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It is . assumed t hat the symmetry operation s possessed by a homogeneously stressed 
crystal wIll be t hose common to t he crystal and to t he stress. Application of stress either 
leaves a point group ur:altered or lowers it to a subgroup . Any stress-induced minimum 
~tep of symmetry lowermg can be caused by unaxial stress but t hree of the possible stress­
mduced compound steps of symmetry lowering require biaxial stress. The uniaxia l or biaxia l 
s ~ress required fo r any. s~ress-induced syn:metry lowering is tabulated and stereograms are 
g.lven for ea~h . o.f t he ml111mum steps showm g t he relation of t he remaining symmetry opera ­
t l.ons ~o t he ullt!al symmetry and sholVlIlg the splitting of a set of ini t ia lly equivalen t general 
dU'ectlOns mto m equlvalent subsets. These stereo<Tram s provide a direct representation of 
t he splitting of a genera l pos it ion in a crystal into i'n: quivalent subsets for the symmorphic 
space groups a n d the latte r a rc Ilsted ; t he effect of gh de planes and screw axes must be con­
sidere? ~n the remain ing space groups yet .the stereogra m s st ill provide t he correct pattern 
o.f spl l ttll1g. V ses of the stereograms, for Jl1stance, t o obtain t he spli tt ing of [t specia l posi­
~lOn , a re descnbed. 

1. Introduction 

The r esponse of crystals to stress has been studied 
for many years; the conditions on elastic cons tan ts 
and piezoelectric cons tan ts imposed by crystal 
symmetry a re given, for example, by Nye [1].l He 
has also discussed second order effects including 
those arising when a crystal is stressed and simul­
taneously subj ected to a second influence such as a 
beam of light . The treatment proceeds by consider­
ing that the s tressed crystal has only the symmetry 
eleIl1ents common to the stress and to the wlstressed 
crystal; the electro-optical coefficients permitted by 
symmetry are those appropriate to the point group 
of the stressed crystal. If this is of lower order than 
the point group of the unstressed crystal, finite values 
are permitted for some of the electro-optical coeffi­
cients which were previously zero . In an actual 
experiment it is easier to apply a tmiaxial stress than 
one which is biaxial or triaxial. The subgroups 
which can be reached by any homogeneous stress 
have been classified [2] and organized into a successive 
subgroup scheme [3]; we shall show by tabulating 
appropriate tensile stresses that all but three of these 
symmetry reductions can be induced by uniaxial 
stress. The other three symmetry reductions require 
biaxial stress. 

The effect of stress on symmetry restrictions of a 
tensor property can thus be determined if the tensor 
property is one previously classified in terms of 
symmetry of unstressed crystals. There are, how­
ever, other properties which are influenced by the 
molecular symmetry of the crystal and which reflect 
only the state of a particular set of atoms of one type 
rather than an average over all atoms of this type; 

1 Figures in brackets indicate the literature re ferences at the end of this paper. 

such properties may require more detailed considera­
tion of the symmetry lowerin g caused by stress. 
For example, the excitation spectra of donors in a 
semiconductor such as silicon depend on the site 
symmetry of the donor. In the case of silicon the 
usual donor atoms occupy substitutional sites with 
the full point-group symmetry of the crystal ; appli­
cation of homogeneous stress changes the symmetry 
of all sites equally and leads to a single pattern of 
splitting of excitation spectr a for a given stress [4]. 
The point symmetry of initially equivalent sites in 
a crystal may, however, ehange unequally under a 
given stress and m.ore complex patterns of splitting 
of spectra should then occur. For example, sites 
with symmetry m in a crystal of symmetry 3m can 
be affected by uniaA"ial stress so that two out of every 
three sites lose all symmetry while the third retains 
the symmetry m. The possibility of such unequal 
symmetry lowering and the circumstances under 
which it should occur can be seen from stereogTams 
showing the original symmetry operations and the 
symmetry retained under stress . These considera­
tions of unequal symmetry lowering should also apply 
to the observation of magnetic resonance in crystals 
under homogeneous stress [5]. A minimum step of 
stress-induced lowering of symmetry has previously 
been defined for space groups as one which leaves no 
stress-induced subgToup of the initial group which is 
also a supergroup of the final gTOUp and wnich is 
distinct from both [6] . The same definition is t aken 
for point groups. One might suppose that such a 
minimum step might leave a distinct subgroup not 
reachable by stress which is a di stinct supergroup of 
the final group. Detailed examination shows that 
no such crystallographic point groups occur. A 
complete set of stereograms for all crystal symmetries 
and all possible minimum steps of symmetry lowering 
is given here. 
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These stereograms also show the inequivalences 
introduced into a set of general sites ; the results for 
special sites follow from these. Any nonminimum 
step of symmetry lowering by stress can be analyzed 
in terms of successive minimum steps. 

The stereograms and stress tables given here should 
also be useful in other field" such as internal friction 
and the morphology of crystals [3, 7, 8,9]. 

The splitting of a set of sites in a crystal into 
inequivalent subsets under stress has also been 
treated in the context of space groups [10], the 
relation of the present point-group considerations to 
the space-group treatment will be covered in the 
discussion. 

2 . Description of Stereograms 

Stereograms representing each of the 32 crystallo­
graphic point groups and their conventional symbols 
are given in the International Tables JOT X-ray 
Crystallography [11]. These tables also list all of 
the subgroups or each point group ; only cer tain of 
these subgroups can be reached by the action of 
homogeneous stress. They have been lis ted [3] and 
a systematic method of deriving this list is now 
presented in the appendix. It is useful to show the 
symmetry operations retained in a stress-ind uced 
subgroup and the original symmetry operations on 
the same stereogram. The latter can be shown by 
the conventional symbols used by the International 
T ables [11] but the former require new symbols. 
Both the conventional symbols and the new symbols 
are illustrated and defined in figure 1. 

