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Spectral Structure of Critical Opalescence: Binary Mixture
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The linearized hydrodynamic equations of irreversible thermodynamics are used to obtain the time
dependence of the kth Fourier component of a concentration fluctuation in the one-phase region of

a binary mixture.

The frequency of the light scattered by concentration fluctuations near the critical

mixing point is found to be broadened into a Lorentzian distribution with a half-width proportional to
the mass diffusion coefficient, D. The possibility of detecting space dispersion in D is discussed.
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1. Introduction

According to the Einstein [1]'-Smoluchowski [2]
theory of light scattering in a fluid, scattering results
from fluctuations in the dielectric constant in small
volumes of the fluid. Since static inhomogeneities
do not exist in fluids, these fluctuations vary in time
and this results in a spectrum of frequencies of the
scattered light [3].

Critical opalescence refers to the anomalously large
amount of scattering which occurs in the vicinity of
a critical point [4]. In this paper we are concerned
with the spectrum of critical opalescence in the one
phase region of a binary mixture. Here the fluctuating
quantity is the concentration of one of the components
of the mixture [5]. Large fluctuations in the concen-
tration are possible near the critical mixing point
because the chemical potentials of the components
vary quite slowly with concentration in that region [6].

Although the spectrum of the scattered light is
confined to a narrow range of frequencies, it is now
possible to investigate the spectrum using a gas laser
and an optical heterodyne system [7]. This type of
system has been used to examine critical opalescence
in a cyclohexane and aniline mixture [8].

2. Formulation of the Problem

We shall determine the time dependence of concen-
tration fluctuations by calculating the decay of a
fluctuation in time using the linearized equations of
irreversible thermodynamics [9]. For a binary mix-
ture, these are the continuity equation

aplat+ po div v=0, (1)
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the Navier-Stokes equation (only the longitudinal
part of v is included)

4
podv/ot=—grad p+ (5 n,\.-}—"r;,;) grad divv, (2)

the energy transport equation
pocpd 1ot — pokr(d pldc)p rdclot

+ poTo(0S/dp)r, cOplot=k V 2T, (3)
and the equation of continuity for the concentration
podcldt=poD|[ V 2c+(kr/To) V 2T + (kylpo) V ?p]. (4)

In these equations, p is the density, 7" is the tempera-
ture, p is the pressure and c is the concentration:
equilibrium values are denoted by a subscript zero (po).
Other quantities are the thermal conductivity «, the
shear and bulk viscosities ng and mg, the diffusion
coefficient D, the thermal diffusion ratio &y and the
barodiffusion ratio k,. The thermodynamic derivatives
involve the entropy S and the chemical potential w of
the mixture. The notation is that of reference 9.

A light scattering experiment provides a Fourier
analysis of the fluctuations in the scattering medium.
If both the scattering angle and the frequency of the
scattered light are measured precisely, both the space
and the time variation are Fourier analyzed [3]. Using
the hydrodynamic equations, eqs (1 to 4), we can deter-
mine the time dependence of the Ath Fourier compo-
nent, c(k, t), of a concentration fluctuation in terms
of an initial fluctuation c(k). The intensity of the
scattered light is proportional to (c(k, w)c(—k)) where
the (. . .) indicate an equilibrium average over initial
(t=0) values and

N =2Re f ek, el d. 5)
(

)
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In eq (5) £ =2k; sin 0/2 is the change in the wave vector
which occurs when light with wave vector k; in the
medium is scattered through an angle 6. The change
in the angular frequency is denoted by .

It is a straightforward, if involved, procedure using
eqs (1 to 4) to obtain c(k, t) in terms of the initial fluc-
tuation c¢(k) [10]. As expected, two propagating
(phonon) modes and two diffusive modes are obtained.
The diffusive modes are a combination of thermal
diffusion and mass diffusion. Near the critical mixing
point, where ¢, is anomalously large and D is small [11],
the situation is appreciably simpler. There eqs (3)
and (4) may be used to describe the diffusive modes.
The pressure terms may be neglected because the
pressure is insensitive to the local concentration in
the vicinity of the critical point [6].

