More Wavelengths From Thorium Lamps

William F. Meggers and Robert W. Stanley*

(December 13, 1964)

For the purpose of supplementing or superseding the spectroscopic secondary standards of wavelength derived since 1910 from an iron arc, Meggers and Stanley, in 1958, reported the first interferometric determinations of wavelengths emitted by a thorium lamp. Those determinations were restricted to 222 intense radiations of thorium with wavelengths ranging from 3288.7356 Å to 6991.5839 Å. Now the same, and additional, interference spectrograms have been measured to provide improved wavelengths for 510 radiations ranging in wavelength from 3269.6089 Å to 7020.504 Å. The present list includes many lines of lower intensity than those previously published and fills most of the large intervals in our first report. The accuracy in relative wavelength values of 163 classified thorium lines is tested by the combination principle which indicates that the average error is less than 1 part in 20 to 40 million. Similar measurements of wavelengths emitted by iron-halide lamps have errors that are 3 to 5 times greater.

1. Introduction

After forty years of intermittent effort to extend and improve the international standards of wavelengths used in spectroscopy, Meggers [1]¹ suggested, in 1955, that secondary standards, superior in sharpness and distribution, could be obtained by replacing the standard iron arc with a modern thorium lamp as a light source. Such improvement was demonstrated by Meggers and Stanley [2] who first measured the wavelengths of 222 intense radiations emitted by a thorium-iodide lamp. Those wavelengths extended from 3288.7356 Å to 6991.5839 Å in vacuum; they were measured interferometrically relative to wavelengths emitted by a Meggers mercury 198 lamp. In the meantime, those measurements have found favor among all spectroscopists who specialize in making accurate descriptions of complex spectra, especially of chemical elements whose atoms are more massive than those of iron. Moreover, those spectroscopists have suggested that more wavelengths of thorium radiations be accurately measured to increase the range of intensity and decrease the average interval, thus removing handicaps on account of overexposure and/or expanded dispersion in modern photographic spectrograms. Consequently, the same, and additional, interference spectrograms have been measured to provide inproved values of wavelengths for 510 thorium radiations (including 222 reported earlier) ranging in value from 3263.6089 Å to 7020.504 Å in vacuum. The purpose of this paper is to present a new list of thorium wavelengths including many lines of lower intensity than those previously published [2] and also to reduce the average interval between

standards. Because of the increase in the number of carefully measured wavelengths, the combination principle is applied as an internal test of the accuracy in relative value of a considerable fraction of them.

2. Experiments

In our first paper [2], full details concerning light sources, interferometers, spectrograph, measurements, and computations were given for the first determinations of thorium wavelengths from Fabry-Perot etalons. Briefly, the thorium radiations were emitted by a small electrodeless lamp containing a few milligrams of thorium iodide and several torr of helium. The wavelengths of selected thorium lines were measured relative to adopted standards emitted by a similar lamp containing 1 mg of mercury-198 and 3 torr of argon. Both lamps were excited by magnetrons generating 2450 Mc/s. One lamp was imaged in the other and both simultaneously illuminated a Fabry-Perot etalon interferometer to avoid errors usually entailed by alternate exposures to different light sources.

The enclosed and evacuated Fabry-Perot interferometer consisted of two flat plates of crystalline quartz whose facing surfaces were coated with thin aluminum films and separated by invar etalons of 25, 40, or 50 mm length. The 25 and 40 mm spacers were relied upon to insure the correct integral order of interference for any given line, assuming that available values of the wavelength obtained from diffraction-grating spectrograms had no errors greater than ± 0.02 Å.

The interference patterns (Haidinger fringes) were photographed with a concave grating of 22 feet radius in a (stigmatic) Wadsworth mounting. The spectral range 4400 Å to 7000 Å was photographed in the first-order spectrum with a slit width of 0.30 mm and plate factor of 5 Å/mm. Because

^{*}Present address, Purdue University, Lafayette, Ind. ¹ Figures in brackets indicate the literature references at the end of this paper.

of a greater density of thorium lines in the unltraviolet, the region from 3250 Å to 4500 Å was recorded in the second-order grating spectrum with a plate factor of 2.5 Å/mm and slit width of 0.15 mm. In each wavelength range, several spectrograms were made with different times of exposure, and with slightly different spacing of the interferometer plates to alter the interference configurations or fractional orders for all spectral lines. The green (5462.2705 Å) and violet (4047.7144 Å) lines of Hg¹⁹⁸ were chosen as standards, respectively, for the longand short-wave interference spectrograms described above. The wavelengths of Hg¹⁹⁸ radiations used for the calibration of etalons were previously measured [3] relative to red radiation (6438.4696 Å) of cadmium, the primary standard of wavelength prior to 1960.

In our first report [2], the fractional order at the center of an interference pattern was determined from measurements of five interference fringes for each line and least-squares calculations according to the formula

$$\epsilon = \frac{2(3D_1 + 2D_2^2 + D_3^2 - D_5^2)}{-2D_1^2 - D_2^2 + D_4^2 + 2D_5^2},$$

first discussed by Rolt and Barrell [4]. After taking squares from a table, all computations were by mental arithmetic except the final quotient which was obtained from a desk calculator. About 12,000 interference fringes were thus used to derive the wavelengths of 222 intense radiations in thorium spectra, 172 from Th I and 50 from Th II.

The results reported in the present paper were obtained by Meggers from spectrograms made by Stanley in 1956 and described jointly in 1958 [2]. In addition, several spectrograms that were overexposed, and, therefore, unsuitable for measurement of the stronger lines, were salvaged by dissolving the dense background in solutions of sodium thiosulphate and potassium ferricyanide, thereby making them ideal for measurement of the weaker lines.

In this series of measurements, the diameters of six interference circles (Haidinger fringes) were determined from readings of the distances between twelve fringes for each line. In most cases, two readings were made on each fringe and the mean was recorded. Since the fringes on 510 thorium lines and several mercury 198 lines were measured on two to six spectrograms, the average being four, it appears that more than 40,000 readings were made. The recorded readings were transferred to IBM cards in a punch machine and transmitted to an electronic computer that calculated wavelengths after determining the fractional and integral orders of interference for each line in a given interferometer.

The fractional order, ϵ , at the center of an interference pattern was calculated from 6 diameters according to the formula:

$$\epsilon = \frac{5}{3} \left(\frac{11D_1^2 + 8D_2^2 + 5D_3^2 + 2D_4^2 - D_5^2 - 4D_6^2}{-5D_1^2 - 3D_2^2 - D_3^2 + D_4^2 + 3D_5^2 + 5D_6^2} \right) \cdot$$

The final calculations of wavelength, λ , were made from the relation $\lambda = 2t/(p+\epsilon)$, where t is the separation of the interferometer plates, p is the integral order, and ϵ the fractional order of interference at the center of a pattern. In this series of measurements, the wavelengths of 510 thorium radiations were determined relative to Hg¹⁹⁸ wavelengths (5462.2706 Å, 4359.5625 Å, and 4047.7147 Å) which in turn were measured by Kaufman [5] in terms of the new primary standard of length, 6057.80211 Å, radiated by Kr⁸⁶.

3. Results

Our latest measurements of vacuum wavelengths for 510 radiations from thorium lamps are presented in table 1. The vacuum values in column 1 were converted to appropriate values in standard air, column 2, by using the Table of Wavenumbers of Coleman, Bozman, and Meggers [6]. The estimated relative intensities, column 3, and assignment to spectrum, Th I or Th II, are quoted from a *New Description of Thorium Spectra* by Zalubas [7]. Table 1 contains data for 510 radiations, 395 from Th I and 115 from Th II. Wavelength values given to 8 figures have estimated errors less than 0.0005 Å, 34 given to 7 figures are included to suggest that they are suitable for further refinement.

Ålthough the Kr⁸⁶ wavelength (6057.80211 Å in vacuum) was derived from the Cd wavelength (6438.46960 Å, in air), the wavelengths of identical Hg¹⁹⁸ lamps (3 torr Ar) measured relative to the former are slightly greater (0.0001 to 0.0003 Å) than those derived from the latter. Consequently, the wavelengths of 222 thorium radiations reported in our first paper [2] have now increased by 0.0001 Å on the average. We are unable to explain the source of this small discrepancy. Fortunately for spectroscopic use as standards, the absolute values of thorium wavelengths are less important than their relative values for calibrating spectrograms.

Because the number of independent determinations of each thorium wavelength is, in general, too small to yield a true probable error, we have extensively applied the combination principle as a rigid test of the accuracy of measured wavelengths in relative value. Two radiations resulting from combinations of a highly excited atomic (or ionic) level with two low-energy levels will exhibit in their wavenumbers the energy difference of the low levels. Any other high levels that combine with the same low levels will exhibit the same difference within the accuracy of measurement. In table 2, we present typical examples of 21 low-energy differences, 20 involving wavenumber differences between designated lowenergy levels for Th_I [8], and 1 for Th_{II} [9]. The total number of line pairs in table 2 is 111 but, since some radiations participate two or three times in pairing with others, only 163 different lines are involved. However, these are randomly distributed throughout the list and comprise nearly 63 percent of the classified Th I wavelengths given to 8 figures. We may expect, therefore, that the remainder will satisfy these tests when other wavelengths are measured and the present partial analyses of these spectra are greatly extended.