• POINT ABOVE EOUATORIAL PLANE 

() POINT BELOW EQUATOR I AL PLANE 

The stereograms are also shown in fig ure 1; those 
for centro symmetric point groups are given first, 
beginning with those of highest or.:1er. The crystal­
lographic axes are not marked , but the z-axis of the 
initial point group is taken to be at the center (north 
pole) of the stereogram. For all crystal systems 
(other than triclinic for which no stereogram is 
shown because no proper s tress-induced subgroup 
exists) the angle between z and y is 90°. Therefore, 
in all cases the y-axis must fall on the primitive 
(equator) so according to accepted convention we 
have chosen the horizontal axis with positive y 
toward s the right. 

In some stereograms a second heading, inclined at 
an angle to the first, is given. When using these, 
as explained subsequently, "horizontal" is with 
respect to the heading used. A given point group 
sometimes occurs in more than one orientation as 
a stress-induced subgroup of an initial poin t group. 
Alternative settings may be equivalent (i .e., one is 
generated from another by symmetry operations of 
the initial point group) or inequivalent. A second, 
nonequivalent setting is indicated by a second 
heading placed at an angle so that positive y of the 
initial group is to the right when the heading is 
horizontal. Such inequivalent settings occur for 
6 of the 37 minimum steps of stress-induced sym­
metry lowering: 4/mmm to mmm, mmm to 21m, 
4mm to mm2, 422 to 222, mm2 to m, and 222 to 2. 
In the case of 4/mmm to mmm the two headings are 

. I I I J, J, J, • d' h h WrItten as 4 mmm --? mmm to 111 lCate t at t e 

~ 3-AXIS RETAINED 

.a 3-AXIS LOST 

o POI NT S ABOVE AND BELO W E QUATOR I AL PLANE • 4 - AX I S RETAINE D 

PLANE OF SYMMETRY RETAINED 1 
PLANE OF SYMMETRY LOST 

2-AXIS RETAINED 

2-AXIS LOST 

3- AXIS RETAINED 

3-AXIS LOST 

AT OR ABOVE 
EQUATORIAL 
PLANE 

FIGURE 1. 
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~ 4-AXIS LOST 

+ 4-AXIS CHANGED TO 2-AXIS 

¢ 4- AXIS RETAINE D 

'®' 'I-AXIS LOST c • ) , , 

,t, 
'I-AXI S CHANGED TO 2-AXIS C ) , , 

rfJ 6 -A XI S CH ANGE D TO 2- AXIS 

~ 6-AXIS LOST 
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mirror planes perpendicular to z, x, and yare pre-
d d I I I -l- J, -l- • l' h h serve an as 4 mmm """' mmm to me lCate t at t e 

mirror planes perpendicular to z, [flO]' and [110] 
are preservecl. Similar headings are given for the 
other cases but this scheme does not permit three 
labels for the three inequivalent ways for mrnm to 
21m and 222 to 2. 

'l\vo headings are given on some of the other stereo­
grams even though the subgroup does not occur in 
inequivalent ways. This is done for 3m to 21m, 
6m2 to mm2, 42m to mm2, 42m to 222 , 32 to 2, 
and 3m to m to draw attention to the fact that an 
alternative setting is llsed sometimes for diverse 
reasons such as in describing crystals which in the 
morphologically conventional setting would have 
cells with a larger than minimum number of lattice 
points per cell. 

A general direction (one not carried into itself by 
any of the operations of a point group under con­
sideration) will give rise to a set of n(PGo) eq uivalen t 
directions where n (PGo) is the order of the initial 

point group PGo. This set splits into ~~~g~~ sub­

sets of n(PG1) directions each, when the original 
point group is lowered to a subgroup PG1 of order 
n(PG1). Each stereogram shows a set of n(PGo) 
general directions for the initial point group; direc­
tions intersecting the reference sphere (from which 
the stereogram is derived) on the upper hemisphere 
(projector through the south pole) are represented 
by points and those intersecting the lower hemi­
sphere (projector through the north pole) by circles. 
The directions which belong to the same subset under 
the operations of the subgroup for the stereogram 
are given the same Roman number. 

When directions are shown in pairs (upper and 
lower hemispheres) one Roman numeral indicates 
that those two directions belong to the same subset. 
Otherwise, two separate Roman numerals are given; 
the one on the upper hemisphere has a connecting 
line to the center. 

3. Description of Stress Tables 

The symmeLry elements of uniaxial stress are those 
of an ellipsoid of revolution [3,5]; i.e., an oo -fold axis 
perpendicular to a mirror plane with every plane 
containing the 00 -fold axis also being a mirror plane: 
Tables 1 and 2 list the orientation of the 00 -fold 
axis suitable for each of the minimum sLeps of 
symmetry lowering. Each of the ~nLries in Lhe 
tables can be checked by superposmg the above 
named symmetry elements on the stereogram of Ll]() 
initial point group with the oo -fold axis oriented as 
specified. The tables also list appropriate orienta­
tions for all bu t three of the compound steps of 
symmetry lowering: m3m to mmm in one setting, 
43m to 222, and 432 to 222in one setting; none of these 
three can be accomplished by uniaxial s tress. For 
example, consider the reduction of m3m to mmm 
with the mirror planes of the la tter perpendicular to 
the x, y, and z axes of the former. To retain it mirror 
plane under uniaxial s tress, the axis of the s tress 
must be either parallel or perpendicular to the plane. 
For the present setting of mmm this requires the 
stress axis parallel to x, y. or z; t.}wse orientations 
result in Lhe preservation of a four-fold axis and the 
reduction is to 4/mmm rather than mmm . The 
other setting of mmm as a subgroup of m3m can, 
however, be reached by tentlile s tress directed along 
[110]. 

