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It is assumed that the symmetry operations possessed by a homogeneously stressed
crystal will be those common to the crystal and to the stress. Application of stress either
leaves a point group unaltered or lowers it to a subgroup. Any stress-induced minimum
step of symmetry lowering can be caused by unaxial stress but three of the possible stress-
induced compound steps of symmetry lowering require biaxial stress. The uniaxial or biaxial
stress required for any stress-induced symmetry lowering is tabulated and stereograms are
given for each of the minimum steps showing the relation of the remaining symmetry opera-
tions to the initial symmetry and showing the splitting of a set of initially equivalent general
directions into inequivalent subsets. These stereograms provide a direct representation of
the splitting of a general position in a crystal into inequivalent subsets for the symmorphic
space groups and the latter are listed; the effect of glide planes and serew axes must be con-
sidered in the remaining space groups yet the stereograms still provide the correct pattern

of splitting.
tion, are described.

1. Introduction

The response of crystals to stress has been studied
for many years; the conditions on elastic constants
and piezoelectric constants imposed by erystal
symmetry are given, for example, by Nye [1].! He
has also discussed second order effects including
those arising when a crystal is stressed and simul-
taneously subjected to a second influence such as a
beam of light. The treatment proceeds by consider-
ing that the stressed crystal has only the symmetry
elements common to the stress and to the unstressed
crystal; the electro-optical coefficients permitted by
symmetry are those appropriate to the point group
of the stressed crystal. If this is of lower order than
the point group of the unstressed crystal, finite values
are permitted for some of the electro-optical coefli-
cients which were previously zero. In an actual
experiment it is easier to apply a uniaxial stress than
one which is biaxial or triaxial. The subgroups
which can be reached by any homogeneous stress
have been classified [2] and organized into a successive
subgroup scheme [3]; we shall show by tabulating
appropriate tensile stresses that all but three of these
symmetry reductions can be induced by uniaxial
stress. The other three symmetry reductions require
biaxial stress.

The effect of stress on symmetry restrictions of a
tensor property can thus be determined if the tensor
property 1s one previously classified in terms of
symmetry of unstressed crystals. There are, how-
ever, other properties which are influenced by the
molecular symmetry of the erystal and which reflect
only the state of a particular set of atoms of one type
rather than an average over all atoms of this type;

1 Figures in brackets indicate the literature references at the end of this paper.
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Uses of the stereograms, for instance, to obtain the splitting of a special posi-

such properties may require more detailed considera-
tion of the symmetry lowering caused by stress.
For example, the execitation spectra of donors in a
semiconductor such as silicon depend on the site
symmetry of the donor. In the case of silicon the
usual donor atoms occupy substitutional sites with
the full point-group symmetry of the crystal; appli-
cation of homogeneous stress changes the symmetry
of all sites equally and leads to a single pattern of
splitting of excitation spectra for a given stress [4].
The point symmetry of initially equivalent sites in
a crystal may, however, change unequally under a
given stress and more complex patterns of splitting
of spectra should then occur. For example, sites
with symmetry m in a crystal of symmetry 3m can
be affected by uniaxial stress so that two out of every
three sites lose all symmetry while the third retains
the symmetry m. The possibility of such unequal
symmetry lowering and the circumstances under
which it should occur can be seen from stereograms
showing the original symmetry operations and the
symmetry retained under stress. These considera-
tions of unequal symmetry lowering should also apply
to the observation of magnetic resonance in crystals
under homogeneous stress [5]. A minimum step of
stress-induced lowering of symmetry has previously
been defined for space groups as one which leaves no
stress-induced subgroup of the initial group which is
also a supergroup of the final group and which is
distinet from both [6]. The same definition is taken
for point groups. One might suppose that such a
minimum step might leave a distinct subgroup not
reachable by stress which is a distinet supergroup of
the final group. Detailed examination shows that
no such crystallographic point groups occur. A
complete set of stereograms for all crystal symmetries
and all possible minimum steps of symmetry lowering
is given here.
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These stereograms also show the inequivalences
introduced into a set of general sites; the results for
special sites follow from these. Any nonminimum
step of symmetry lowering by stress can be analyzed
in terms of successive minimum steps.

The stereograms and stress tables given here should
also be useful in other fields such as internal friction
and the morphology of crystals [3, 7, 8, 9].

The splitting of a set of sites in a crystal into
inequivalent subsets under stress has also been
treated in the context of space groups [10], the
relation of the present point-group considerations to
the space-group treatment will be covered in the
discussion.

2. Description of Stereograms

Stereograms representing each of the 32 crystallo-
graphie point groups and their conventional symbols
are given in the International Tables for X-ray
Crystallography [11]. These tables also list all of
the subgroups of each point group; only certain of
these subgroups can be reached by the action of
homogeneous stress. They have been listed [3] and
a systematic method of deriving this list is now
presented in the appendix. It is useful to show the
symmetry operations retained in a stress-induced
subgroup and the original symmetry operations on
the same stereogram. The latter can be shown by
the conventional symbols used by the International
Tables [11] but the former require new symbols.
Both the conventional symbols and the new symbols
are illustrated and defined in figure 1.