The critical test of our thorium wavelengths is shown in the last two columns of table 2, where recurring wavenumber differences and their deviations from the mean are listed.

The deviations of the measured level separations from the mean range from 0 to ± 4 m K (milli-Kayser = 10⁻³ cm⁻¹). The average deviation of all tested pairs of lines is ± 0.0012 K, and if we assume the errors are shared equally by all lines, the individual average error is 0.0006 K, or one part in 20 to 40 million, depending on the spectral region. These tests indicate that our thorium wavelengths qualify as Class A standards defined as having accuracy of 0.001 K according to a suggestion by Littlefield [10]. Calculated probable errors, as well as atomic energy intervals, for similar measurements of wavelengths from iron-halide lamps [11] indicate that the relative values are uncertain by 1 part in 7 or 8 million.

Recently, additional measurements of thorium wavelengths have been reported by Littlefield and Wood [12], by Davison, Giacchetti, and Stanley [13], and by Giacchetti, Gellarado, Garavaglia, Gonzalez, Valero, and Zakowicz [14]. The first [12] used a hollow-cathode light source and reflectionechelon interferometer to measure the wavelengths of 484 thorium radiations ranging from 2566.3615 Å to 9050.7361 Å; the results have been reported in the Transactions of the I A U but no further experimental details have been published. The others, [13, 14], used electrodeless thorium lamps and Fabry-Perot interferometers similar to ours. Davison et al. [13] published the wavelengths of 68 radiations ranging from 2651.3722 A to 3394.9671 Ă, and Giacchetti et al. [14] gave 129 values from 2687.9304 Å to 4596.7088 Å. Unfortunately, none of the above-mentioned observers tested their results by means of the combination principle; there are many serious discrepancies between values reported by two or more observers and it will be important to seek the source of the larger differences.

The senior author gladly and gratefully acknowledges the assistance of Mrs. John B. Peterson who transferred written readings to punched cards, and thanks Victor Kaufman for presenting these data to an electronic computer that produced wavelengths by using a code previously prepared by Karl G. Kessler.

Washington, D.C., November 2, 1964

TABLE 1. Wavelengths of th	orium	lines
----------------------------	-------	-------

λvac	λair	Relative intensity	Spectrum
Å	Å		
3263.6089	3262.6682	3000	II
3272.9913	3272.0482	800	I
3274.0374 3276.011	3275.067	400	
3286.6984	3285.7518	900	I
3288.7358	3287.7887	1600	II
3292.0808 3293.4688	3291.7387 3292.5205	3000	11
3302.207	3301.256	600	II
3305.1895	3304.2382	3000	I
3310.3178	3309.3652	800	I
3314.022 3321.4217	3313.068 3320.4763	$400 \\ 400$	I
3325 7088	3320.4703 3324.7523	2000	I
3326. 0767	3325.1201	3000	II
3331.4345	3330.4765	1800	I
3334.0872	3333.1285	1000	I
3338.8297 3349.7310	3348 768	3000	T
3352. 1912	3351. 2279	2500	II
3359. 5667	$3358.\ 6015$	2000	11
3368.7860	3367.8185	1200	II
3375.9440 3370.5433	3374.9747 3378 5730	400	1
3381.8300	3380. 8592	900	Ţ
3386.5031	3385.5311	800	11
3393.0082	3392.0345	6000	II
3397.7023	3390.7274 3398.5447	1600	T
3406. 5348	3405.5576	1400	I
3413.9919	3413.0128	1800	I
3422.1909	3421.2097	2500	1
3424.9714 3434.9827	5425.9895 3433.9983	3000	I II
3434. 9827 3438. 2923	3437.3070	2500	I
3443. 5653	3442.5787	800	I
3452.6909	3451.7019	900	I
3458.0588 3462.8410	3457.0085 3462.8501	2000	I I
3469. 2125	3468.2193	2000	II
3480.1683	3479.1723	800	п
3487.5248	3486.5269	$3500 \\ 2000$	II
3494.5170 3499.6917	3493.0179 3498.6207	2000	II I
3504.7880	3503.7857	500	I
3512.1610	3511.1568	1000	I
3519.4096	3518.4035 3521.0502	1000	I
3522.0660 3531.5236	3521.0592 3530-5144	500	I
3532.4595	3531.4501	1000	I
3540. 3335	3539.3220	800	II
3540.5985	3539.5870	4000	11
3545.0303 3550.6006	3544.0176 3549.5955	1200	T
3552. 4160	3551.4014	1000	I
3556.0284	3555.0129	1500	I
3560.4658	3559.4491	2500	п
3564.3930 3568.2824	3303.3733 3567-2637	1200	T
3573 4119	3572, 3919	1000	п

TABLE	1.	Wavelengths	of	thorium	lines—	Continued
-------	----	-------------	----	---------	--------	-----------