4. Discussion 

4 .1 Splitting of a General Position in a Space Group 
Into Subsets of Sites 

There is a close correspondence between equiva­
lence of directions under point-group operations and 
equivalence of sites ill a crystal associated with one 
lattice point under space-group operations. There 
are as many equ ivalent general sites per lattice point 
of a crystal as there are equivalent general directions 
for the point group of the crystal. The symmetry 
operation connectlllg two sites associa ted with the 
same lattice point of a crystal must be the same as far 
as general rotations (i.e., proper rotation , reflection, 
or inversion) are concemed as the point-glOup op­
eration connecting the isomorphic directions for the 
point group. A space-group operation III addition 
to a general rotation may also produce a translation 
which is a simple integral fraction of a lattice vector. 
In 73 of the space groups, termed the symmorphic 
space groups [12], the full poillt group is contained 
in the space group and a set of general positions 
associated with one lattice point must lie on a sphere 
surrounding that lattice point. The points repre­
senting directions in the stereograms of the presen t 
paper may be regarded as points on the surface of 
the reference sphere of the stereogram and so directly 
represent a set of general sites for a symmorphic 
space group [1 3] with the same point group. The 
symmorphic space groups, associated with each point 
group are listed in the last columns of tables 3 and 4. 
For a nonsymmorphic space group one can begin 
with a general site and produce a set of equivalent 
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TABLE 1. General orientation of homogeneous tensile sl1'ess (or biaxial stress if required) causing symmetry redl<ction 

