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The linearized hydrod ynamic equations of irrevers ible thermodynamics a re used to ob tain the t ime 
dependence of the kth Fourie r component of a co ncentra tion flu ctuation in the one-phase region of 
a binary mixture . The frequency of the light scalle red by concentration flu c tuations nea r the c riti ca l 
mixing point is found to be broadened into a Lorentzian di s tribution with a ha lf-width proportiona l to 
the mass diffu s ion coe ffi c ient, D. The poss ibility of de tecting s pace di spers ion in D is di scussed . 
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1. Introduction 

According to the Einstein [l]'-Smoluchowski [2] 
theory of light scattering in a fluid , scattering results 
from fluc tuations in the dielectric constant in small 
volumes of the fluid. Since static inhomogeneities 
do not exist in fluids , these flu ctuations vary ' in time 
and this results in a spectrum of frequencies of the 
scattered light [3]. 

Critical opalescence refers to the anomalously large 
amount of scattering which occurs in the vicinity of 
a critical point [4]. In this paper we are concerned 
with the spectrum of critical opalescence in the one 
phase region of a binary mixture . Here the fluctuating 
quantity is the concentration of one of the components 
of the mixture [5]. Large fluctuations in the concen­
tration are possible near the critical mixing point 
because the che mical potentials of the components 
vary quite slowly with concentration in that region [6]. 

Although the spectrum of the scattered light is 
confined to a narrow range of frequencies , it is now 
possible to inves tigate the spectrum using a gas laser 
and an optical heterodyne system [7]. This type of 
system has been used to examine critical opalescence 
in a cyclohexane and aniline mixture [8]. 

2. Formulation of the Problem 

We shall determine the time dependence of concen­
tration fluctuations by calculating the decay of a 
fluctuation in time using the linearized equations of 
irreversible thermodynamics [9]. For a binary mix­
ture , these are the continuity equation 

rJp/at+po div v=O, (1) 
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the Navier-Stokes equation (only the longitudinal 
part of v is included) 

poav/a t =-gradp+(~'Y/s+ 'Y/I1) grad divv, (2) 

the e nergy transport equation 

and the equation of continuity for the co ncentration 

In these equations, p is the density, T is the tempera­
ture, p is the press ure and c is the concentration ; 
equilibrium values are de noted by a subscript zero (po). 
Other quantities are the thermal conduc tivity K , the 
shear and bulk vi scosities 'Y/s and 'Y/11 , the diffusion 
coefficient D, the thermal diffusion ratio Ivr and the 
barodiffusion ratio k". The thermodynamic derivatives 
involve the entropy S and the chemical potential fJv of 
the mixture. The notation is that of reference 9. 

A light scattering experiment provides a Fourier 
analysis of the fluctuations in the scattering medium. 
If both the scattering angle and the frequency of the 
scattered light are measured precisely, both the space 
and the time variation are Fourier analyzed [3]. Using 
the hydrodynamic equations, eqs (1 to 4), we can deter­
mine the time dependence of the kth Fourier co mpo­
nent , c(k, t), of a concentration fluctuation in terms 
of an initial fluctuation c(k). The intensity of the 
scattered light is proportional to (c(k, w)c( - k» where 
the ( ... ) indicate an equilibrium average over initial 
(t = 0) values and 

c(k, w) = 2 Re f ' c(k, t) eiwt dt. (5) 

523 



In eq (5) k = 2ki sin e/2 is the change in the wave vector 
which occurs when light with wave vector ki in the 
medium is scattered through an angle e. The change 
in the angular frequency is denoted by w. 

It is a straightforward, if involved, procedure using 
eqs (1 to 4) to obtain c(k, t) in terms of the initial flu c­
tuation c(k) [10]. As expected , two propagating 
(phonon) modes and two diffusive modes are obtained. 
The diffusive modes are a combination of thermal 
diffusion and mass diffusion. Near the critical mixing 
point, where Cp is anomalously large and D is small [11], 
the s ituation is appreciably simpler. There eqs (3) 
and (4) may be used to describe the diffusive modes. 
The pressure terms may be neglected because the 
pressure is insensitive to the local concentration in 
the vicinity of the criti cal point [6]. 

In the next section, we shall obtain an expression 
for the spectral structure of critical opalescence using 
the constant pressure versions of eqs (3) and (4). 
The results are identical to those obtained using the 
full set of equations. 