. POINT ABOVE EQUATORIAL PLANE
(@) POINT BELOW EQUATORIAL PLANE
® POINTS ABOVE AND BELOW EQUATORIAL PLANE

PLANE OF SYMMETRY RETAINED

The stereograms are also shown in figure 1; those
for centrosymmetric point groups are given first,
beginning with those of highest order. The crystal-
lographic axes are not marked, but the z-axis of the
initial point group is taken to be at the center (north
pole) of the stereogram. For all crystal systems
(other than triclinic for which no stereogram is
shown because no proper stress-induced subgroup
exists) the angle between z and y is 90°. Therefore,
in all cases the y-axis must fall on the primitive
(equator) so according to accepted convention we
have chosen the horizontal axis with positive ¥
towards the right.

In some stereograms a second heading, inclined at
an angle to the first, is given. When using these,
as explained subsequently, ‘horizontal” is with
respect to the heading used. A given point group
sometimes occurs in more than one orientation as
a stress-induced subgroup of an initial point group.
Alternative settings may be equivalent (i.e., one is
generated from another by symmetry operations of
the initial point group) or inequivalent. A second,
nonequivalent setting is indicated by a second
heading placed at an angle so that positive % of the
initial group is to the right when the heading is
horizontal. Such inequivalent settings occur for
6 of the 37 minimum steps of stress-induced sym-
metry lowering: 4/mmm to mmm, mmm to 2/m,
4mm to mm2, 422 to 222, mm2 to m, and 222 to 2.
In the case of 4/mmm to mmm the two headings are

3 | | L4l e
written as 4/mmm ->mmm to indicate that the
3-AXIS RETAINED
3-AXIS LOST

4- AXIS RETAINED

& b b

4-AXIS LOST

-
©
S

AT OR ABOVE
EQUATORIAL
PLANE
= == =  PLANE OF SYMMETRY LOST 4-AXIS CHANGED TO 2-AXIS
‘ 2-AXIS RETAINED ® 4-AXIS RETAINED
==\ -—
@ 2-AXIS LOST < @ » 4-AXIS LOST
S
& \) -
A 3-AXIS RETAINED 3 . > 4-AXIS CHANGED TO 2-AXIS
Nl .
A 3-AXIS LOST @ 6-AXIS CHANGED TQ 2- AXIS
@ 6-AXIS LOST
~
Figure 1.
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Ficure 1—Continued

mirror planes perpendicular to z, z, and y are pre-

| | 4 . .,
served and as 4/mmm - mmm to indicate that the

mirror planes perpendicular to z, [170], and [110]
are preserved. Similar headings are given for the
other cases but this scheme does not permit three
labels for the three inequivalent ways for mmm to
2/m and 222 to 2.

Two headings are given on some of the other stereo-
erams even though the subgroup does not occur in
inequivalent ways. This is done for 3m to 2/m,
6m2 to mm2;, 42m to mm2, 42m to 222, 32 to 2,
and 3m to m to draw attention to the fact that an
alternative setting is used sometimes for diverse
reasons such as in describing crystals which in the
morphologically conventional setting would have
cells with a larger than minimum number of lattice
points per cell.

A general direction (one not carried into itself by
any of the operations of a point group under con-
sideration) will give rise to a set of n(PG) equivalent
directions where n(PG,) is the order of the initial

D

This set splits into Gy} sub-
sets of n(PG;) directions each, when the original
point group is lowered to a subgroup PG; of order
n(PG;). Each stereogram shows a set of n(PG)
general directions for the initial point group; direc-
tions intersecting the reference sphere (from which
the stereogram is derived) on the upper hemisphere
(projector through the south pole) are represented
by points and those intersecting the lower hemi-
sphere (projector through the north pole) by circles.
The directions which belong to the same subset under
the operations of the subgroup for the stereogram
are given the same Roman number.

When directions are shown in pairs (upper and
lower hemispheres) one Roman numeral indicates
that those two directions belong to the same subset.
Otherwise, two separate Roman numerals are given;
the one on the upper hemisphere has a connecting
line to the center.

point group PG,

3. Description of Stress Tables

The symmetry elements of uniaxial stress are those
of an ellipsoid of revolution [3,5]; i.e., an «-fold axis
perpendicular to a mirror plane with every plane
containing the «-fold axis also being a mirror plane.
Tables 1 and 2 list the orientation of the o«-fold
axis suitable for each of the minimum steps of
symmetry lowering. Kach of the entries in the
tables can be checked by superposing the above
named symmetry elements on the stereogram of the
initial point group with the «-fold axis oriented as
specified. The tables also list appropriate orienta-
tions for all but three of the compound steps of
symmetry lowering: m3m to mmm in one setting,
43m to 222, and 432 to 2221n one setting; none of these
three can be accomplished by uniaxial stress. For
example, consider the reduction of m3m to mmm
with the mirror planes of the latter perpendicular to
the z, 77, and z axes of the former. To retain a mirror
plane under uniaxial stress, the axis of the stress
must be either parallel or perpendicular to the plane.
For the present setting of mmm this requires the
stress axis parallel to x, 7, or z; these orientations
result in the preservation of a four-fold axis and the
reduction is to 4/mmm rather than mmm. The
other setting of mmm as a subgroup of m3m can,
however, be reached by tensile stress directed along
[110].