TABLE 1. Wavelengths of thorium lines-Continued

λvac	λair	Relative intensity	Spectrum	λvac	λair	$\begin{array}{c} { m Relative}\\ { m intensity} \end{array}$	Spectrum
$ \begin{smallmatrix} \text{\AA} \\ 3577, 5785 \\ 3585, 1986 \\ 3592, 4771 \\ 3593, 8042 \\ 3599, 1464 \end{smallmatrix} $		$1000 \\ 800 \\ 1000 \\ 2000 \\ 2000$	I I I I I	$\begin{array}{c} \mathring{A} \\ 3875.\ 9602 \\ 3876.\ 4723 \\ 3880.\ 7435 \\ 3885.\ 9251 \\ 3896.\ 5229 \end{array}$	$\begin{array}{c} \mathring{A} \\ 3874. \ 8618 \\ 3875. \ 3738 \\ 3875. \ 6439 \\ 3884. \ 8241 \\ 3895. \ 4192 \end{array}$	$ 1800 \\ 500 \\ 1000 \\ 400 \\ 400 $	I I I II I
$\begin{array}{c} 3605.711\\ 3606.222\\ 3609.4067\\ 3613.4576\\ 3616.1634 \end{array}$	$\begin{array}{c} 3604.\ 683\\ 3605.\ 194\\ 3608.\ 3774\\ 3612.\ 4273\\ 3615.\ 1324 \end{array}$	$800 \\ 500 \\ 1200 \\ 1400 \\ 2000$	I I I I I	$3904.\ 2082\ 3905.\ 169\ 3906.\ 2923\ 3913.\ 0171\ 3917.\ 5266$	$3903.\ 1025\ 3904.\ 063\ 3905.\ 1860\ 3911.\ 9091\ 3916.\ 4174$	$1500 \\ 1000 \\ 1500 \\ 600 \\ 500$	I II II I I
$\begin{array}{c} 3623.\ 8281\\ 3626.\ 6612\\ 3633.\ 8656\\ 3636.\ 9796\\ 3643.\ 2867\end{array}$	$\begin{array}{c} 3622.7951\\ 3625.6275\\ 3632.8300\\ 3635.9432\\ 3642.2487\end{array}$	$800 \\ 500 \\ 1000 \\ 1900 \\ 2200$	I II I I I	3920, 1336 3924, 9106 3926, 2046 3930, 7818 3934, 0244	3919.0239 3923.7995 3925.0932 3929.6692 3932.9109	$800 \\ 400 \\ 1000 \\ 2500 \\ 1400$	I I I II I
3650.7746 3657.7354 3662.6653 3669.1843 3671.0138	$\begin{array}{c} 3649.7346\\ 3656.6936\\ 3661.6223\\ 3668.1396\\ 3669.9686\end{array}$	$1200 \\ 1000 \\ 500 \\ 1000 \\ 750$	I I II I I	$3938.1548 \\ 3944.5112 \\ 3950.0814 \\ 3953.8796 \\ 3960.4204$	3937.0402 3943.3950 3948.9637 3952.7609 3959.3000	$400 \\ 400 \\ 1000 \\ 500 \\ 1000$	II II II I I
3672.5853 3676.6136 3683.5345 3691.6742 3693.6172	$\begin{array}{c} 3671.5397\\ 3675.5670\\ 3682.4861\\ 3690.6237\\ 3692.5662 \end{array}$	$700 \\ 1000 \\ 1000 \\ 1000 \\ 1200$	I II I I I	3968.5146 3973.2783 3974.3200 3981.2151 3988.3509	$3967.\ 3921$ $3972.\ 1546$ $3973.\ 1960$ $3980.\ 0893$ $3987.\ 2232$	$2000 \\ 1400 \\ 1100 \\ 1100 \\ 600$	I I I I I
3699.1584 3702.0314 3707.8219 3712.3597 3720.4927	3698.1059 3700.9782 3706.7672 3711.3038 3719.4347	$1300 \\ 300 \\ 2400 \\ 600 \\ 3000$	I I II I	$\begin{array}{c} 3991.\ 6206\\ 3995.\ 6788\\ 4002.\ 1893\\ 4003.\ 0253\\ 4009.\ 3433 \end{array}$	$\begin{array}{c} 3990.\ 4921\\ 3994.\ 5492\\ 4001.\ 0580\\ 4001.\ 8938\\ 4008.\ 2102 \end{array}$	$egin{array}{c} 800 \\ 1200 \\ 800 \\ 150 \\ 1600 \end{array}$	I I I I I
3728.9626 3734.0467 3734.7340 3742.2464 3743.9873	3727.9024 3732.9852 3733.6723 3741.1828 3742.9232	$800 \\ 500 \\ 500 \\ 3000 \\ 1100$	I I I I I	$\begin{array}{c} 4010.\ 190\\ 4013.\ 6295\\ 4019.\ 2344\\ 4020.\ 2649\\ 4028.\ 1470 \end{array}$	$\begin{array}{c} 4009.\ 057\\ 4012.\ 4952\\ 4018.\ 0987\\ 4019.\ 1289\\ 4027.\ 0089 \end{array}$	$1600 \\ 2000 \\ 400 \\ 1200 \\ 1000$	I I I II I
$3748.\ 6040$ $3753.\ 6352$ $3758.\ 7620$ $3764.\ 0030$ $3771.\ 1268$	3747.5387 3752.5686 3757.6941 3762.9337 3770.0557	$900 \\ 3500 \\ 1000 \\ 1200 \\ 1300$	II II I I I	$\begin{array}{c} 4031.\ 4314\\ 4031.\ 9815\\ 4037.\ 1879\\ 4037.\ 7056\\ 4044.\ 5369\end{array}$	$\begin{array}{c} 4030,2925\\ 4030,8424\\ 4036,0475\\ 4036,5650\\ 4043,3946 \end{array}$	$200 \\ 1800 \\ 1800 \\ 400 \\ 800$	I I I II I
3772.4419 3777.3435 3782.0398 3786.6751 3790.2449	3771.3704 3776.2708 3780.9659 3785.5999 3789.1688	$1500 \\ 600 \\ 350 \\ 1000 \\ 1500$	I I I II I	$\begin{array}{c} 4052,\ 0315\\ 4054,\ 6727\\ 4060,\ 3994\\ 4064,\ 5547\\ 4065,\ 4793 \end{array}$	$\begin{array}{c} 4050,\ 8872\\ 4053,\ 5277\\ 4059,\ 2529\\ 4063,\ 4071\\ 4064,\ 3315 \end{array}$		I I II I
$3796.\ 4632\ 3804.\ 1547\ 3808.\ 9554\ 3814.\ 1499\ 3819.\ 7690$	$\begin{array}{c} 3795,3855\\ 3803,0750\\ 3807,8745\\ 3813,0676\\ 3818,6853\end{array}$	$500 \\ 4000 \\ 1200 \\ 1200 \\ 500$	II I II II I	$\begin{array}{c} 4068,\ 5994\\ 4070,\ 3508\\ 4070,\ 6098\\ 4073,\ 7787\\ 4076,\ 6536\end{array}$	$\begin{array}{c} 4067.\ 4508\\ 4069.\ 2017\\ 4069.\ 4606\\ 4072.\ 6287\\ 4075.\ 5029 \end{array}$	$ \begin{array}{r} 400 \\ 750 \\ 400 \\ 400 \\ 400 \end{array} $	I II I I I
$\begin{array}{c} 3829.\ 4708\\ 3831.\ 8604\\ 3838.\ 9638\\ 3840.\ 7835\\ 3843.\ 0499 \end{array}$	$\begin{array}{c} 3828, 3845\\ 3830, 7735\\ 3837, 8751\\ 3839, 6943\\ 3841, 9601 \end{array}$	$3200 \\ 800 \\ 2000 \\ 2500 \\ 1200$	I I I I II	$\begin{array}{c} 4082.\ 5200\\ 4087.\ 6742\\ 4089.\ 8815\\ 4090.\ 2920\\ 4095.\ 9029 \end{array}$	$\begin{array}{c} 4081,\ 3677\\ 4086,\ 5206\\ 4088,\ 7273\\ 4089,\ 1377\\ 4094,\ 7471 \end{array}$	$800 \\ 1600 \\ 400 \\ 400 \\ 1600$	I II I I II
$\begin{array}{c} 3853.\ 2278\\ 3855.\ 6037\\ 3860.\ 9341\\ 3864.\ 5011\\ 3870.\ 7604 \end{array}$	$\begin{array}{c} 3852,1354\\ 3854,5106\\ 3859,8396\\ 3863,4057\\ 3869,6634 \end{array}$	$600 \\ 1200 \\ 500 \\ 1200 \\ 600$	I II II II I	$\begin{array}{c} 4098,9042\\ 4101,4985\\ 4109,5792\\ 4110,4832\\ 4113,9150\\ \end{array}$	$\begin{array}{c} 4097.\ 7476\\ 4100.\ 3413\\ 4108.\ 4198\\ 4109.\ 3236\\ 4112.\ 7545\end{array}$	$800 \\ 1100 \\ 800 \\ 400 \\ 700$	I I II I I

TABLE 1	. W	a velengths	of t	horium	lines-	Continued
---------	-----	-------------	--------	--------	--------	-----------