S ubgroup f-Minimum Compound-4 

1113111 6/mmm 6/m 4/mmm 4/m 3m 3 mlllrn 2/m I 

[1I 0J [l luJ 
m3m None ------ ------ [lOOJ --- --- [lIIJ ------ biax. /1 00J [luOJ Any ~ -------

~~~ m3 -Xone ------ ---.- - ------ /1IIJ [IOOJ [IuOJ An y 
-------

6/mmm [ [I~OJ J [luOJ 
~ (hex-axes) [lOuJ 

[OOlJ ------ ------ ------ -----. ------ [I IOJ [IIuJ An y 
~ 

I 
~ 6/m [OOIJ -- -- -- ----- - ------ ------ .-- --- [luO] Any 
~ (hex.axcs) 

~~ (luGJ 

I 
4/mmm [IOOJ (IOuJ 

[COIJ ------ ----- - ------ [110J [lluJ Any 

~ ---
4/m [OOIJ ------ --.--- -----. [luOJ Any 

~ 
3m 

.fIJi!. [ FOr 3ml:_ ] (hex.axes) [Uu) 
lEll& For 31m: 

Oil/) (001) [llu) ------ ------ Any 

~ 3 
~ (hcx.axcs) [001) ______ _ ____ _ 

~ [100) [ luO) 
~ mlTIm (010) [I 0uJ 
~ (OO IJ (OluJ 

~ 2/m [010) 

~l':" 

Any 

An y 

I Any 

Any 
----

~ 
[lOu] or similar symbol here sign ifies a direction of given u (any real number) or anot her direction ~ 
re lat ed to it by the symmetry of t he initial group; and biax. (for biaxial) indicates two wleq ual st resses along ~ 
nonparallel directions of the type specified . Any directional specification is understood to exclude a more specialized direction if and only ~ 
if it is a ppropriate to a higher order subgroup olthe initial pOint group . Large square bracket s indicate equivalent subgroups from alternative settings of axes . ' 

sites by using first the purely rotational operations 
and then the operations having fractional translation 
also. The former produce points on a sphere and 
the latter may be looked upon as first rotating to 
produce a point also on the sphere and then trans­
lating the point off the sphere. The points on the 
stereograms of the present paper can still be used as 
a representation of a set of general sites if it is 
recognized that the stereogram describes only the 
rotational part of the symmetry operation and that 
for a nonsymmorphic space group some of the points 
would be displaced from the surface of the reference 
sphere by translation of an integral fraction of a 
lattice vector. The pattern of splitting of a general 
position into subsets UJlder stress is, however, the 
same for all space groups, symmorphic or non­
syrnmorphic. That pattern is associated with a 
given point-group-to-point-group Teduction because 
the operations in the space group which are lost under 
stress are always isomorphic to the same operations 
in the point group. 

All of the possible space-group-to-space-group re­
ductions associated with each of the point-group-to­
point-group transitions induced by stress have been 
tabulated [10]. For any symmorphic space-group­
to-space-group reduction in this tabulation one can 
collect the coordinates of a set of equivalent general 
sites into subsets using the present stereograms to 
determine the permutations and changes of sign of 
x, y, and z coordinates which produce equivalent sites 

in the subgroup. The same permutations and sign 
changes must also hold for any nonsymffiorphic space 
group associated with the same point-group-to-point­
group reduction; any additional translation can then 
be taken from the International Tables [11] because 
the permutations and sign of the xyz coordinates 
uniquely identify each site of a set of equilTalent sites 
as given there. This has been done for the general 
position in each of the 230 space groups, and tables of 
the splitting of a set of equivalent general sites into 
subsets are available [6 , 14] for all minimum steps 
of symmetry lowering. 

4 .2 . Splitting of a Special Postion in a Space Group 
Into Subsets of Sites 

One can specialize a direction in a point group so 
that it is carried into itself by some of the operations 
of the point group other than the identity. All such 
operations together with the identity must form a 
group; let PGSo represent this group and n(PGSo) 
represent its order. Then there will be n(PGo) J 
n(PGSo) distinct directions making up a set of equi va­
lent specialized directions of this type. The process 
of specialization can be visualized by picturing the 
motion of one of the points on any of the stereogrftms 
of figure 1. All of the other points on the same 
stereogram must move simultaneously to remain 
symmetry related . Specialization requires move­
ment to make two or more points coincide so that the 
specialized direction is invariant under the opera-
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T A B LE 2. General orientation of homogeneous tensile stress (or biaxial stress if required) causing symmetry reduction . 
(Symbols and n otation as for ta ble 1. ) 

Subgroup 

Initial ~Minimum Com pound~ 
grou p 

Self 42m 422 3m 32 3 mm2 222 m 
subgroup 

----------11-----1--·-·------------------
43m N one [l OOJ ----- [ll OJ Jlllj hi ax. [llu J [I Ou1 An y 

POD] 
---1------1------1-------- ------

432 N one ----- P 001 [1ll 1 P l 0J ---- . [I Ou] A n y 
bi ax. P OC1 [lJu ] 

-----
23 ::\f'one - -- -- --- -- I 

--------
P OOJ .---- [OJu ] A ny I [JU1 I ----- I 

S ubgroup 

1_1 ___ I __ 
m

_ 1 ____ 2 ___ 1 I 

[:::[:~i:r u J ] [ ::: ::~::u 1 ] Any 

[lluJ [lluJ 

Sel f m m 2 222 
subgroup 

6m2 [ FOr 6m 2 ] 
(hex . axes) 100 l J [lIOJ ---- -

For 62nii10J 

---
6m m [OO IJ [[I !Ol] 

(hex. axes) [110] --- --
]lluJ [luOJ An y [lTu1 

622 [0011 [ 11IOJ ] 
(h ex. axes) ---- . [J101 

pu01 
----- Il! u1 An y 

[11 uJ 

6 [COl J (h ex. axes) -- -- - --._ - ----- [luOJ Any 

-----
ti [OO IJ (h ex. axes) ----- ----. [lu OJ ----- An y 

[ F 0r42J1l : ] [ F Or 42m : ] [ FOr 42 m : ] [For[~~~ ] 42m [001 J [110J [J OOJ IllnJ [IOu J Any 
F or 4m2: F or 41lllilOJ 

For 4m2: For 4m 2: 
[I OOJ [I OuJ ]l1 u J 

.----

4m m 1001j 
[1 00] 

----- poul [luOJ An y 
[110J [lJu 

--------. ---
[l00] 11u OJ 

422 [OOl J -_.- - [11 0] ----- [l Ou ] Any 
[HuJ 

4 [00 1j ----- .---- ---- - [luO] An y 

4 [OO IJ -- -- - ----- ----. [iuOJ Any 
---

[FOr 3m l ~ ] 3m [001] [llnJ A ll Y (hex. axes) ----- ----- For 31m : ----. 

[lIuJ 