4. Discussion

4.1 Splitting of a General Position in a Space Group
Into Subsets of Sites

There is a close correspondence between equiva-
lence of directions under point-group operations and
equivalence of sites in a crystal associated with one
lattice point under space-group operations. There
are as many equivalent general sites per lattice point
of a crystal as there are equivalent general directions
for the point group of the crystal. The symmetry
operation connecting two sites associated with the
same lattice point of a crystal must be the same as far
as general rotations (i.e., proper rotation, reflection,
or inversion) are concerned as the point-group op-
eration connecting the isomorphic directions for the
point group. A space-group operation in addition
to a general rotation may also produce a translation
which is a simple integral fraction of a lattice vector.
In 73 of the space groups, termed the symmorphic
space groups [12], the full point group is contained
in the space group and a set of general positions
associated with one lattice point must lie on a sphere
surrounding that lattice point. The points repre-
senting directions in the stereograms of the present
paper may be regarded as points on the surface of
the reference sphere of the stereogram and so directly
represent a set of general sites for a symmorphic
space group [13] with the same point group. The
symmorphic space groups, associated with each point
group are listed in the last columns of tables 3 and 4.
For a nonsymmorphic space group one can begin
with a general site and produce a set of equivalent
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TasrLe 1. General orientation of homogeneous tensile stress (or biaxial stress if required) causing symmetry reduction
Subgroup «Minimum | Compound—>
m3m ‘ m3 6/mmm 6/m 4/mmm 4/m 3m 3 mmm 2/m I
‘ ‘ [110] [11u]
| m3m None | oo | cococm | aooe- [too] | .- [ | biax. [100] [1u0] Any
1\ m3 ‘ None | oo | coooie | o | e | e [111] [100] [1u0] Any
\\ ggggggggggggg —_—
= 6/mmm [100] [1u0]
e (hex-axes) _ [10u]
S o] | o | e | | | [170] [11u] Any
e
~— 6/m [0 1] S | S | ST SV oS | A —— [1u0] Any
S (hex.axes)
[luc]
4/mmm [100] [10u]
(104 [ U (S (R [110] [11u] Any
S -
~ 4/m foo1] | - | . | [1u0] Any
S = — =
3m For 3ml:_
111'51 (hex.axes) _ [1u]
L gy, || For 3lm:
Oy, oet] | . | . | 11u] Any
Sy 3 ‘
~_ (hex.axes) | [oo1] | o | Any
~ [100] [1u0]
S mmim [010] [10u]
S [601] [01u] Any
\ Z/I]T [010]
@lly) [10u] Any
>~ =
\\ il Any
S
N
1
[10u] or similar symbol here signifies a direction of given u (any real number) or another direction \
related to it by the symmetry of the initial group; and biax. (for biaxial) indicates two unequal stresses along S
nonparallel directions of the t ype specified. Any directional specification is understood to exclugle a more specialized direction if and only
if it is appropriate to a higher order subgroup of the initial point group. Large square brackets indicate equivalent subgroups from alternative settings of axes.™

sites by using first the purely rotational operations
and then the operations having fractional translation
also. The former produce points on a sphere and
the latter may be looked upon as first rotating to
produce a point also on the sphere and then trans-
lating the point off the sphere. The points on the
stereograms of the present paper can still be used as
a representation of a set of general sites if it is
recognized that the stereogram describes only the
rotational part of the symmetry operation and that
for a nonsymmorphic space group some of the points
would be displaced from the surface of the reference
sphere by translation of an integral fraction of a
lattice vector. 'The pattern of splitting of a general
position into subsets under stress is, however, the
same for all space groups, symmorphic or non-
symmorphic. That pattern is associated with a
given point-group-to-point-group reduction because
the operations in the space group which are lost under
stress are always isomorphic to the same operations
in the point group.

All of the possible space-group-to-space-group re-
ductions associated with each of the point-group-to-
point-group transitions induced by stress have been
tabulated [10]. For any symmorphic space-group-
to-space-group reduction in this tabulation one can
collect the coordinates of a set of equivalent general
sites into subsets using the present stereograms to
determine the permutations and changes of sign of

in the subgroup. The same permutations and sign
changes must also hold for any nonsymmorphic space
group associated with the same point-group-to-point-
eroup reduction; any additional translation can then
be taken from the International Tables [11] because
the permutations and sign of the ayz coordinates
uniquely identify each site of a set of equivalent sites
as given there. This has been done for the general
position in each of the 230 space groups, and tables of
the splitting of a set of equivalent general sites into
subsets are available [6, 14] for all minimum steps
of symmetry lowering.