TABLE 1. Wavelengths of thorium lines-Continued

λvac	λair	Relative intensity	Spectrum	λνασ	λair	Relative intensity	Spectrum
$ \begin{smallmatrix} \mathring{A} \\ 4116, 9203 \\ 4117, 8754 \\ 4128, 5761 \\ 4132, 1675 \\ 4133, 9192 \end{smallmatrix} $	$\begin{matrix} \mathring{A} \\ 4115.\ 7590 \\ 4116.\ 7139 \\ 4127.\ 4118 \\ 4131.\ 0022 \\ 4132.\ 7535 \end{matrix}$	800 600 1000 800 600	I II I I II	$\begin{array}{c} \mathring{A} \\ 4415,7260 \\ 4423,2900 \\ 4434,2077 \\ 4440,370 \\ 4442,114 \end{array}$	$\overset{\text{\AA}}{\begin{array}{c}4414.4862\\4422.0482\\4432.9640\\4439.124\\4440.867\end{array}}$	$ \begin{array}{c} 400 \\ 350 \\ 600 \\ 400 \\ 400 \end{array} $	I I II II II
$\begin{array}{c} 4141,4028\\ 4151,1570\\ 4159,7076\\ 4166,9406\\ 4171,7090 \end{array}$	$\begin{array}{c} 4140,\ 2351\\ 4149,\ 9868\\ 4158,\ 5351\\ 4165,\ 7662\\ 4170,\ 5334 \end{array}$	$400 \\ 800 \\ 800 \\ 1000 \\ 500$	II II I I I	$\begin{array}{c} 4446,5562\\ 4447,1495\\ 4453,8148\\ 4459,2531\\ 4462,4933 \end{array}$	$\begin{array}{c} 4445.\ 3083\\ 4445.\ 9014\\ 4452.\ 5650\\ 4458.\ 0018\\ 4461.\ 2412 \end{array}$	$300 \\ 200 \\ 200 \\ 600 \\ 600$	I I I I I
$\begin{array}{c} 4179.\ 2377\\ 4185.\ 3170\\ 4194.\ 1984\\ 4196.\ 1178\\ 4203.\ 0308\\ \end{array}$	$\begin{array}{c} 4178.\ 0601\\ 4184.\ 1378\\ 4193.\ 0169\\ 4194.\ 9358\\ 4201.\ 8469 \end{array}$	$\begin{array}{c} 3000 \\ 500 \\ 900 \\ 350 \\ 500 \end{array}$	II I I II	$\begin{array}{c} 4466.\ 5940\\ 4470.\ 7800\\ 4483.\ 4270\\ 4488.\ 1563\\ 4494.\ 5943 \end{array}$	$\begin{array}{c} 4465.\ 3408\\ 4469.\ 5257\\ 4482.\ 1694\\ 4486.\ 8974\\ 4493.\ 3337\end{array}$	$300 \\ 400 \\ 300 \\ 200 \\ 1200$	II I I I I
$\begin{array}{c} 4210,0764\\ 4211,9511\\ 4212,1096\\ 4214,2542\\ 4216,0158\\ \end{array}$	$\begin{array}{c} 4208.\ 8907\\ 4210.\ 7649\\ 4210.\ 9234\\ 4213.\ 0674\\ 4214.\ 8285\end{array}$	$3000 \\ 400 \\ 200 \\ 400 \\ 200$	I I I I I	$\begin{array}{c} 4500,2022\\ 4501,2459\\ 4506,4799\\ 4511,7910\\ 4516,3845 \end{array}$	$\begin{array}{c} 4498,9401\\ 4499,9836\\ 4505,2162\\ 4510,5259\\ 4515,1182 \end{array}$		I I II I
$\begin{array}{c} 4221,\ 253\\ 4228,\ 5780\\ 4231,\ 6184\\ 4236,\ 6565\\ 4249,\ 1853\end{array}$	$\begin{array}{c} 4220,\ 064\\ 4227,\ 3874\\ 4230,\ 4271\\ 4235,\ 4638\\ 4247,\ 9893 \end{array}$	$750 \\ 400 \\ 600 \\ 600 \\ 400$	I I I II	$\begin{array}{c} 4522,489\\ 4531,5895\\ 4536,5265\\ 4542,2720\\ 4547,1900 \end{array}$	$\begin{array}{c} 4521,221\\ 4530,3192\\ 4535,2549\\ 4540,9988\\ 4545,9155\end{array}$	$500 \\ 160 \\ 300 \\ 300 \\ 350$	I I I I I
$\begin{array}{c} 4251,\ 511\\ 4254,\ 7362\\ 4258,\ 6948\\ 4259,\ 719\\ 4261,\ 5322 \end{array}$	$\begin{array}{c} 4250,\ 314\\ 4253,\ 5388\\ 4257,\ 4963\\ 4258,\ 520\\ 4260,\ 3327 \end{array}$	$ \begin{array}{r} 1200 \\ 800 \\ 700 \\ 500 \\ 800 \\ \end{array} $	I I I I I	$\begin{array}{c} 4557.\ 0903\\ 4562.\ 6266\\ 4572.\ 2528\\ 4589.\ 7124\\ 4593.\ 953\end{array}$	$\begin{array}{c} 4555,\ 8132\\ 4561,\ 3481\\ 4570,\ 9717\\ 4588,\ 4267\\ 4592,\ 666\end{array}$	$500 \\ 500 \\ 500 \\ 400 \\ 400$	I I I I I
$\begin{array}{c} 4271.\ 1445\\ 4274.\ 5603\\ 4278.\ 5178\\ 4283.\ 2464\\ 4293.\ 0177\\ \end{array}$	$\begin{array}{c} 4269. \ 9428 \\ 4273. \ 3577 \\ 4277. \ 3141 \\ 4282. \ 0415 \\ 4291. \ 8102 \end{array}$	$200 \\ 1000 \\ 1200 \\ 2000 \\ 400$	I II II I I	$\begin{array}{c} 4596.\ 7082\\ 4604.\ 461\\ 4622.\ 4565\\ 4633.\ 0585\\ 4641.\ 344 \end{array}$	$\begin{array}{c} 4595,4207\\ 4603,171\\ 4621,1621\\ 4631,7613\\ 4640,045 \end{array}$	$600 \\ 175 \\ 200 \\ 300 \\ 500$	I I II II
$\begin{array}{c} 4298,\ 5155\\ 4301,\ 0492\\ 4308,\ 3879\\ 4316,\ 4680\\ 4319,\ 6302 \end{array}$	$\begin{array}{c} 4297.\ 3066\\ 4299.\ 8396\\ 4307.\ 1764\\ 4315.\ 2543\\ 4318.\ 4157\end{array}$	$\begin{array}{c} 400 \\ 600 \\ 700 \\ 400 \\ 700 \end{array}$	I I I I	$\begin{array}{c} 4652,857\\ 4664,5080\\ 4669,4785\\ 4671,2916\\ 4674,9693 \end{array}$	$\begin{array}{c} 4651,555\\ 4663,2025\\ 4668,1717\\ 4669,9843\\ 4673,6611 \end{array}$	$500 \\ 200 \\ 700 \\ 400 \\ 600$	II I I I I
$\begin{array}{c} 4321,\ 3414\\ 4330,\ 1329\\ 4332,\ 0619\\ 4338,\ 4971\\ 4343,\ 4765\end{array}$	$\begin{array}{c} 4320,\ 1265\\ 4328,\ 9156\\ 4330,\ 8441\\ 4337,\ 2777\\ 4342,\ 2557\end{array}$	$ \begin{array}{r} 390 \\ 400 \\ 300 \\ 900 \\ 300 \end{array} $	II I I II	$\begin{array}{c} 4687.\ 5060\\ 4696.\ 3520\\ 4705.\ 3063\\ 4713.\ 7713\\ 4719.\ 9363 \end{array}$	$\begin{array}{c} 4686,\ 1944\\ 4695,\ 0380\\ 4703,\ 9900\\ 4712,\ 4528\\ 4718,\ 6162\end{array}$	$400 \\ 400 \\ 500 \\ 500 \\ 200$	I I I I II
$\begin{array}{c} 4345,\ 5479\\ 4347,\ 6587\\ 4350,\ 2950\\ 4354,\ 6724\\ 4360,\ 5972\end{array}$	$\begin{array}{c} 4344. \ 3266\\ 4346. \ 4368\\ 4349. \ 0724\\ 4353. \ 4487\\ 4359. \ 3719\end{array}$	$300 \\ 500 \\ 400 \\ 500 \\ 600$	II I I I I	$\begin{array}{c} 4730.\ 4507\\ 4741.\ 8552\\ 4753.\ 7432\\ 4762.\ 4415\\ 4767.\ 9332\end{array}$	$\begin{array}{c} 4729,\ 1278\\ 4740,\ 5293\\ 4752,\ 4141\\ 4761,\ 1101\\ 4766,\ 6003 \end{array}$	$250 \\ 400 \\ 500 \\ 400 \\ 200$	I II II II I
$\begin{array}{c} 4367,1575\\ 4371,1038\\ 4375,3536\\ 4379,4071\\ 4383,0917 \end{array}$	$\begin{array}{c} 4365,\ 9305\\ 4369,\ 8758\\ 4374,\ 1244\\ 4378,\ 1769\\ 4381,\ 8605\end{array}$		I I I I I	$\begin{array}{c} 4779.\ 6300\\ 4790.\ 7256\\ 4809.\ 4775\\ 4810.\ 9583\\ 4824.\ 2027 \end{array}$	$\begin{array}{c} 4778,\ 2940\\ 4789,\ 3867\\ 4808,\ 1336\\ 4809,\ 6140\\ 4822,\ 8549 \end{array}$	$300 \\ 300 \\ 350 \\ 300 \\ 300 \\ 300$	I I I I
$\begin{array}{c} 4392,\ 3443\\ 4394,\ 2084\\ 4402,\ 8178\\ 4404,\ 1639\\ 4410,\ 1211 \end{array}$	$\begin{array}{c} 4391,\ 1107\\ 4392,\ 9743\\ 4401,\ 5814\\ 4402,\ 9272\\ 4408,\ 8828 \end{array}$	$3000 \\ 400 \\ 400 \\ 400 \\ 600$	II I I I I	$\begin{array}{c} 4828.\ 0490\\ 4832.\ 4710\\ 4842.\ 195\\ 4849.\ 7168\\ 4859.\ 6895\end{array}$	$\begin{array}{c} 4826,\ 7002\\ 4831,\ 1210\\ 4840,\ 843\\ 4848,\ 3623\\ 4858,\ 3323\end{array}$	$300 \\ 350 \\ 400 \\ 250 \\ 300$	I I I II

TABLE 1.	Wavelengths	of thorium	$\mathit{lines}\mathrm{Continued}$
----------	-------------	------------	------------------------------------