[ or 321 ] 32 [00 1j p 1n J A ll Y (hex . axes) --- - - ---- - -- - -- For 312: 
[JI u J 

3 [DOl] I Any I (b ex. axes) ---- - -._-- ----- -- - --
- -----------------

1100J POuJ mm2 1010J --- -- .- . -- [OluJ [luOJ 8] [OOI J 

[lOOJ 

I 
[IuD] 

222 rOIO] -- -- - ----- -- --- [lOu] Any 
[001j [OluJ 

m (.ly) [OIOJ - --- - --- - - - - --- Any I ------- -------------
2(J] y ) [OIOJ ---.- --- - - ----- ~-'=~-----------------

I Any - -- - - ----- --- --
I 

----- - - - - - I 

tions which related the now coincident directions. 
Several typ es of behavior occur separately or at the 
same time (in exact correspondence to the treatment 
of special positions in space groups [10]): 

(1) Two points belonging to different subsets may 
be brought into coincidence on symmetry lost so that 
the number of se ts into which the set of specialized 

direction splits under stress is fewer than the number 
of subsets resulting from the set of general directions. 
For example, in the stereogram for 432 to 422 the 
motion of a point labeled I nearest [111] onto the 
threefold axis along [111] causes points I, II, and III 
to coincide. Thus, in the unstressed crystal of point 
group 432 a direction of symmetry PGSo= 3 gives 
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rise to a total of n(432) /n (3)= 24/3=8 equivalent 
directions. In the stressed crystal the direction [lll] 
has PGSI = 1 so n(PG) /n(PGSI) =n(422) /n(I) = 8/1 
=8 and the specialization has changed a set of 24 
splitting into 3 subsets of 8 each into a set of 8 that 
does not split under this stress. Unegual splitting 
can be demonstrated, for example, for 3m to 2/m, as 
mentioned in the introduction. Let the points 
labeled II and III be brought into coincidence by 
moving them onto the dashed lines representing lost 
mirror planes: this requires the points labeled I to 
move onto the mirror plane which is retained. In 
the unstressed crystal all directions have PGSo = m 
with n(3"m) /n(m) = 12/2= 6. In the stressed crystal 
one subset has PGSI (I) = m with a number in the set 
of n(2 /m) /n(m) = 4/2= 2; the other subset has 
PGSI (2) = I and 4 direc tions in the se t. 

(2) Directions in the same subset may become 
identical in clusters of two or more each on symmetry 
retained. The specialized directions in this subset 
are necessarily specialized with respect to 1Jte reduced 
point group. In the above example of 3m to 2/m 
the coincident points labeled I were still specialized 
with respect to 2/m. 

(3) The number of degrees of freedom in a subset 
may exceed the number in the original set of special 
directions because of loss of a constraint resultLng 
from loss of symmetry. In the above example of 3m 
to 2/m the points of subsets resulting from coin­
cidence of II and III were specialized to lie on mirror 
planes of 3m and so had only one degree of freedom; 
these planes are lost in going to 2/m as shown in 
the stereogram so that the points have two degrees 
of freedom with respect to 21m. 

The fourth columns of tables 3 and 4 list the 
possible specializations to PGSo which can be 
accomplished by moving the general direction on 
the stereogram for each point group. Sites having 
position point symmetry, PPSo, equal to each pos­
sible PGSo must occur in each of the symmorphic 
space groups. The latter are listed in the IfLst 
columns of tables 3 and 4. There are, however, 
sites of different point symmetry which can occur 
even in some of the symmorphic point groups be­
cause of symmetry operations which fLre interwoven 
between the lattice points when the latter are chosen 
to have the full point symmetry. Thus, in Fmm2 
sites of symmetry 2 OCCllr halfway between lattice 
points but the general direction of the stereogram 
for mm2 can not be specialized just to 2 but becomes 
mm2. Many such cases occur; columns 5- 7 of 
tables 3 and41ist all of the additional position point 
symmetries (which must be a subgroup of the 
initial point group) occurring in the symmorphic 
or nonsymmorphic space groups associated with 
each point group and not already listed in columns 4. 
One might suppose that all of the subgroups of PGo 
would occur as position point symmetries in some 
space group associated with PGo, but column 8 
of table 3 shows that a few exceptions exist. 

The behavior of a special position of symmetry 
PPSo which is not a possible PGSo of the point group 
can be visualized by using two or more of the stereo­
grams together. Under a stress which causes a 
minimum step of symmetry lowering of PGo to PGI 
the group PPSo must either remain unchanged or 
undergo a step of symmetry lowering but the latter 
need not be a minimum step. For example, PPSo = 

TABLE 3. Point symmetries reached by specializing general directions for each centrosymmetric point group as applicable to 
stereograms; point symmetries occurring in syrmnorphic and nonsymmorphic space groups but not on stereograms; and point 
symmetries which, while forming a subgroup of the initial point group. are not found in any associated s pace group 

Initial group 

Int. tables 1) Schoenflies II 

m3m 0" 

1113 'I'h 

6/mlTllll D 6h 

4/ IllI11m D 4h 

6/m C6h 

3m D 3d 

4/m C" 

UUllm D 'h(V,,) 

C,,(S,) 

21m C,,, 

C;(S,) 

S ilubni ­
kov 16 

6/4 

6/2 

m·G:m 

111·4:111 

G:m 

6·m 

4:m 

1ll·2:1lI 

2:m 

occurring on the 
stcrcogralll and in 
at least one space 
grou p associated 
with the initial 

point group 

4nll11, 3m, 111m2, 
III 

111m2, 3, 111 

6lum, ]TI1112, m 

4mlll, 111m2, III 

6,111 

3m, Ill, 2 

4, 111 

1111112, III 

m,2 

---- - ------------ ---

Subgroups (othcr t han I) 

not occurring on stereogram but in at lea.st one 

sYll1111orphic, but 
not in associated 
nonsymrnorphic 

space groups 

1113111,4/ 111111111 

m3, J'lU11m, 2/m 

6/mmm,mmm 

4/mmlll 

6/111, 2/m, 2 

3m,2/1ll 

4/m 

mmIlI 

3, I 

2/m 

sYlTI.lTIorphic and 
at least one associ­
ated l1onsymmor­
phic space groups 

43111, 3m, 42m, 
nUl12, 2 

23,3 

(:i1112,3m 