4.2. Splitting of a Special Postion in a Space Group
Into Subsets of Sites

One can specialize a direction in a point group so
that it is carried into itself by some of the operations
of the point group other than the identity. All such
operations together with the identity must form a
group; let PGS, represent this group and n(PGS,)
represent its order. Then there will be n(PG)/
n(PGS,) distinet directions making up a set of equiva-
lent specialized directions of this type. The process
of specialization can be visualized by picturing the
motion of one of the points on any of the stereograms
of figure 1. All of the other points on the same
stereogram must move simultaneously to remain
symmetry related. Specialization requires move-
ment to make two or more points coincide so that the

z, i, and z coordinates which produce equivalent sites

specialized direction is invariant under the opera-
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TABLE 2.

General orientation

of homogeneous tensile stress (or biaxial stress if required) causing symmetry reduction.
(Symbols and notation as for table 1.)

tions which related the now coincident directions.
Several types of behavior occur separately or at the
same time (in exact correspondence to the treatment

of special positions in space groups [10]):

(1) Two points belonging to different subsets may
be brought into coincidence on symmetry lost so that
the number of sets into which the set of specialized

319

Subgroup
Initial «Minimum | Compound=»
group
Self 42m 422 3m 32 3 mm2 222 m 2 1
subgroup
13m None ool | . (000 I R I [110] ?fSS] 0 el A0y
Wgﬂi s 7,77 [110] N [10u] N 77\;1‘3 B
432 None |  —---- [toop | - (B Y R biax. [10C] [11u] &
23 None | .= | .o | aee | - [y | - [100] | .- [01u] Any
Subgroup
Self mm2 222 m 2 1
subgroup
. [Lu0] N
6m2 . [~ For (Srn?l:_I ]T [~ For 6m[21:T : For 6m[21: ]_ N
gl [001 _ O] SN R _ u _ [11u ny
(hex. axes) For 62m: For 62m: For 62m:_
L 110] _| L [11u] [1Tu]
6mm [110] [11u] .
(hex. axes) | (001 lhil]l | - [1Tu] [Ruol Any
G 1u0]
622 [110] [ -
(hex. axes) | (011 —eee (Rl | - [ Any
6 =
(hexYaxes) [0 e | T == [1u0] Any
6
(hex. axes) L e L Any
. - _ [1u0]
_ [~ For 42m: For 42m: For 42m: For 42m:
42m [001] _[110] _[100] _ [11u] _ [10u] Any
LFor 4m2: For 4m2 For 4m2: For 4m2:
[100] 10] [10u] [11u]
1 10
4mm [001] {1(1]8% ----- {113} [1u0] Any
[100] [1u0]
422 foor] | .. [11o] | - [10u] Any
[11u]
4 oot} { - | .| s [1u0] Any
4 oo} | - | .| s [1u0] Any
[~ For 3m[11:_ .
3m lu
(hex. axes) L e For 3lm: || - Any
[11u]
For 321:
32 [11u]
(hex. axes) (L R T e For 312: Any
[1Tu] _J
3
(hex. axes) 001 e e e Any
[100]
mms ow | oo | [ [1u0] Any
[001]
[100] [1u0]
222 L | e [10u] Any
[001] [01u]
m(Ly) 0L e | IS | Any
2(lly) 112101 S T R Any
1 7 e

direction splits under stress is fewer than the number
of subsets resulting from the set of general directions.
For example, in the stereogram for 432 to 422 the
motion of a point labeled I nearest [111] onto the
threefold axis along [111] causes points I, II, and ITI
to coincide. Thus, in the unstressed crystal of point
group 432 a direction of symmetry PGS,=3 gives




rise to a total of 7n(432)/n(3)=24/3=8 equivalent
directions. In the stressed crystal the direction [111]
has PGS;=1 so n(PG;)/n(PGS;)=n(422)/n(1)=8/1
=8 and the specialization has changed a set of 24
splitting into 3 subsets of 8 each into a set of 8 that
does not split under this stress. Unequal splitting
can be demonstrated, for example, for 3m to 2/m, as
mentioned in the introduction. ILet the points
labeled IT and IIT be brought into coincidence by
moving them onto the dashed lines representing lost
mirror planes: this requires the points labeled I to
move onto the mirror plane which is retained. In
the unstressed crystal all directions have PGS;=m
with #(3m)/n(m)=12/2=6. In the stressed crystal
one subset has PGS, =m with a number in the set
of n(2/m)/n(m)=4/2=2; the other subset has
PGS;? =1 and 4 directions in the set.