TABLE 1. Wavelengths of thorium lines—Continued

λvac	λair	Relative intensity	Spectrum	λνας	λair	Relative intensity	Spectrum
${\rm \mathring{A}} \\ 4864, 5305 \\ 4866, 8363 \\ 4880, 0955 \\ 4896, 3218 \\ 4908, 5795 \\ \end{array}$	$\begin{array}{c} \mathring{A} \\ 4863, 1720 \\ 4865, 4772 \\ 4878, 7329 \\ 4894, 9549 \\ 4907, 2093 \end{array}$	$1000 \\ 350 \\ 200 \\ 350 \\ 150$	II I I I I	$\begin{matrix} \mathring{A} \\ 5418. \ 9918 \\ 5427. \ 1864 \\ 5432. \ 6214 \\ 5437. \ 4039 \\ 5450. \ 9935 \end{matrix}$	$\begin{array}{c} \mathring{A} \\ 5417.\ 4858 \\ 5425.\ 6782 \\ 5431.\ 1118 \\ 5435.\ 8930 \\ 5449.\ 4790 \end{array}$	$200 \\ 250 \\ 300 \\ 400 \\ 150$	I II I II II
$\begin{array}{c} 4921,\ 1892\\ 4929,\ 1564\\ 4941,\ 0208\\ 4946,\ 8387\\ 4967,\ 1169\end{array}$	$\begin{array}{c} 4919. \ 8157 \\ 4927. \ 7808 \\ 4939. \ 6420 \\ 4945. \ 4584 \\ 4965. \ 7312 \end{array}$	$\begin{array}{c} 600 \\ 140 \\ 350 \\ 140 \\ 250 \end{array}$	II I I I	$\begin{array}{c} 5453.\ 7341\\ 5465.\ 7236\\ 5472.\ 2790\\ 5494.\ 168\\ 5500.\ 7831 \end{array}$	5452.2188 5464.2051 5470.7588 5492.642 5499.2553	$250 \\ 75 \\ 100 \\ 100 \\ 250$	I I I I I
$\begin{array}{c} 4981.\ 5757\\ 4986.\ 7636\\ 4990.\ 7005\\ 5003.\ 4924\\ 5018.\ 6541\end{array}$	$\begin{array}{c} 4980.\ 1862\\ 4985.\ 3727\\ 4989.\ 3085\\ 5002.\ 0970\\ 5017.\ 2547\end{array}$		I I I II	$\begin{array}{c} 5505,8312\\ 5511,5245\\ 5516,4051\\ 5526,1178\\ 5540,8005\end{array}$	$5504.\ 3020$ $5509.\ 9938$ $5514.\ 8731$ $5524.\ 5832$ $5539.\ 2620$	$ \begin{array}{r} 160 \\ 300 \\ 160 \\ 100 \\ 400 \end{array} $	I I I I I
$5030.\ 0586$ $5040.\ 6359$ $5046.\ 1263$ $5051.\ 2040$ $5061.\ 2716$	$\begin{array}{c} 5028.\ 6562\\ 5039.\ 2307\\ 5044.\ 7196\\ 5049.\ 7960\\ 5059.\ 8609 \end{array}$	$ \begin{array}{r} 400 \\ 200 \\ 400 \\ 400 \\ 200 \end{array} $	II I I I I	5549.7170 5558.5886 5559.8863 5572.7389 5574.9017	5548.1761 5557.0453 5558.3427 5571.1919 5573.3541	$300 \\ 200 \\ 400 \\ 300 \\ 350$	I I I I I
$5069.\ 3870$ $5086.\ 411$ $5097.\ 9046$ $5102.\ 0426$ $5116.\ 4702$	$\begin{array}{c} 5067.\ 9741\\ 5084.\ 994\\ 5096.\ 4842\\ 5100.\ 6210\\ 5115.\ 0448\\ \end{array}$	$900 \\ 150 \\ 200 \\ 200 \\ 250$	I I I I I	$\begin{array}{c} 5580,9078\\ 5588,5781\\ 5596,6168\\ 5603,1587\\ 5613,6262\end{array}$	5579.3586 5587.0268 5595.0634 5601.6035 5612.0682	$300 \\ 500 \\ 200 \\ 150 \\ 100$	I I I I I
5127.3781 5129.9184 5136.1764 5145.3493 5153.0472	5125.9498 5128.4894 5134.7458 5143.9162 5151.6121	$150 \\ 125 \\ 150 \\ 200 \\ 400$	I I I I II	$\begin{array}{c} 5616.\ 8788\\ 5631.\ 8595\\ 5641.\ 3117\\ 5659.\ 4958\\ 5666.\ 7532\end{array}$	$5615.\ 3200$ $5630.\ 2967$ $5639.\ 7463$ $5657.\ 9256$ $5665.\ 1810$	$350 \\ 60 \\ 250 \\ 100 \\ 140$	I I II I I
$5155.\ 6791\ 5160.\ 0414\ 5164.\ 8968\ 5178.\ 4026\ 5183.\ 9704$	5154, 2433 5158, 6044 5163, 4585 5176, 9607 5182, 5270	$ \begin{array}{r} 400 \\ 700 \\ 300 \\ 400 \\ 200 \end{array} $	I I I I II	5676.561 5686.7695 5702.4993 5708.6868 5721.2097	5674.986 5685.1920 5700.9176 5707.1034 5719.6230	$120 \\ 150 \\ 150 \\ 150 \\ 200$	I I II II I
5197.2605 5200.6116 5212.6816 5220.5630 5232.6161	5195.8136 5199.1638 5211.2306 5219.1099 5231.1598	400 800 400 500 900	I I I I I	5721.7704 5726.9767 5750.3347 5754.6225 5762.1489	5720.1835 5725.3884 5748.7402 5753.0268 5760.5512	$ \begin{array}{r} 400 \\ 250 \\ 150 \\ 100 \\ 600 \\ \end{array} $	I I I I I
$\begin{array}{c} 5234.\ 6822\\ 5249.\ 1148\\ 5259.\ 8240\\ 5268.\ 1760\\ 5278.\ 9688\end{array}$	5233.2253 5247.6541 5258.3604 5266.7102 5277.5001	$350 \\ 400 \\ 300 \\ 200 \\ 400$	II II I I II	5765.1270 5769.7813 5775.5478 5791.2500 5794.0363	5763.5285 5768.1816 5773.9465 5789.6445 5792.4301		I I I I I
5297.7529 5299.2158 5308.9423 5313.4795 5326.6264	5296.2792 5297.7417 5307.4657 5312.0016 5325.1450	$200 \\ 250 \\ 300 \\ 400 \\ 300$	I I II I II	$5797.\ 6759$ $5802.\ 4380$ $5805.\ 7507$ $5814.\ 5842$ $5817.\ 0346$	$5796.\ 0687$ $5800.\ 8295$ $5804.\ 1414$ $5812.\ 9725$ $5815.\ 4222$	$150 \\ 175 \\ 300 \\ 150 \\ 175$	I I I II
5328.4577 5345.0677 5352.6146 5361.6410 5370.773	5326.9758 5343.5814 5351.1263 5360.1503 5369.280	$400 \\ 500 \\ 120 \\ 250 \\ 200$	I I I I I	5833.9875 5854.3043 5855.7424 5861.2904 5869.9996	5832.3706 5852.6820 5854.1197 5859.6662 5868.3731	$125 \\ 200 \\ 100 \\ 140 \\ 125$	I I II I
5374.1973 5388.1085 5396.2608 5409.1571 5412.2733	5372.7033 5386.6107 5394.7609 5407.6537 5410.7691	$200 \\ 300 \\ 400 \\ 200 \\ 180$	I I I I I	5887.3330 5893.0838 5907.2068 5916.3095 5927.8744	5885.7018 5891.4511 5905.5703 5914.6706 5926.2324	$120 \\ 70 \\ 100 \\ 140 \\ 100$	

TABLE 1. Wav	elengths of	thorium	lines—(Continued
--------------	-------------	---------	---------	-----------