3. Calculation 

The equation s governing the temperature and the 
concentration are 

(6) 

and 

(7) 

The first step is to obtain the Fourier (space) and 
Laplace (time) transforms of eqs (6) and (7). The 
transform of the concentrati on is 

c(k, s) = r Joc e- ik · I'e - st c(r, t)drdt. (8) 
),. 0 

Equations (6) and (7) become 

sT(k, s) - skr/cjJ(a p./ac)I', Tc(k, s) + (Kk2/POCI,)T(k, s) 

= T(k) - kT/Cp(a /J-/ac)I' , Tc(k) (9) 

and 

sc(k, s)+ Dk2c(k, s) + (Dkrk2/To)T(k, s) = c(k). (10) 

Neglecting T(k) because < t:l.Tt:l.c) = 0 [12], we obtain 

c(k,s)_ s+Xk2+~k2 
c(k) S2 + sk2(X + D +~) + XDk4 (11) 

where 

X= K/PoCp 

and 

From this it follows that 

c(k, t)= ~9C+ J(X- D) + J~ [_ 1.((.JJ_tTil)k2 ] 
c(k) 9C exp 2 0 ':fJ t 

+ - J~+ }~- D)+ }~ exp [- }(~+~)k2t] (12) 

where 

0J= l (X- D)2 + 2(X + D)~ + e]1 /2 

and 

~=X+D+r 

Near the cri ti cal point both X and D(X > D) are small 
[11] so that 

~= X-D 

and eq (12) simplifies to 

c(k, t) =e-/Jk2t + 'P(D2). 
c(hJ 

(13) 

(14) 

Equation (14) is based on the reasonable assumption 
that (X- D)2 vanishes more slowly than D2/Cp. Com­
bining eqs (5) and (14) we find that 

2Dk2 
< c(k, w)c( - k) ) = < c(k)c( - k) ) (Dl.2)2+ w2 (15) 

An eq ua tion equivalen t to eq (14) has bee n derived 
by Debye [14J. His derivation is based on th e a~sump· 
tion that there is no dynamical coupling between th e 
concen tratio n and the temperature. We have s hown 
this to be the case when D < X and both quantities 
are small. Then it is possible to separa te the two 
diffusive modes into one domin a ted by th e thermal 
diffusity X and one dominated by the diffusion coe ffi· 
cien t D. The mode dominated by the thermal dif­
fusity has effec tively zero weight in the s um rule, eq 
(16) , for the intensity of the sca tt e red li ght. 

11fT. -2 - < c(k. w)c( - J.) )dw = < c(k)c( - k) ). 
1T ->CO 

(16) 

(The phonon modes, which we have not explicitly 
considered, also have zero weight.) 

If only the int e nsity of the scattered light is observed, 
< c(k)c( - J.) is ob tained . Near the criti cal point 
< c(J.)c( - k)! is commonly assumed to be of the form 
(k2 + K2)- 1 where K- 1 is the range of the two particle 
correlation function [131. Away from the criti cal point, 
< c(J.)c( - k) is independent of the wave vector and 
eq ual s the mean square flu ct uation in the conce n­
tra tion. 
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4. Discussion 

The spectrum of criti ca l opalescence is that of a 
Lorentzian di s tribution with a half width of Dk2/7r 
cycles/sec. R ece nt measurem e nt s of the s pectrum 
of critical opal esce nce in a mixt ure of cycloh exa ne 
and aniline are of thi s type [81. Measure me nt s of the 
spec tral s t ru e t ure of c rit ic al 0 pa]esce nce provide 
a gradient-free method of de te rminin g th e diffusion 
coefficient. 

The type of calcu lat io n presen ted above is certainly 
appropriate when the range of tb e two particle cor­
relation s is s mall compared to th e wavelength of the 
li ght whi c h is sca tt ere d. Near the critical point , the 
range of the correlatiuns is on the order of the wav e­
lengt h of vi s ible li ght. It is not unreasonable to ex pect 
that near th e c riti ca l point, tran sport coe ffi c ie nt s 
may re Ae c t the long range of tbese correla tions by 
becoming k-d e pendent [151. Thi s interes ting pos­
sibility could be chec ked by see in g wh e th e r ur not 
the half width of th e Lore ntzian distribution vari es 
lin earl y with P. Any d e viation from lin earity would 
s ugges t that the diffus ion coeffic ie nt D s ho uld he re­
placed by D(!.). a k-d e pe nde nt diffu s ion coe ffi c ie nt. 

(Pape r 69A6- 373) 
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