(2) Directions in the same subset may become
identical in clusters of two or more each on symmetry
retained. The specialized directions in this subset
are necessarily specialized with respect to the reduced
point group. In the above example of 3m to 2/m
the coincident points labeled I were still specialized
with respect to 2/m.

(3) The number of degrees of freedom in a subset
may exceed the number in the original set of special
directions because of loss of a constraint resulting
from loss of symmetry. In the above example of 3m
to 2/m the points of subsets resulting from coin-
cidence of 1T and IIT were specialized to lie on mirror
planes of 3m and so had only one degree of freedom;
these planes are lost in going to 2/m as shown in
the stereogram so that the points have two degrees
of freedom with respect to 2/m.

TABLE 3.

The fourth columns of tables 3 and 4 list the
possible specializations to PGS, which can be
accomplished by moving the general direction on
the stereogram for each point group. Sites having
position point symmetry, PPS, equal to each pos-
sible PGS, must occur in each of the symmorphic
space groups. The latter are listed in the last
columns of tables 3 and 4. There are, however,
sites of different point symmetry which can occur
even in some of the symmorphic point groups be-
cause of symmetry operations which are interwoven
between the lattice points when the latter are chosen
to have the full point symmetry. Thus, in Fmm2
sites of symmetry 2 occur halfway between lattice
points but the general direction of the stereogram
for mm2 can not be specialized just to 2 but becomes
mm2. Many such cases occur; columns 5-7 of
tables 3 and 4 list all of the additional position point
symmetries (which must be a subgroup of the
initial point group) occurring in the symmorphic
or nonsymmorphic space groups associated with
each point group and not already listed in columns 4.
One might suppose that all of the subgroups of PG,
would occur as position point symmetries in some
space group associated with PG, but column 8
of table 3 shows that a few exceptions exist.

The behavior of a special position of symmetry
PPS, which is not a possible PGS, of the pomt group
can be visualized by using two or more of the stereo-
grams together. Under a stress which causes a
minimum step of symmetry lowering of PG, to PG,
the group PPS; must either remain unchanged or
undergo a step of symmetry lowering but the latter
need not be a minimum step. For example, PPS;=

Point symmetries reached by specializing general directions for each centrosymmetric point group as applicable to

stereograms; point symmetries occurring in symmorphic and nonsymmorphic space groups but not on stereograms; and point

symmetries which, while forming a subgroup of the initial point group, are not found in any associated space group

Subgroups (other than 1)
Initial group . ) ; '
occurring on the not occurring on stereogram but in at least one 24 centrosymmetric space-
Int. tables ! Schoenflies 1! Shubni- | stereogram and in not on ster- groups with full point
kov 18 at least one space . . eogram nor | symmetry of initial point
group associated | symmorphic, but | symmorphic and nonsymmorphic | in any asso- group
with the initial not in associated | at least one associ- | but not in associ- | ciated space
point group nonsymmorphic | ated nonsymmor- | ated symmorphic group
space groups phic space groups space groups
ma3m On 6/4 4mm, 3m, mm2, m3m, 4/mmm 43m, 3m, 42m, ma3, 432, 23, 4/m, 2/m, 1 Pm3m, Fm3m, Im3m
m mm2, 2 422, 3, 32, 4, 4,
222, 3
m3 0, 6/2 mmz, 3, m m3, mmm, 2/m 23393 22252 1 Pm3, Fm3, Im3
6/mmin Dsn m-6:m 6mm, mm2, m 6/mmm, mmm [ 6m2, 3m 6/m, 622, 3m, 32, 3,1 P6/mmm
6, 6, 222, 2/m,
3,2 [
4/mmm Din m-4:m 4mm, mm2, m 4/mmm 42m, mmm, 2/m, P4/mmm, I4/mmm
2
6/m Cén 6:m 6, m 6/m, 2/m, 2 6,3 P6/m
3m Dia 6-m 3m, m, 2 | 3m, 2/m 32,3 P31m, P3m1, R3m
4/m Ciun 4:1m 4, m 4/m 1,2/m, 2, 1 _| P4/m, 14/m
mmm Dan(Vh) m-2:m mms2, m mmm 222882/ 1 150 TN I N, Pmmm, Cmmm, Immm,
Fmmm
7 C3i(Ss) 6 3 3,1 e E SRS SR SRR MR P3, R3
2/m Csn 2:m m, 2 2/m T SO SRS ———___| P2/m, C2/m
1 Ci(Sy) 3| 1 ‘ ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Pi




TarLE 4. Point symmeltries reached by specializing general directions for each noncentrosymmelric point group as applicable
to stereograms; and point symmetries occurring in symmorphic and nonsymmorphic space groups but not on stereograms

(Point symmetries forming a subgroup of any initial noncentrosymmetric point group are found in at least one associated space group.)