TABLE 1. Wavelengths of thorium lines-Continued

							1		
λναε	λair	Relative intensity	Spectrum	λν:	ac		λair	Relative intensity	Spectrum
$\begin{array}{c} \mathring{A} \\ 5940.\ 4706 \\ 5946.\ 2946 \\ 5975.\ 3199 \\ 5976.\ 7203 \\ 5990.\ 7034 \end{array}$		$140 \\ 75 \\ 250 \\ 250 \\ 150$	I II I I II	$\begin{matrix} & \text{\AA} \\ 6523. \\ 6533. \\ 6555. \\ 6579. \\ 6585. \end{matrix}$	$8458 \\ 1470 \\ 9711 \\ 0336 \\ 7251$		$ \overset{\text{\AA}}{\underset{22.0439}{31.3426}} \\ \overset{54.1605}{57.2168} \\ \underset{83.9065}{83.9065} $		II I I I I
$\begin{array}{c} 5995.\ 7897\\ 6008.\ 7362\\ 6011.\ 8253\\ 6022.\ 7038\\ 6039.\ 3697 \end{array}$	$\begin{array}{c} 5994. \ 1295\\ 6007. \ 0725\\ 6010. \ 1608\\ 6021. \ 0364\\ 6037. \ 6978 \end{array}$	$200 \\ 180 \\ 90 \\ 140 \\ 140$	I I I I I	$\begin{array}{c} 6590.\\ 6593.\\ 6595.\\ 6607.\\ 6607. \end{array}$	3598 3058 7612 2410 7752	$\begin{array}{c} 65 \\ 65 \\ 65 \\ 66 \\ 66 \end{array}$	$\begin{array}{c} 88.\ 5400\\ 91.\ 4852\\ 93.\ 9399\\ 05.\ 4167\\ 19.\ 9470 \end{array}$	$200 \\ 100 \\ 200 \\ 30 \\ 20$	I I II II
$\begin{array}{c} 6050,\ 7257\\ 6055,\ 0569\\ 6074,\ 7856\\ 6079,\ 554\\ 6087,\ 0596 \end{array}$	$\begin{array}{c} 6049.\ 0507\\ 6053.\ 3808\\ 6073.\ 1042\\ 6077.\ 871\\ 6085.\ 3749 \end{array}$	$100 \\ 300 \\ 50 \\ 75 \\ 100$	I I I I I I	$\begin{array}{c} 6640.\ 6646.\ 6666.\ 66664.\ 66676.\ \end{array}$	$7452 \\ 488 \\ 5164 \\ 1092 \\ 5400$	$\begin{array}{c} 66 \\ 66 \\ 66 \\ 66 \\ 66 \\ 66 \end{array}$	$\begin{array}{c} 38.\ 9119\\ 44.\ 653\\ 58.\ 6777\\ 62.\ 2696\\ 74.\ 6970 \end{array}$	$100 \\ 30 \\ 50 \\ 250 \\ 30$	I II I I I
$\begin{array}{c} 6089.\ 7162\\ 6104.\ 2840\\ 6114.\ 5300\\ 6123.\ 1031\\ 6126.\ 178 \end{array}$	$\begin{array}{c} 6088.\ 0308\\ 6102.\ 5947\\ 6112.\ 8379\\ 6121.\ 4087\\ 6124.\ 483 \end{array}$	$125 \\ 90 \\ 125 \\ 75 \\ 75 \\ 75$	I I II I I	$\begin{array}{c} 6680.\\ 6715.\\ 6729.\\ 6758.\\ 6780. \end{array}$	$5511\\824\\3159\\3180\\183$		$78.7071 \\ 13.969 \\ 27.4587 \\ 56.4530 \\ 78.312$	$ \begin{array}{r} 30 \\ 100 \\ 200 \\ 250 \\ 80 \end{array} $	I I I I
$\begin{array}{c} 6153.\ 6960\\ 6163.\ 0585\\ 6166.\ 1856\\ 6171.\ 5299\\ 6180.\ 1417 \end{array}$	$\begin{array}{c} 6151,9934\\ 6161,3534\\ 6164,4797\\ 6169,8226\\ 6178,4320 \end{array}$	$125 \\ 50 \\ 75 \\ 500 \\ 100$	I I I I I	$\begin{array}{c} 6782.2 \\ 6793. \\ 6826.4 \\ 6830.4 \\ 6836.4 \end{array}$	285 110 561 9202 8112		$\begin{array}{c} 80.\ 414\\ 91.\ 236\\ 24.\ 678\\ 29.\ 0357\\ 34.\ 9251 \end{array}$	$ \begin{array}{r} 140 \\ 80 \\ 100 \\ 150 \\ 75 \end{array} $	I I I I
$\begin{array}{c} 6184.3331\\ 6189.8381\\ 6193.6189\\ 6199.9380\\ 6205.2095 \end{array}$	$\begin{array}{c} 6182.\ 6223\\ 6188.\ 1258\\ 6191.\ 9056\\ 6198.\ 2230\\ 6203.\ 4931 \end{array}$	$400 \\ 160 \\ 100 \\ 80 \\ 100$	I I I I I	$\begin{array}{c} 6913. \\ 6945. \\ 6991. \\ 7002. \\ 7020. \end{array}$	$1336 \\ 5265 \\ 5839 \\ 735 \\ 504$		$\begin{array}{c} 11.\ 2270\\ 43.\ 6112\\ 89.\ 6562\\ 00.\ 804\\ 18.\ 568 \end{array}$	$ \begin{array}{r} 400 \\ 600 \\ 900 \\ 300 \\ 200 \end{array} $	I I I I
$\begin{array}{c} 6208.9377\\ 6226.2496\\ 6236.5804\\ 6259.1550\\ 6263.1498 \end{array}$	$\begin{array}{c} 6207.2203\\ 6224.5276\\ 6234.8556\\ 6257.4241\\ 6261.4179 \end{array}$	$ \begin{array}{r} 160 \\ 100 \\ 200 \\ 100 \\ 180 \end{array} $	I I I I I		TABL	е 2.	Test of tho	ium wavelengti	18
6275.8522 6292.9314 6304.9940 6328.117 6220.0285	6274.1169 6291.1915 6303.2508 6326.368 6327.2780	$ \begin{array}{r} 100 \\ 30 \\ 40 \\ 60 \\ 180 \end{array} $	II I I II	Line pair	Wav lengt	e- h	Wave- number	Wave- number difference	Deviaiton from mean
6329.0283 6339.3728 6344.6140 6350.4928 6357.6686	6327.2789 6337.6204 6342.8602 6348.7374 6355.0113		I I I I	1	$\begin{array}{c c} & \mathring{A} \\ 5164.8 \\ 5212.6 \\ 5345.0 \end{array}$	$968 \\ 816 \\ 677$	K 19361. 471 19183. 984 18708. 837	<i>K</i> 177. 487	mK 0
6370. 9008 6373. 7056	6369.1409 6371.9440 6371.9440	120 50	I	2	5396. 2 5975. 3	608 199	16735.506 16735.506	177. 487	0
$\begin{array}{c} 6378.\ 6942\\ 6389.\ 1624\\ 6390.\ 583\\ 6408.\ 2173\end{array}$	6370.9313 6387.3967 6388.817 6406.4464	$50\\50\\40\\75$	I I I	4	6514. 1 6590. 3	635 598	$\begin{array}{c} 15351. \ 165\\ 15173. \ 678 \end{array}$	177. 487	0
$\begin{array}{c} 6413.\ 6720\\ 6415.\ 3879\\ 6426.\ 5890 \end{array}$	$\begin{array}{c} 6411.\ 8997\\ 6413.\ 6151\\ 6424.\ 8132 \end{array}$	$\begin{array}{c} 250\\ 200\\ 30 \end{array}$	I I II	5	$3288.7 \\ 3325.7$	$\frac{358}{088}$	30406. 821 30068. 778	338. 043	0
$6439.5405 \\ 6448.5530$	$\begin{array}{c} 6437.7612\\ 6446.7713\end{array}$	$\begin{array}{c} 50 \\ 50 \end{array}$	I I	6	$\begin{array}{c} 5990. \ 7 \\ 6114. \ 5 \end{array}$	$\begin{array}{c} 034 \\ 300 \end{array}$	16692.531 16354.487	338. 044	0
6459.0677 6464.4002 6402.5215	6457.2832 6462.6142 6400.7280	$500 \\ 400 \\ 120$	I II	7	$\begin{array}{c} 5472. \ 2 \\ 5686. \ 7 \end{array}$	$2790 \\ 695$	$\begin{array}{c} 18273. \ 922\\ 17584. \ 678\end{array}$	689. 244	0
6492.5315 6494.9922 6514.1635	6490.7380 6493.1980 6512.3642	$\begin{array}{c} 120\\ 75\\ 75\end{array}$	I I I	8	5574. 9 5797. 6	$0017 \\ 5759$	17937.536 17248.291	689. 245	+1

TABLE 2. Test of thorium wavelengths—	-Continued
---------------------------------------	------------