42m, Il1mll1, '2/m, 
2 

6,3 

32,3 

4, 2/m, 2, 1 

222, 2/m, 2, 1 

nonsY]TImorphic 
but not in associ­
ated sym morphic 

space groups 

m3, 43~, 23, 4/,!" 
422, 3, 32, 4, 4, 
222,3 

222,2 

6/m,_622, 3m, 32, 
6,6,222, 2/m, 
3.2 

4/111, 4 ~2, 4, 4, 
222, 1 

3, I 

:J, T 

not on ster­
eogram nor 
in any asso­
ciated space 

group 

2/m, I 

T 

3, 1 

---- ---- - - ----

--------------

- - - -- - - -- --- ---- --- - - -- - - --- - - ----

24 centrosymmetric spacc­
groups with full point 

symlnetry of initial point 
groul) 

Pm3m, Fm3m , Im3m 

PIll3, FIll3, 11113 

1)6/11 I1n m 

P4/1ll III Ill, 14/1Il111111 

P6/Ill 

P3lm, P31ll 1, R 3111 

P4/m , 14/m 

JlrnnlJ11, CIllIllIll, Il11J 111ll, 
F mmm 

P3,R3 

P2/111, C2/m 

_____________ _______ ____ _________ _________ __ __________ PI 
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TABLE 4. Point symmet1'ies reached by speciali zing general directions fo r each noncent1'osymmetric point gro up as applicable 
to stereograms; and point symmetries occlUTing in symmorphic and nonsymmorphic s pace groups but not on stereograms 

(POint sYlllllletries formin g a subgroup of any initial nOllcentrosYlllllletric poin t group are found in at least on e associated space group .) 

Subgroups (other than I) 

not occurrin g on slcreogranl but in at least on e 
oc~~;::c~'~~ O~ln (~h~,~Lr~t 1------ - ,--------.,-- ------1 Int . 

tables II 

Initial group 

Schoen· 
fli es II 

Shuhni · 
kov III h'[lsL on(' space group 

a"ociatcc\ with the 
initial point group 

symlllorphic but not 
in associated non­
SYllullorphic space 
groups 

SYlTIl1Iorphic and at 
least on e associated 
non sy mmorphic 
space groups 

nonsYllllllorphic but 
n ot in associat ed 
synllTIorpbic space 
groups 

49 nOll controsymrnetric 
space groups with fu1i 
poin t sYll lllletr y of 1111-
Lial point ~ro ll p 

43m 43m , 42rn 4,2 23, 222, 3 P431ll , F431ll , IJ3 11l 
I------------I------------ I-------------i 

432 0 43' 4?? 23,02. 222 ... .. . .. ......... . ...... ]' 432, J' 432. 1432 
---·------------~------·I-~------------ ,--·-'--------------II---------------I------------------------------
23 T ~m 

6m2 6m2 

6111111 e ll \' 1111112 

623 622 

42111 42mlll 

4mm 

422 

e 31, 

3m 

6.3 

3m 6,3.2 

32.222,3 

4, 222 

mm2 4,2 

P23, F 13, 123 

P6m2, P62m 

P6m tn 

P622 

1'--t2m, 1)411 12, 11m2, 
142 111 

P4ml1l , 1411l1ll 

._ ... _ ... _ ... _ .. _._ ........ _ ................ _._. 1'6 

__ .... ___ .•..... _._ .• _ .. 2 1'4,14 

P4, [ 4 

mm2 ('2\' _ . ______________ ______ __ 2 }i"t11!11 2, I 1l1 m 2, 
PIll ll 12, C 1I11l1 2. AI111112 

_22_2 ____ 1)_' (_\7_1 ______ + ________ 1--22-2------1 ......... ··············-1-······_·_····_· __ ······ 1'222, C222, 1222. 
J'222 

C3 ---------------.-------- ---------------.-------------.-------- PO, R3 

m (' , (CIl,) .•...... _ .. _._ .•.. _ ...•• ___ .•••. _____ ._ .. _ .. _._ .... __ ._. _ ..•. _ .. _. Pill , em 
---------------------1------------

(" -----.-.----------- - -.-- -----------------------. ------------------------ P2, C2 

C, .. _ ........................... _._ ............. .. ............ _ .......... _ ........ _ .... _._._..... 1'1 

4/m occurs ill some space gro ups associated with 
PGo= m3m ; tensile stress along [I ll ) causes the 
minimum s tep m3m to 3m but also causes the 
~ornpound step in position point symm.etry 4/m to 
1. These results can be visualized from the stereo­
grams for m3m to 3m and 4/m to 2/m. The latter 
shows the only minimum step for 4/m and shows 
that m perpendicular 4 must be preserved ; the 
former shows that all mirror planes perpendicular 
to 4-axes are lost. The combination of a minimum 
step of symmetry lowering of PGo with a compound 
step for PGSo on a s~ereogram can also occur as the 
example of m3m to 3m accompanied by 4/mmm to 
m shows. 

This type of visualization can be applied to any 
PPSo of PGo but it should be noted that the orienta­
tion of PPSo is fixed by PGo so that a stereogram of 
PPSo as initial group may require reorientation to 
correspond to the setting in PGo. 

4.3. Effect of Homogeneous Stress on Morphology of 
Crystals 

The identity of the 32 morphological crystal classes 
with the 32 three-dimensional point groups is well 
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understood (Phillips [15». A straight forward appli­
cation th erefore of the stereograms here presented 
would appear to be that concerned with changes in 
homogeneously s trained crystals. From the practi­
cal experimental viewpoint, however, the applica­
tion of homogen eo us stress (other than isostatic) to 
a polyhedrally shaped object is difficult to visualize 
and more difficult to achieve. Apart from general 
mathematical treatment there seems so far to have 
been little interes t by practical crystallographers in 
the homogeneous distortion of crystal sh apes. For 
general forms minimum step degradations can be 
directly read from the figures as con versions to 
general forms of the subgroup. The number of now 
independent but co-existing forms in the subgro up is 

simply n(PGo) the ratio of the order of the initial to 
n(PG1 ) 

that of the final subgroup, the splitting factor some­
times called the index of the subgroup. It can 
simply be read off the stereograms given as the 
hjghest Roman figure designation of a direction on 
the stereogram of the parent group. 

In this way for example a compressive stress 



11 [111] for a crystal belonging to m3m will convert 
one {hkl } hex(akis)octahedron to four hexagonal 
bipyramids. 

A randomly oriented stress 'will convert any general 
form into lillrelated triclinic {hkl } pedia (for non­
centrosymmetric crystals) or {hkl } pinacoids (for 
centrosymmetric crystals). The number of forms 
being simply the order (for noncentrosymmetric) or 
half the order (for centro symmetric crystals) of the 
initial point group. 

All possible intermediate compound steps can be 
read off tables 1 and 2. The forms produced from 