| Subgroups (other than 1)
Initial group not occurring on stereogram but in at least one 49 noncentrosymmetric
occurring on the ster- B space groups with full
Int. Schoen- Shubni- cogram and in at point symmetry of ini-
tables 11 flies 11 kov 10 least onespace group | symmorphic but not | symmorphic and at | nonsymmorphic but tial point group
associated with the in associated mnon- least one associated not in associated
initial point group symmorphic space nonsymmorphic symmorphic space
groups space groups groups
- - | ~ — -
43m Tq 3/4 | 3m, mm2, m 43m, 42m 4,2 23, 222, 3 P43m, F43m, [43m
432 0 3/4 4,3, 2 432, 422 23,382,222 | . P432, 1432, 1432
23 r 3/2 3,2 230 | R P | P23, F23, 123
6m2 Dan m-3:am 3m, mm2, m 6m2 6,3 32,2 P6m2, P62m
6mm Cey 6.m 6mm, m mma2 3m 6, 3,2 P6mm
622 D 6:2 6,2 622 30D N | P622
2m D2a(Va) 41m mm2, m, 2 42mm 4,222 | | P42m, Pdm2, 14m2,
142m
4mm Cyv 4.1m ‘411111],111 . ceeee| mm2 | £ G) P4mm, I4mm
422 Ds 422 a2 a2 o | Pam, 12
6 Cs 6 | 6 & | 32 — . -| P6
6 Csh 3m 3,m 6 ‘ . - B B P6
3m Cs, 3m i 3m, m | 3 N ‘ P3ml1, P31m, R3m
32 D; 3:2 | 3.2 32 o o | P312, P321, R32
4 (e} 4 | 4 e o . P4, 14
i S 1 | 2 | ¢ | o L P1, 14
mm2 Cay 2.m ‘ mmse, m } o) I . | Fmm2, Imm2,
i ‘ Pmm2, Cmmz2, Amm?2
22 ey 2 L vem com,
| T B -
3 3 ‘ 3 ) . | P3, R3
m 1-m ‘ m = ‘ e Pm, Cm
2 Cy 2 | 2 RO P—— P2, C2
1 C 1 I I o P1

4/m occurs in some space groups associated with
PGy=m3m; tensile stress along [111] causes the
minimum_step m3m to 3m but also causes the
compound step in position point symmetry 4/m to
L. These results can be visualized from the stereo-
grams for m3m to 3m and 4/m to 2/m. The latter
shows the only minimum step for 4/m and shows
that m perpendicular 4 must be preserved; the
former shows that all mirror planes perpendicular
to 4-axes are lost. The combination of a minimum
step of symmetry lowering of PG, with a compound
step for PGS, on a stereogram can also occur as the
example of m3m to 3m accompanied by 4/mmm to
m shows.

This type of visualization can be applied to any
PPS; of PG, but it should be noted that the orienta-
tion of PPS; is fixed by PG, so that a stereogram of
PPS; as initial group may require reorientation to
correspond to the setting in PG,

4.3. Effect of Homogeneous Stress on Morphology of
Crystals

'The identity of the 32 morphological erystal classes
with the 32 three-dimensional point groups is well

understood (Phillips [15]). A straight forward appli-
cation therefore of the stereograms here presented
would appear to be that concerned with changes in
homogeneously strained crystals. From the practi-
cal experimental viewpoint, however, the applica-
tion of homogeneous stress (other than isostatic) to
a polyhedrally shaped object is difficult to visualize
and more difficult to achieve. Apart from general
mathematical treatment there seems so far to have
been little interest by practical crystallographers in
the homogeneous distortion of crystal shapes. For
general forms minimum step degradations can be
directly read from the figures as conversions to
general forms of the subgroup. The number of now
independent but co-existing forms in the subgroup is

n(PGo)

that of the final subgroup, the splitting factor some-
times called the index of the subgroup. It can
simply be read off the stereograms given as the
highest Roman figure designation of a direction on
the stereogram of the parent group.

In this way for example a compressive stress

simply the ratio of the order of the initial to
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II[111] for a erystal belonging to m3m will convert
one {hkl} hex(akis)octahedron to four hexagonal
bipyramids.

A randomly oriented stress will convert any general
form into unrelated triclinic {Akl} pedia (for non-
centrosymmetric crystals) or {Akl} pinacoids (for
centrosymmetric crystals). The number of forms
being simply the order (for noncentrosymmetric) or
half the order (for centrosymmetric crystals) of the
initial point group.

All possible intermediate compound steps can be
read off tables 1 and 2. 'The forms produced from
general forms in PG, are always general forms {hkl}
m the ultimate subgroup and their number again
equals the ratio of the order of the initial to that of
the final point group.

When special forms are involved the procedure
follows that outlined above for cell site co-ordinates;
the only possible special forms being those listed in
the fourth column of tables 3 and 4.

Faces will belong to special forms in the subgroup
if any one of the original symmetry operations, the
stereographic representation of which is parallel to
the pole of the face, is retained in the degradation.