TABLE 2. Test of thorium wavelengths—Continued

					-			~~~	
Line pair	Wave- length	Wave- number	Wave- number difference	Deviation from mean	Line pair	Wave- length	Wave- number	Wave- number difference	Deviation from mean
9	$\begin{array}{c} \mathring{A} \\ 5769.\ 7813 \\ 6008.\ 7362 \end{array}$	$K \\ 17331. 679 \\ 16642. 435$	K 689. 244	mK 0	32	$\overset{\r{A}}{5040.6359}_{5396.2608}$	$K \\ 19838.\ 767 \\ 18531.\ 350$	K1307. 417	mK = 0
10	$\begin{array}{c} 3960.\ 4204 \\ 4089.\ 8815 \end{array}$	$\begin{array}{c} 25249.\ 844\\ 24450.\ 586\end{array}$	799. 258	+3	33	$\begin{array}{c} 5232.\ 6161\\ 5616.\ 8788\end{array}$	$\begin{array}{c} 19110. \ 899 \\ 17803. \ 482 \end{array}$	1307. 417	0
11	$\begin{array}{c} 5775.\ 5478\\ 6055.\ 0569\end{array}$	$\begin{array}{c} 17314.\ 375\\ 16515.\ 121 \end{array}$	$799.\ 254$	-1	34	$5097.\ 9046$ $5580.\ 9078$	19615, 903 17918, 232	1697. 671	+3
12	5940. 4706 6236. 5804	$\begin{array}{c} 16833.\ 683\\ 16034.\ 428 \end{array}$	$799.\ 255$	0	35	$\begin{array}{c} 5259.\ 8240\\ 5775.\ 5478\end{array}$	19012. 043 17314. 375	1697. 668	0
13	$\begin{array}{c} 6208.\ 9377\\ 6533.\ 1470 \end{array}$	16105. 815 15306. 559	$799.\ 256$	+1	36	$\begin{array}{c} 5396.\ 2608\\ 5940.\ 4706\end{array}$	$\begin{array}{c} 18531.\ 350\\ 16833.\ 683\end{array}$	1697. 667	-1
14	$\begin{array}{c} 6373.\ 7056\\ 6715.\ 824 \end{array}$	$\begin{array}{c} 15689.\ 460\\ 14890.\ 206 \end{array}$	$799.\ 254$	-1	37	$\begin{array}{c} 5616.\ 8788\\ 6208.\ 9377 \end{array}$	$\begin{array}{c} 17803.\ 482\\ 16105.\ 815 \end{array}$	1697. 667	-1
15	3413. 9919 3512. 1610	$\begin{array}{c} 29291.\ 224\\ 28472.\ 499 \end{array}$	818. 725	-3	38	$\begin{array}{c} 6039.\ 3697 \\ 6729.\ 3159 \end{array}$	$\begin{array}{c} 16558.\ 019\\ 14860.\ 352 \end{array}$	1697. 667	-1
16	$3519.\ 4096\ 3623.\ 8281$	$\begin{array}{c} 28413.\ 857\\ 27595.\ 128 \end{array}$	818. 729	+1	39	$\begin{array}{c} 3585. \ 1986 \\ 3875. \ 9602 \end{array}$	$\begin{array}{c} 27892.\ 458\\ 25800.\ 059 \end{array}$	2092. 399	-1
17	$\begin{array}{c} 3585. \ 1986 \\ 3693. \ 6172 \end{array}$	$\begin{array}{c} 27892.\ 458\\ 27073.\ 731 \end{array}$	818. 727	-1	40	$\begin{array}{c} 3728. \ 9626 \\ 4044. \ 5369 \end{array}$	$\begin{array}{c} 26817.\ 110\\ 24724.\ 710 \end{array}$	2092. 400	0
18	$\begin{array}{c} 4379.\ 4071\\ 4542.\ 2720\end{array}$	$\begin{array}{c} 22834.\ 141\\ 22015.\ 414 \end{array}$	818. 727	-1	41	4098. 9042 4483. 4270	$\begin{array}{c} 24396.\ 764\\ 22304.\ 367\end{array}$	2092. 397	-3
19	4664. 5080 4849. 7168	$\begin{array}{c} 21438.\ 488\\ 20619.\ 761 \end{array}$	818. 727	-1	42	$\begin{array}{c} 4687.\ 5060\\ 5197.\ 2605 \end{array}$	$\begin{array}{c} 21333.\ 306\\ 19240\ 906 \end{array}$	2092. 400	0
20	$5136.\ 1764\ 5361.\ 6410$	$\begin{array}{c} 19469.\ 736\\ 18651.\ 006 \end{array}$	818. 730	+2	43	4842. 1950 5388. 1085	$20651.\ 791\ 18559.\ 389$	2092. 402	+2
21	$\begin{array}{c} 5465.\ 7236\\ 5721.\ 7704 \end{array}$	$\frac{18295.}{17477.}\frac{839}{108}$	818. 731	+3	44	$\begin{array}{c} 5003.\ 4924\\ 5588.\ 5781 \end{array}$	$\begin{array}{c} 19986.\ 040\\ 17893.\ 639 \end{array}$	2092. 401	+1
22	5765. 1270 6050. 7257	$\begin{array}{c} 17345.\ 672\\ 16526.\ 943\end{array}$	818. 729	+1	45	$\begin{array}{c} 5136. \ 1764 \\ 5754. \ 6225 \end{array}$	$19469.\ 736\\17377.\ 334$	2092. 402	+2
23	$\begin{array}{c} 6184.\ 3331\\ 6514.\ 1635 \end{array}$	$\begin{array}{c} 16169.\ 892\\ 15351.\ 165 \end{array}$	818. 727	-1	46	$\begin{array}{c} 5465.\ 7236\\ 6171.\ 5299 \end{array}$	$\frac{18295.839}{16203.438}$	2092. 401	+1
24	$\begin{array}{c} 5558.\ 5886\\ 5887.\ 3330\end{array}$	$\begin{array}{c} 17990.\ 178\\ 16985.\ 620 \end{array}$	1004. 558	+1	47	$\begin{array}{c} 5765. \ 1270 \\ 6555. \ 9711 \end{array}$	$\begin{array}{c} 17345.\ 672\\ 15253.\ 270\end{array}$	2092. 402	+2
25	$\begin{array}{c} 6492.\ 5315\\ 6945.\ 5265\end{array}$	$\begin{array}{c} 15402.\ 313\\ 14397.\ 757 \end{array}$	1004. 556	-1	48	$\begin{array}{c} 3691.\ 6742\\ 4076.\ 6536\end{array}$	$\begin{array}{c} 27087.\ 980\\ 24529.\ 924 \end{array}$	2558. 056	-1
26	$\begin{array}{c} 5432.\ 6214\\ 5791.\ 2500\end{array}$	$\frac{18407.\ 320}{17267.\ 429}$	1139. 891	-2	49	$\begin{array}{c} 3804. \ 1547 \\ 4214. \ 2542 \end{array}$	$26287.049 \\ 23728.991$	2558. 058	+1
27	$\begin{array}{c} 5750. \ 3347 \\ 6153. \ 6960 \end{array}$	$\begin{array}{c} 17390.\ 292\\ 16250.\ 397 \end{array}$	1139. 895	+2	50	$\begin{array}{c} 5762.\ 1489\\ 6758.\ 3180\end{array}$	$\begin{array}{c} 17354.\ 637\\ 14796.\ 581 \end{array}$	2558. 056	-1
28	$\begin{array}{c} 5976.\ 7203\\ 6413.\ 6720\end{array}$	$\begin{array}{c} 16731.\ 584\\ 15591.\ 692 \end{array}$	1139. 892	-1	51	3592.4771 3974.3200	$\begin{array}{c} 27835.946\\ 25161.537\end{array}$	2674.409	0
29	$\begin{array}{c} 6193.\ 6189\\ 6664.\ 1092 \end{array}$	$\begin{array}{c} 16145.\ 650\\ 15005.\ 757 \end{array}$	1139. 893	0	52	$3764.\ 0030\ 4185.\ 3170$	$26567.460 \\ 23893.053$	2674.407	-2
30	$\begin{array}{c} 4488.\ 1563\\ 4767.\ 9332 \end{array}$	$\begin{array}{c} 22280.\ 864\\ 20973.\ 448\end{array}$	1307. 416	-1	53	$\begin{array}{c} 4828.\ 0490\\ 5549.\ 7170\end{array}$	$20693.347\ 18018.937$	2674.410	+1
31	$\begin{array}{c} 4880. \ 0955 \\ 5212. \ 6816 \end{array}$	$\begin{array}{c} 20491.\ 402\\ 19183.\ 984 \end{array}$	1307. 418	+1	54	$5313.\ 4795\ 6193.\ 6189$	$\begin{array}{c} 18820.\ 059\\ 16145.\ 650\end{array}$	2674.409	0

TABLE 2.	Test of thorium	wavelengths—Continued
----------	-----------------	-----------------------