general forms in PGa are always general forms {hkl } 
111 the ultimate subgroup and their number again 
equals the ratio of the order of the initial to that of 
the final point group. 

When special forms are involved the procedure 
follows that outlined above for cell site co-ordinates; 
the only possible special forms being those listed in 
the fourth column of tables 3 and 4. 

Faces will belong to special forms in the subgroup 
if anyone of the original symmetry operations, the 
stereographic representation of which is parallel to 
the pole of the face, is retained in the degradation. 

When an initial point group has a number of 
equivalent symmetry operations, stress may lead to 
the loss of one or more of these operations, yet leave 
one or more of them in the subgroup. Directions 
specialized ,'lith respect to these initially equivalent 
symmetry operations will split unequally. For ex­
ample, in the transformation m3m to 4/mmm, a 
{I OO } cube, with six faces, will split into a tetragonal 
basal pinacoid {001 } with two faces and a tetragonal 
(first order) prism {l OO } with four faces. 

No splitting of the special form will result if special­
form poles can be regarded as having arisen from the 
superposition, on symmetry operations, of poles in­
cluding at least one with each Roman-figure desig­
nation. The shape of the solid figure naturally will 
change. For example, as m3m transforms to 
4/mmm, {Ill } changes from a regular octahedron to 
a (2d order) tetragonal bypyramid. As 4/mmm 
transforms further to mmm in one orientation {111 } 
becomes a rhombic bipyramid, the general form of 
that class. In the 45° position , however, it would 
split into two unrelated rhombic domes. Further 
symmetry degradation must also split the rhombic 
bipyramid, because it is the general form. In 
other words: the faces of the original octahedron 
{111 } number eight, its faces cannot remain all 
equivalent when degradation proceeds to a subgroup 
of order less than eight, 

In this way it is easy to deduce which crystallo­
graphic forms can be transformed by homogeneous 
stress into which others. Conversely, if there is no 
simple or compound subgroup relationship that will 
transform anyone given form in any of the point 
groups in which it occurs into another form with an 
appropriate subgroup symmetry then there exists 
no homogeneous stress that can effect that transfor­
mation. For example- as is welllmown to geome­
ters- a tetrahedron, {111 } in 43m, can be homo­
geneously deformed to a tetragonal sphenoid {Ill } in 

42m, and to a rhombic bisphenoid , {HI } in 222, but 
not to a rhombic dome, which also has four faces. 

However, some care is necessary in deducing that 
a given transformation is impossible, because the 
special forms of some classes are indistinguishable 
from some special and, in one or two instances, even 
general forms (taken singly) of other .clas.ses. . 

There are a number of other appbcatlOns of tIllS 
kind of morphological discussion of homogeneously 
strained crystals. T emperature, pressure , or compo­
sition changes may lead to phase transformations 
(displacive) in which no primary bonds are broken in 
the solid [161. Such changes mayor may not be con­
sistent with changes that could arise by homogeneous 
deformation as here described. This will introduce a 
further meaningful subclassification of the trans­
formations discuseed by Buerger [161. 

Another, completely different, consideration may 
prove to be fruitful. Crystal growth results in 
shapes that often depart considerably from ideal 
symmetry of the atomic structure. A number of 
c'auses for theee departures are established, and rela­
tively well understood:-

1. Accidental asymmetry of supply of solute or 
melt to equivalent faces; 

2. Retardation of growth of some faces by sub­
strate interference or competition for solute or liquid 
with neighboring crystals; 

3. Accidental differences in the small number of 
growth step sources on otherwise equivalent faces; 
and 

4. Geometric complications arising from twinning. 
An additional effect suggests itself. Stress during 

DTowth may make faces inequivalent causing unequal 
~rowth rate on otherwise equivalent faces. On exam­
~ation of the crystals after stress removal the equiv­
alence of the faces demanded by structural symmetry 
is reestablished, yet the asymmetry of shape persists. 

This effect to be discerned may need to be studied 
deliberately and carefully under laboratory conditions. 
Certainly two outstanding anomali~s (some ~iamond 
and cuprite crystals) of Imown nllnerals With mor­
phology suggestive of lower symmetry th~n their 
established structure [17] can not be explamed by 
homoD'eneous strain during gTowt.h. These two 
anom~lies are accompanied by anomolous etch fig­
ures. Any stress induced inequivalence of structure, 
that gives rise only to homogeneous elastic strain. 
should vanish when the stress is removed. 

5 . Appendix I 

We here present a simple, systematic, and exhaus­
tive scheme for deriving all possible subgroups that 
can be reached by the action of homogeneous stress 
on any point group. 

Let us introduce a number of concepts and symbols. 
First, consider any stress ellipsoid, E p , which in shape 
and orientation is least restricted yet still consistent 
with any original point group (cf. table 13, reference 
5). Stress-induced symmetry lowering can be caused 
only by an imposed stress of which the ellipsoid 
representation, E., does not conform to all the re-
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strictions in Ep. Point-group degradations for each 
initial point-group, PGo can now be regarded as 
associated with liberalizations, L, of these restrictions 
imposed on Ep. 

We will distinguish Ls and Lo liber alizing ellipsoid 
shape a nd orientation respectively. All PG degrada­
tions can be regarded as caused by one or both of 
these applied to E p. vVe further classify into L SH , 