In the next section, we shall obtain an expression
for the spectral structure of critical opalescence using
the constant pressure versions of eqs (3) and (4).
The results are identical to those obtained using the
full set of equations.

3. Calculation

The equations governing the temperature and the
concentration are

aT)ot — kr/cp(d w/dc)p, racldt = (k[pocy) V2T (6)
and
dcldt= D[V 2c+ (k¢/To) V 2T . (7)

The first step is to obtain the Fourier (space) and

Laplace (time) transforms of eqs (6) and (7). The
transform of the concentration is
clk, S):f jx e re=ste(r, fdrdt. (8)
v Jo

Equations (6) and (7) become
STk, 5)— skaled wlac)p. retk, 3+ (k2] pocy) Tk, 5)
=T(k) — krlc) mlac)p, relk) 9)
and
sc(k, s)+ Dk2c(k, s)+ (Dkrk2[To)T(k, s)=c(k). (10)
Neglecting T(k) because { ATAc) =0[12], we obtain

ck, s) _ S9F MEar
ck)  s2+skAx+ D+ &)+ xDk?

(11)

where

X = K/pocp

and
f = (Dkz/C,,To) (6 ;L/Bc)p, T

From this it follows that
clk, ) _ 29+ ix=D)+ 3¢

p [— 2E—D)k?t]

ck) 9
+ IR IEDIEE o (v (12
where

J=[(x—Dp+2(x + D¢+ &
and
E=x+D+¢.

Near the critical point both x and D(x > D) are small
[11] so that

Gz =10 (13)
and eq (12) simplifies to

c(k, t) — oDk 4 Q([2).

o(h) (14)

Equation (14) is based on the reasonable assumption

that (x—D)? vanishes more slowly than D?/c,. Com-
bining eqs (5) and (14) we find that
oy 2D
(clh. w)e(—k) )= elh)e(—k) ) DT o (15)

An equation equivalent to eq (14) has been derived
by Debye [14].  His derivation is based on the assump-
tion that there is no dynamical coupling between the
concentration and the temperature. We have shown
this to be the case when D <x and both quantities
are small. Then it is possible to separate the two
diffusive modes into one dominated by the thermal
diffusity x and one dominated by the diffusion coefhi-
cient D. The mode dominated by the thermal dif-
fusity has effectively zero weight in the sum rule, eq
(16), for the intensity of the scattered light.

11 (-

—— Celk, we(—k) Ydo={ c(k)e(—k) ).
2 ),

(16)

(The phonon modes, which we have not explicitly
considered, also have zero weight.)

If only the intensity of the scattered light is observed,
(clk)e(—Fk)) is obtained. Near the critical point
(clk)e(—Fk) ) is commonly assumed to be of the form
(k*+k*~! where k! is the range of the two particle
correlation function [13].  Away from the critical point,
(c(k)e(—k) ) is independent of the wave vector and
equals the mean square fluctuation in the concen-
tration.
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4. Discussion

The spectrum of critical opalescence is that of a
Lorentzian distribution with a half width of DA*/=
cycles/sec. Recent measurements of the spectrum
of critical opalescence in a mixture of cyclohexane
and aniline are of this type [8]. Measurements of the
spectral structure of critical opalescence provide
a gradient-free method of determining the diffusion
coefhicient.

The type of calculation presented above is certainly
appropriate when the range of the two particle cor-
relations is small compared to the wavelength of the
licht which is scattered. Near the critical point, the
range of the correlations is on the order of the wave-
length of visible light. It is not unreasonable to expect
that near the critical point, transport coefhicients
may reflect the long range of these correlations by
becoming A-dependent [15]. This interesting pos-
sibility could be checked by seeing whether or not
the half width of the Lorentzian distribution varies
linearly with A% Any deviation from linearity would
suggest that the diffusion coefficient D should be re-
placed by D(k). a k-dependent diffusion coefhicient.

(Paper 69A6-373)
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