TABLE 2. Test of thorium wavelengths—Continued

						1			
Line pair	Wave- length	Wave- number	Wave- number difference	Deviation from mean	Line pair	Wave- length	Wave- number	Wave- number difference	Deviation from mean
55	$\overset{\rat{A}}{5345.\ 0677}_{6236.\ 5804}$	$\frac{K}{18708.837}\\16034.428$	K 2674.409	mK 0	78	$\begin{array}{c} \mathring{A} \\ 3831.\ 8604 \\ 4462.\ 4933 \end{array}$	<i>K</i> 26096. 984 22408. 997	K 3687. 987	mK 0
56	$5361.\ 6410\ 6259.\ 1550$	$\frac{18651.006}{15976.597}$	2674.409	0	79	$\begin{array}{c} 4003.\ 0253\\ 4696.\ 3520\end{array}$	$\begin{array}{c} 24981.\ 106\\ 21293.\ 122 \end{array}$	3687. 984	-3
57	$3310.\ 3178\ 3657.\ 7354$	30208.580 27339.320	2869.260	0	80	4101. 4985 4832. 4710	$\begin{array}{c} 24381.\ 333\\ 20693.\ 347 \end{array}$	3687. 986	-1
58	$3331.\ 4345\ 3683.\ 5345$	$30017.099 \\ 27147.839$	2869.260	0	81	$\begin{array}{c} 4113. \ 9150 \\ 4849. \ 7168 \end{array}$	$\begin{array}{c} 24307.\ 746\\ 20619.\ 761 \end{array}$	3687. 985	-2
59	$3458.\ 0588$ $3838.\ 9638$	$\begin{array}{c} 28917.958\\ 26048.696\end{array}$	2869.262	+2	82	$\begin{array}{c} 4212.\ 1096\\ 4986.\ 7636\end{array}$	$\begin{array}{c} 23741.\ 073\\ 20053.\ 086 \end{array}$	3687. 987	0
60	$3599.1464 \\ 4013.6295$	27784.366 24915.105	2869.261	+1	83	$\begin{array}{c} 4338.\ 4971\\5164.\ 8968\end{array}$	$\begin{array}{c} 23049.\ 456\\ 19361.\ 471 \end{array}$	3687, 985	-2
61	$3643.\ 2867\ 4068.\ 5994$	27447.744 24578.483	2869.261	+1	84	$\begin{array}{c} 4516. \ 3845 \\ 5418. \ 9918 \end{array}$	$\begin{array}{c} 22141.\ 605\\ 18453.\ 617 \end{array}$	3687. 988	+1
62	$3840.7835 \\ 4316.4680$	$26036.354\ 23167.090$	2869.264	+4	85	4779. 6300 5802. 4380	20922. 122 17234. 135	3687. 987	0
63	$\begin{array}{c} 4113.\ 9150\\ 4664.\ 5080\end{array}$	24307.746 21438.488	2869.258	-2	86	$\begin{array}{c} 4896.\ 3218\\ 5975.\ 3199 \end{array}$	$20423.\ 494$ $16735.\ 506$	3687. 988	+1
64	$\begin{array}{c} 4251.\ 5110\\ 4842.\ 195 \end{array}$	$23521.049 \\ 20651.791$	2869.258	-2	87	$\begin{array}{c} 4946.\ 8387\\ 6050.\ 7257\end{array}$	20214. 930 16526. 940	3687. 990	+3
65	$\begin{array}{c} 4375.\ 3536\\ 5003.\ 4924 \end{array}$	$22855.296 \\ 19986.040$	2869.256		88	$5046.\ 1263\ 6199.\ 9380$	19817. 181 16129. 1 9 4	3687. 987	0
66	$\begin{array}{c} 4494.\ 5943 \\ 5160.\ 0414 \end{array}$	$22248.949 \\19379.689$	2869.260	0	89	$3458.\ 0588\ 3991.\ 6206$	$\begin{array}{c} 28917.958\\ 25052.481 \end{array}$	3865. 477	+4
67	$\begin{array}{c} 4946.\ 8387\\ 5765.\ 1270\end{array}$	$20214.930 \\ 17345.672$	2869.258	-2	90	$\begin{array}{c} 4258.\ 6948\\ 5097.\ 9046\end{array}$	$23481.373\ 19615.903$	3865. 470	-3
68	$5127.\ 3781\ 6011.\ 8253$	$19503.145\\16633.883$	2869.262	+2	91	$\begin{array}{c} 4330.\ 1329\\ 5200.\ 6116\end{array}$	$23093.979 \\ 19228.508$	$3865.\ 471$	-2
69	$5603.\ 1587\ 6676.\ 5400$	$17847.076\\14977.818$	2869.258	-2	92	$\begin{array}{c} 4338.\ 4971\\5212.\ 6816\end{array}$	$\begin{array}{c} 23049.\ 456\\ 19183.\ 984 \end{array}$	3865.472	-1
70	4483. 4270 5220. 5630	$22304.\ 367$ 19155. 022	3149. 345	0	93	$\begin{array}{c} 4371.\ 1038\\ 5259.\ 8240\end{array}$	22877.517 19012.043	3865.474	+1
71	5588. 5781 6782. 285	$\begin{array}{c} 17893.\ 639\\ 14744.\ 293 \end{array}$	3149. 346	0	94	$\begin{array}{c} 4896.\ 3218\\ 6039.\ 3697 \end{array}$	$20423.\ 494\ 16558.\ 019$	3865.475	+2
72	$3512.\ 1610\ 4019.\ 2344$	$\begin{array}{c} 28472.\ 499\\ 24880.\ 360\end{array}$	3592. 139	+2	95	$3532.\ 4595\ 4261.\ 5321$	$\begin{array}{c} 28308.\ 888\\ 23465.\ 739 \end{array}$	4843.149	+1
73	$3920.\ 1336\ 4562.\ 6266$	$25509.\ 335$ $21917.\ 200$	3592, 135	-2	96	$\begin{array}{c} 4216.\ 0158\\ 5297.\ 7529\end{array}$	$\begin{array}{c} 23719.\ 076\\ 18875.\ 928 \end{array}$	4843.148	0
74	4596, 7082 5505, 8312	21754.698 18162.562	3592. 136	1	97	$\begin{array}{c} 4350.\ 2950\\ 5511.\ 5245\end{array}$	$\begin{array}{c} 22986.\ 947 \\ 18143.\ 800 \end{array}$	4843.147	-1
75	3305. 1895 3764. 0030	$30255.\ 451$ $26567.\ 460$	3687. 991	+4	98	$3381.8300 \\ 4110.4832$	$29569.\ 789\\24328.\ 040$	5241.749	0
76	3424. 9714 3920. 1336	$\begin{array}{c} 29197.\ 324\\ 25509.\ 335\end{array}$	3687. 989	+2	99	$3438.\ 2923\ 4194.\ 1984$	$29084.\ 206\\23842.\ 458$	5241.748	0
77	$3829.\ 4708$ $4459.\ 2531$	$\begin{array}{c} 26113.\ 269\\ 22425.\ 280 \end{array}$	3687. 989	+2	100	$3349.7310 \\ 4116.9203$	$29853.\ 143 \\ 24290.\ 001$	5563.142	0

1 mill 2: 1 est of the tant wavelengths - Continueu					
Line pair	Wave- length	Wave- number difference		Deviation from mean	
101	$\substack{\mathring{A}}{3599.1464}\\4500.2022$	$\frac{K}{27784.\ 366}\\22221.\ 224$	K 5563.142	mK	
102	$\begin{array}{c} 4258.\ 6948\\ 5580.\ 9078\end{array}$	$23481.373\ 17918.232$	5563.141	+1	
103	$\begin{array}{c} 4371.1038\\ 5775.5478\end{array}$	22877.517 17314.375	5563.142	0	
104	$\begin{array}{c} 4705.\ 3063\\ 6373.\ 7056 \end{array}$	$\begin{array}{c} 21252.\ 602\\ 15689.\ 460\end{array}$	5563.142	0	
105	$\begin{array}{c} 4896.3218\\ 6729.3159\end{array}$	$20423.\ 494\ 14860.\ 352$	5563.142	0	
106	$3305.1895 \\ 4185.3170$	$30255.\ 451\ 23893.\ 053$	6362.398	+2	
107	$\begin{array}{c} 4037.1879\\ 5432.6214\end{array}$	$24769.717 \\18407.320$	$6362.\ 397$	+1	
108	$\begin{array}{c} 4101.4985\\ 5549.7170\end{array}$	$\begin{array}{c} 24381.333\\ 18018.937 \end{array}$	6362.~396	0	
109	$\begin{array}{c} 4330.\ 1329\\ 5976.\ 7203\end{array}$	$23093.979 \\ 16731.584$	6362.~395	-1	
110	$\begin{array}{c} 4371.\ 1038\\ 6055.\ 0569\end{array}$	22877.517 16515.121	6362.396	0	
111	$\begin{array}{c} 4705.\ 3063\\ 6715.\ 824 \end{array}$	$21252.\ 602\ 14890.\ 206$	6362.396	0	

TABLE 2.	Test of thorium	wavelengths-Continued
----------	-----------------	-----------------------

4. References

- W. F. Meggers, Trans. I.A.U. 9, 225–226 (1955).
 W. F. Meggers and R. W. Stanley, J. Res. NBS 61, 95-103 (1958).
- [3] K. G. Kessler and W. F. Meggers, J. Opt. Soc. Am. 45, 902 (1955).
- [4] F. H. Rolt and H. Barrell, Proc. Roy. Soc. A 122, 131-133
- [4] F. H. Rolt and H. Barrell, Proc. Roy. Soc. A 122, 131–133 (1929).
 [5] V. Kaufman, J. Opt. Soc. Am. 52, 866–870 (1962).
 [6] C. D. Coleman, W. R. Bozman and W. F. Meggers, Table of Wavenumbers, 2000 A to 7000 A, NBS Monograph 3, Vol. 1, 500 pp. (1960).
 [7] R. Zalubas, NBS Monograph 17, 103 pp. (1960).
 [8] R. Zalubas, J. Res. NBS 63A, 275–278 (1959).
 [9] G. W. Charles, Compilation of Data on Some Spectra of Thorium, ORNL 2319, May 8, 1958, 162 pp.
 [10] T. A. Littlefield, Trans. I.A.U. 11 B, 212 (1961).
 [11] R. W. Stanley and W. F. Meggers, J. Res. NBS 58, 41–49 (1957).
- 41-49 (1957)
- [12] T. A. Littlefield and W. A. Wood, Trans. I.A.U. 11A, 105–108 (1961). I.A.U. Agenda and Draft Reports,
- [105–108 (1961). I.A.U. Agenda and Draft Reports, p. 142 (1964).
 [13] A. Davison, A. Giacchetti and R. W. Stanley, J. Opt. Soc, Am. 52, 447–451 (1962).
 [14] A. Giacchetti, M. Gallardo, M. J. Garavaglia, Z. Gon-zalez, F. P. J. Valero, and E. Zakowicz, J. Opt. Soc. Am. 54, 957–959 (1964).

(Paper 69A2-332)