When an initial point group has a number of
equivalent symmetry operations, stress may lead to
the loss of one or more of these operations, yet leave
one or more of them in the subgroup. Directions
specialized with respect to these initially equivalent
symmetry operations will split unequally. For ex-
ample, in the transformation m3m to 4/mmm, a
{100} cube, with six faces, will split into a tetragonal
basal pinacoid {001} with two faces and a tetragonal
(first order) prism {100} with four faces.

No splitting of the special form will result if special-
form poles can be regarded as having arisen from the
superposition, on symmetry operations, of poles in-
cluding at least one with each Roman-figure desig-

nation. The shape of the solid figure naturally will
change. For example, as m3m transforms to

4/mmm, {111} changes from a regular octahedron to
a (2d order) tetragonal bypyramid. As 4/mmm
transforms further to mmm in one orientation {111}
becomes a rhombic bipyramid, the general form of
that class. In the 45° position, however, it would
split into two unrelated rhombic domes. Further
symmetry degradation must also split the rhombic
bipyramid, because it is the general form. In
other words: the faces of the original octahedron
{111} number eight, its faces cannot remain all
equivalent when degradation proceeds to a subgroup
of order less than eight.

In this way it is easy to deduce which crystallo-
graphic forms can be transformed by homogeneous
stress into which others. Conversely, if there is no
simple or compound subgroup relationship that will
transform any one given form in any of the point
groups in which it occurs into another form with an
appropriate subgroup symmetry then there exists
no homogeneous stress that can effect that transfor-
mation. For example—as is well known to geome-

ters—a tetrahedron, {111} in 43m, can be homo-
geneously deformed to a tetragonal sphenoid {111} in

32m, and to a thombic bisphenoid, {111} in 222, but
not to a rhombic dome, which also has four faces.

However, some care is necessary in deducing that
a given transformation is impossible, because the
special forms of some classes are indistinguishable
from some special and, in one or two instances, even
general forms (taken singly) of other classes.

There are a number of other applications of this
kind of morphological discussion of homogeneously
strained crystals. Temperature, pressure, or compo-
sition changes may lead to phase transformations
(displacive) in which no primary bonds are broken in
the solid [16]. Such changes may or may not be con-
sistent with changes that could arise by homogeneous
deformation as here described. This will introduce a
further meaningful subclassification of the trans-
formations discussed by Buerger [16].

Another, completely different, consideration may
prove to be fruitful. Crystal growth results in
shapes that often depart considerably from ideal
symmetry of the atomic structure. A number of
causes for these departures are established, and rela-
tively well understood:—

1. Accidental asymmetry of supply of solute or
melt to equivalent faces;

2. Retardation of growth of some faces by sub-
strate interference or competition for solute or liquid
with neighboring crystals;

3. Accidental differences in the small number of
growth step sources on otherwise equivalent faces;
and

4. Geometric complications arising from twinning.

An additional effect suggests itself. Stress during
erowth may make faces inequivalent causing unequal
erowth rate on otherwise equivalent faces. On exam-
mation of the crystals after stress removal the equiv-
alence of the faces demanded by structural symmetry
is reestablished, yet the asymmetry of shape persists.

This effect to be discerned may need to be studied
deliberately and carefully under laboratory conditions.
Certainly two outstanding anomalies (some diamond
and cuprite crystals) of known minerals with mor-
phology suggestive of lower symmetry than their
established structure [17] can not be explained by
homogeneous strain during growth. These two
anomalies are accompanied by anomolous etch fig-
ures. Any stress induced inequivalence of structure,
that gives rise only to homogeneous elastic strain,
should vanish when the stress is removed.

5. Appendix I

We here present a simple, systematic, and exhaus-
tive scheme for deriving all possible subgroups that
can be reached by the action of homogeneous stress
on any point group.

Let us introduce a number of concepts and symbols.
First, consider any stress ellipsoid, /7, which in shape
and orientation is least restricted yet still consistent
with any original point group (cf. table 13, reference
5). Stress-induced symmetry lowering can be caused
only by an imposed stress of which the ellipsoid
representation, £, does not conform to all the re-
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strictions in /,. Point-group degradations for each
initial point-group, PG, can now be regarded as
associated with liberalizations, L, of these restrictions
imposed on [,

We will distinguish Lg and Z, liberalizing ellipsoid
shape and orientation respectively. All PG degrada-
tions can be regarded as caused by one or both of
these applied to £7,, We further classify into Lgg,
LST, _Lm, and LUQ.

Lgy 1s a shape liberalization leading to an ellipsoid
of revolution with unique axis parallel to a crystal
axis 2 of order >2. As the only more restrictive
stress ellipsoid is a sphere the operation Lgz need be
considered only when PG, is cubic, for which the
Lgyr operation produces one or two symmetry deg-
radations depending on whether there are one or
two nonequivalent, nonparallel axes of order >2
in PG,.