LST , LOl , and L02 ' 

L SR is a shape liberalization leading to an ellipsoid 
of revolution with uniq ue axis parallel to a crystal 
axis 2 of order > 2. As the only more restrictive 
stress ellipsoid is a sphere the operation L SR need be 
considered only when PGo is cubic, for which the 
L SR operation produces one or two symmetry deg­
radations depending on whether there are one or 
two noneq uivalent, nonparallel axes of order > 2 
in PGo. 

LST is a shape liberalization leading to a triaxial 
ellipsoid, the major axes of which are parallel to three 
mutually perpendicular crystal axes of even order, 
in PGo. As E p is more sper'ialized only when PGo 
con tains at least one axis of order > 2, LST applies 
only to s llch PGo's; and then only if PGo has either 
one or two inequivalent sets of three mutually 
perpendicular axes of even order . :More than two 
such sets cannot occur in any PGo, at least one s Li ch 
set must occ Lir for all cul,ic PGo's. 

L Ol we define as a liberalization to a triaxial ellipsoid 
(including Ls if PGo has axis of order > 2) with one 
orientational degree of freedom. Lot must lead to 
one of the following subgroups: 2,m, or 21m. From 
any PGo there will be as many distinct ways of 
applying the L OI operation as there are noneq uivalent 
nonparallel axes of even order symmetry in PGo. 
Cubic point-groups have at least one and never more 
than two such directions. Noncubic PGo m.ay have 
none, one, two, or at most, three such directions. 
N onequi ITalent LOl operations on any centrosym­
metric PGo must all lead to 21m, but for noncentro­
symmetric PGo's they mayor may not lead to the 
same subgroup . 

L 02 is a liberalization to a triaxial ellipsoid with two 
orientational degrees of freedom; the operation is 
regarded as including an Ls operation from PGo's with 
an axis of order > 2. Application of L 02 to centro­
symmetric PGo's always produces the subgroup 1 

In th is discuss ion symlnetry axes may be rotation or inversion axes . 

LSR 

PGo cubic ____ __ _________ __ __ _________ _ lor 2 

PGo on e and only one axis order > 3 ____ __ 0 

PGo on c and only one axis order = 3 and 
none of high cr ordcL ____ ___ ___ ___ __ 0 

PGo wi th axis ordcr 2 and non e of high er 
order ___ ________________________ __ 0 

and none other, noncentrosymmetric PGo's lead only 
to 1. 

The aim of the treatment here given is to consider 
the symmetry and orien tation of E p; then to apply 
the liberalizations, L, until the symmetry and orienta­
tion of E. is obtained. This process cannot always 
be accomplished because E s may in some respects be 
more restricted than can be derived from E l, by 
L-type operations. We must therefore liberalize E. 
to E; where E: is a more general ellipsoid which can 
be reached from E 1) by operations L and which will 
produce the same symmetry lowering as Es. 

If E s is a triaxial ellipsoid it is in an adequately 
general form because it can be ob tained from fLny 
ellipsoid by operations L ST, L OI, 01' L02. If E s is a 
biaxial stress, one need only add an arbitrary isostatic 
stress to obtain an acceptable E:. It has previously 
been pointed out [10] that the addition of sllch an 
isostatic s tress can not affect the symmetry lowering. 
The on1:' important case to be considered therefore 
is that of a tress Es corresponding to an ellipsoid of 
revolution, or a uniaxial s tress which by the addition 
of an arbitrary isos tatic s tJ'e s can be transformed to 
one corresponding to an ellipsoid of revolution. We 
mllst now distinguish two possible conditions as 
follows: 

Condition 1.' llniq ue ellipsoid axis is parallel to a 
crystal axis (in PGo) of order > 2. The syrnmetl'y of 
Es can not be further reduced without affecting the 
symmetry lowering. No further generalizatio n of 
Es is therefore possible. 

Condition 2 .' uniq u e ellipsoid axis is parallel to a 
crystal axis (in PGo) of order ::; 2. There is now 
necessarily a uniaxial stress 'which can be added per­
pendicular to the unique Es ellipsoid axis which will 
leave the symmetry lowering unaffected. If in PGo 
there is no even order axis perpendicular to the unique 
ellipsoid axis the direction of the addi tional un iaxial 
stress is en tirely arbi tral'y. If there are one or two 
perpendicular directions of axial even order ;::: 2 in 
the plane perpendicular to the unique ellipsoid a)..i.s 
the additional uniaxial stress must be added parallel 
to one axis in the plane. 

Our general scheme of deriving all subgroups can 
now be s tated. 

All proper subgroups are developed by operations 
L SR, L ST , LOI , and L02 , each in turn considered as 
acting upon PGo. 

The number of proper subgroups obtained is: 

Maximum 
L ST LOl L02 number Example 

possible 

lor 2 1 or 2 1 7 rn3rn 

0, 1, or 2 1, 2, or 3 1 6 4/ mml11 

0 o or 1 1 2 3m 

0 1 01' 3 1 4 
I 

mmm 
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The naming of the individual subgroups is trivial 
when we remember that a center in PGo is always 
retained; that for L SR the first symbol is derived 
from the only axial direction parallel to the ellipsoid 
axis of revolution. The necessary and sufficient con­
dition of 2-axes retention is then that they be parallel 
or perpendicular to that direction; that for L ST only 
the crystal axes (order 2) parallel to the principal 
ellipsoid axes are retained; that for LOi only one axial 
symmetry direction (order 2) can be retained. 

).1inimum steps are produced by all L SR operations ; 
by all L ST operations except when PGo is cubic and 
has three axes of order 4; by L o! operations when the 
operation L ST on PGo is inapplicable; and by L 02 

operations only if PGo has only one axial direction of 
order two or three. 

The authors are indebted to F. A. Munley and 
L . C. McCleary for help in the preparation of the 
manuscript as well as especially to W . F . Stancliff 
for the drawing of the stereogl'ams. 
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