was 86 g
and at the early times we again observe a 2-percent
difference from the predicted load. while at the later
times the agreement is excellent. The same is ob-
served in figure 7 for plasticized PVC, for which the
measured load was 1270 g. Again, this is to be ex-
pected. since we do not know H(\. t) accurately at
the early times.

PIB L-100
T=25°C

2R

10 o : -
log t (min)

FIGURE 8. Creep and recovery of polyisobutylene at 25 °C.
The black circles indicate calculated values. White circles represent measured values.

e 0)

[ T == T T 1

I
/

TIME‘(min)

| [ | | |

10 30 50 70 90
EXTENSION , %

| | | | | |

FIGURE 9. Constant rate of strain of polyisobutylene at 21 °C.

The circles represent calculated points.

During the recovery after creep, the part of the his-
tory for which AM#) < A(7) may be considered as a rela-
tive compression. Since the part of the surface
H(\, t) that we measured from stress relaxation in-
volved only extensions with A >1, we made the as-
sumption in our recovery calculations that eq (6) could
be used to describe H(A. t) for values of A<1. In
figure 8 we show the data obtained on creep and
recovery. The black points are values of A during
recovery, calculated from the measured values of
\ prior to recovery using eq (9) with o set equal to
zero.

4.4. Constant Rate of Strain

In experiments of this type, one of the clamps hold-
ing the sample is moved at a constant speed, while
the other remained stationary. If there were no end
effects due to clamping. the sample would be deformed
at a rate proportional to the rate of separation of the
clamps. In the experiment whose results we show in
fizure 9, we observed a constant rate of strain different
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from what would be predicted by ignoring end effects.
The open circles represent values of the stress cal-
culated from eq (9). Here again, in order to predict
the part of the curve where the motion is reversed,
we made the same assumptions on extrapolation of
H(A, t) to the X region as we did for the creep recovery.
Further, these data were obtained at a lower tempera-
ture than the stress-relaxation data., In order to
correct for this temperature difference, we adjusted
the stress-relaxation data using time-temperature
superposition appropriate to the BKZ elastic fluid
[2]. The H(\, t) surfaces at absolute temperatures
To and T, are related as follows *
T 'pytH(N, Oy = T 'p7tH(A, br,vt)T1

where py and p; are the densities at Ty and T, and by
is a time shifting factor which can either be obtained
experimentally or estimated from semiempirical equa-
tions. From previously reported work on polyiso-
butylene by Leaderman [5] the shifting factor by was
evaluated to be 1.45 for a shift from 25 °C to 21 °C.

The experimental data and the calculated values
shown in figure 9 are in excellent agreement. For
creep, recovery, and constant rate of strain the cal-
culation of each point involved graphical integration
of the expression

g pSU) _A(L)] <M _)
f 0 [Az(f) o | P 7 9
which is the second term of the right-hand side of
eq (9). For values of 7 close to ¢t we used values of
h(\, t) extrapolated to small values of ¢. In most of
our calculations the first factor in the integrand

approached zero as 7 approached t, so that we expect
the error due to extrapolation to be unimportant.

4 The validity of this relation for large deformations has been tested and will be presented
in a forthcoming publication.

The excellent agreement between the calculated
and experimental values for several quite different
time histories may be taken as establishing the form
of the nonlinear dependence of stress on strain history
given by eq (4) for elastomers in the rubbery region.
The results reported here, being confined to simple
extension, cannot be taken as establishing the poten-
tial function, U. They should be considered only as
a test of the adequacy of the form in which time effects
are brought into the BKZ theory. The development
of a potential function, U, adequate for the description
of different geometries of deformation will require
detailed studies of different types of deformations.

The authors thank B. Bernstein and E. A. Kearsley
for their criticism and suggestions on the preparation
of this manuscript.
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