Lgr 1s a shape liberalization leading to a triaxial
ellipsoid, the major axes of which are parallel to three
mutually perpendicular crystal axes of even order,
in PG, As [, is more specialized only when PG
contains at least one axis of order 2 Lgp applies
only to such PGy’s; and then only if PG, has either
one or two inequivalent sets of three mutually
perpendicular axes of even order. More than two
such sets cannot occur in any PGy, at least one such
set must occur for all cubic PGy's.

Ly we define as a liberalization to a triaxial ellipsoid
(including Lg if PG, has axis of order >2) with one
orientational degree of freedom. L, must lead to
one of the following subgroups: 2,m, or 2/m. From
any PG, there will be as many distinct ways of
applying the Ly operation as there are nonequivalent
nonparallel axes of even order symmetry in PG.
Cubic point-groups have at least one and never more
than two such directions. Noncubic PG, may have
none, one, two, or at most, three such directions.
Nonequivalent L, operations on any centrosym-
metric PG, must all lead to 2/m, but for noncentro-
symmetric PG,’s they may or may not lead to the
same subgroup.

Ly, is a liberalization to a triaxial ellipsoid with two
orientational degrees of freedom; the operation is
regarded as including an Lg operation from PGy’s with
an axis of order >2. Application of Ly to centro-
symmetric PGy’s always produces the subgroup 1

In this discussion symmetry axes may be rotation or inversion axes.

and none other, noncentrosymmetric PGy’s lead only
to 1.

The aim of the treatment here given is to consider
the symmetry and orientation of £,; then to apply
the liberalizations, L, until the symmetry and orienta-
tion of £ is obtained. This process cannot always
be accomplished because £, may in some respects be
more restricted than can be derived from F, by
L-type operations. We must therefore liberalize /7,
to £ where £ is a more general ellipsoid which can
be reached from £, by operations L and which will
produce the same symmetry lowering as /7.

If £, is a triaxial ellipsoid it is in an adequately
general form because it can be obtained from any
ellipsoid by operations Lgr, Ly, or Ly If £ is a
biaxial stress, one need only add an arbitrary isostatic
stress to obtain an acceptable /. It has previously
been pointed out [10] that the addition of such an
isostatic stress can not affect the symmetry lowering.
The only important case to be considered therefore
is that of a stress £ corresponding to an ellipsoid of
revolution, or a uniaxial stress which by the addition
of an arbitrary isostatic stress can be transformed to
one corresponding to an ellipsoid of revolution. We
must now distinguish two possible conditions as
follows:

Condition 1: unique ellipsoid axis is parallel to a
crystal axis (in PGy) of order >2. The symmetry of
E; can not be further reduced without affecting the
symmetry lowering. No further generalization of
FE, is therefore possible.

Condition 2: unique ellipsoid axis is parallel to a
rystal axis (in PGg) of order <2.  There is now
necessarily a uniaxial stress which can be added per-
pendicular to the unique £ ellipsoid axis which will
leave the symmetry lowering unaffected. If in PG,
there is no even order axis perpendicular to the unique
ellipsoid axis the direction of the additional uniaxial
stress is entirely arbitrary. If there are one or two
perpendicular directions of axial even order >2 in
the plane perpendicular to the unique ellipsoid axis
the additional uniaxial stress must be added parallel
to one axis in the plane.

Our general scheme of deriving all subgroups can
now be stated.

All proper subgroups are developed by operations
Lgr, Lgr, Ly, and Ly, each in turn considered as
acting upon PG,.

The number of proper subgroups obtained is:

1
Maximum
Lsr L gr Lo, L number | Example
possible

TG @O e cm e e e 1lor?2 lor2 1or 2 1 7 m3m
PGy one and only one axis order >3______ 0|0,10r2 |12 0r3 1 6 4/mmm

PGy one and only one axis order =3 and .
none of higher order________________ 0 0 Oor 1 1 2 3m

PGy with axis order 2 and none of higher

order— _____ 0 0 1or3 1 4 mmm




The naming of the individual subgroups is trivial
when we remember that a center in PG is always
retained; that for Lgr the first symbol is derived
from the only axial direction parallel to the ellipsoid
axis of revolution. The necessary and sufficient con-
dition of 2-axes retention is then that they be parallel
or perpendicular to that direction; that for Lgr only
the crystal axes (order 2) parallel to the principal
ellipsoid axes are retained; that for Ly only one axial
symmetry direction (order 2) can be retained.

Minimum steps are produced by all Lgr operations;
by all Lgr operations except when PG, is cubic and
has three axes of order 4; by Ly operations when the
operation Lgp on PGq is inapplicable; and by Ly
operations only if PG, has only one axial direction of
order two or three.

The authors are indebted to F. A. Munley and
L. C. McCleary for help in the preparation of the
manuscript as well as especially to W. F. Stancliff
for the drawing of the stereograms.
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