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A few derivation methods of the distribution in the title are discussed from some different
viewpoints. It is found that this type of fading may be caused by the interferences of two
correlated waves. A transitional aspect of the distribution due to the change of a parameter
is illustrated in detail. Some applications of the distribution to signal statistics are dis-
cussed. The functional similarity is found between the characteristic function and the error
probability of signals. Using this basic relation some error probabilities are estimated for
various cases.

1. Introduction

Since about 25 years ago, the author has engaged in an extensive investigation of the
characteristics of radio fading phonmnond. At an earlier stage of our series of observations, a
kind of fading much severer than the Rayleigch type was sometimes experienced in particular
circuits, especially in the Taipei-Tokyo circuit operating at the frequency of about 10 Mc/s.

The appearance of such a type of fading was quite unexpected. Therelore our considerable
interest was directed to finding the causes of this type of fading. Unfortunately, however, any
convineing explanation about the mechanisms of the fading seemed to be beyond our knowledge
at that time.

In due course, we fortunately had an opportunity to make carelul observations on several
communication circuits in order to find possible mechanisms of fading, using much improved
equipments and advanced techniques of observation. Through this well-prepared experiment,
the existence of a type ol fading stated above was clearly confirmed.

Meanwhile, our theoretical study of fading was proceeding a little ahead of our experi-
mental research. In the course of our statistical approach, three basic distributions were found
as particular solutions of the so-called problem of random interference. One is the distribution
referred to in the title, tentatively named the “g-distribution” [Nakagami and Sasaki, 1943].
Soon after that, it was found that the formula accounted for the type of observed ld(lmg which
had shown much larger fluctuation than the Rayleigh fading.

It seems to the author, however, that most of the researchers in this field still have a mis-
conception that the Rayleigh distribution exhibits the largest fluctuations among all types of
fading.

In the following, some discussions will be made on the g-distribution. In particular, we
shall derive the distribution on the assumption of some propagational modes which may be
supposed to exist in actual fading.

2. Derivaiion of the g-Distribution

We shall derive the ¢-distribution and its generalized form from gaussian distribution.
Now, let us start from the two-dimensional gaussian distribution
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By changing the variables (z, y) to (R cos 8, R sin 6), and performing the integration with
respect to 6 from 0 to 2r, we have
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Here, if we put
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then (2) takes a standard form of the ¢-distribution
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It is of great importance to note that either in case of ¢, equal to 7., or p? equal to zero, (2)
retains the same standard form as (4). However, if the above two conditions are satisfied
simultaneously, the distribution turns out to become the Rayleigh form
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Further, if p tends to unity, then 8 approaches to zero, and (4) takes the following form
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It is of much interest for us to see that the limiting form (6) is identical with the limiting case

of the observed m-distribution [Nakagami, 1943],
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as the parameter m approaches . In this regard, we shall discuss the fading mechanisms
further in the following section.

2.1. Derivations of a Generalized and an Additive Form of the g-Distribution

A generalized and an additive form of the distribution may be deduced in several ways.
The simplest cases, however, are shown as follows:
First, if we let
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then we may have the standard form
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The detailed properties of this type of distribution are fully discussed in Nakagami and Nishio
[1954a].
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Next, we shall derive a simplest additive form of distribution. Now we start with the

distribution
(xy)? { x—2pxy+y° }
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PO ieeard P\ 20— (8

By the transformation of variables from (z, %) to (R cos 6, R sin 6), we have the distribution
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where

a=20(1+p), =20 (1—p). (12)
3. Derivation of the g-Distribution From an Actual Mode of Propagation

We are now in a position to derive the ¢-distribution from the two correlated Rayleigh
or the m-type of fading. At first we shall begin with the Rayleich type of fading in the following.

3.1. Case of Correlated Rayleigh Fading

As is well known, the joint distribution of the Rayleigh type assumes the form
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where Q=17 and Q,=73, respectively, and £? denotes the correlation coefficient between

77 and 735.
Then, the resultant intensity distribution of the sum of two vectors #; and 7, and a scat-
tered component can be easily expressed by the Hankel form of integral:

p(l»’):[»’[ NJy(NR) F'(N)dX, (14)

where F()) is tentatively called the amplitude characteristic function. If we assume that the
phase difference of 7, and 7, is random, then /(\) becomes

FO=Totm) Jote * 15)

where § indicates the scattered power, and
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This form of integral may be readily evaluated as
N oo
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Hence, we may arrive at final result
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where

a=(+ Q+6)+2vV2 Q% k, )

(19)
B=(21+Q+06) —2vV2 Qs k.
In a limiting case of k equal to zero, p(R) assumes the Rayleigh form
2R —arem
e P 11+Q24-4., 20
= (20
Under the conditions ©,=Q,=%Q, k—1, and §—0, (18) turns to the half Gaussian form
1 =L
plit) =t (21)
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It is of great interest to see (20) and (21), especially the latter distribution; because these
two distributions are both situated at the extreme boundaries of the ¢-distribution, as was
already proved from a different viewpoint.

In figure 1, a family of curves of the distribution are shown with e=6/Q as a parameter.
They are very suggestive of the transitional aspect of the shape of distribution.

The comparison of the g-distribution with the m-distribution is shown in figure 2 under
the extreme conditions respectively. From this figure we may find a good agreement of the
two formulas even at the extremities. This functional similarity was already discussed in
detail.

Some examples of the deepest type of fading observed in a microwave communication
circuit in Japan are shown in figure 3. The foregoing discussions seem to maintain that the
observed distribution shown in figure 3 might be caused by correlated interferences.
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3.2. Derivation From the Correlated m-Distribution

We now proceed to a more general case of two correlated m-v ariables. As is well known,
the joint probability density function assumes the form [Nakagami and Nishio, 1954b, 1955]
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For the sake of simplicity, we treat the simpler case of m=2 and 6=0. The calculation
of (23) is somewhat comphcated even under the s1mphﬁed conditions, ¢;=0, and m=2,
respectively. The final result is
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This form of distribution resembles the distribution (11). In this case, if £* tends to zero,
(25) takes the form

p(R)=3%{ M (R,1,0)+ N (R,3,9) }. (26)
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4. Some Applications of the Distributions to Signal Statistics
4.1. Criterion of Signal Improvement

In the field of signal statistics, it is important to evaluate the performance improvement
attained in various communication systems. For this purpose, two criteria may be used.
One is expressed by the cumulative distribution, P(R), and the other by the so-called error
probability, P..

The former is expressed as

1ot wmr i
PR= [ Mo (27)
®  _zR2
$(2)= f e " p(R)AR, (25)

where P(R) and p(R) are the probability and the probability density function of signal in-
tensity £. This criterion apparently seems to be irrelevant to noise information. The latter
criterion, P,, however, contains noise information explicitly. Though it is a quantity defined
with respect to digital communication systems, it can be used in other systems as well. As
we are here concerned with fading signals, we may better choose the average error probability
P, as an adequate measure of signal quality.

In general, P, takes various forms depending on the methods of signal detections. In
the case of unknown phase information [Turin, 1958], it is simply expressed by

- 1 _E
Pezée 2N (29)

where F is the signal energy and N the white noise power density, respectively. The average
error probability, P, in this case, is simply expressed by

_ e R
e f ¢ ~i¥ p(R)dR (30)
2)s
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where £=%R*T, T=element length in seconds.

It is worthy of notice that P, assumes the identical form with the characteristic function,
o(2). .

Through the author’s experience, it may be said that ¢(z) usually takes a simpler form than
p(R). This fact will be of great help when the treatment of p(£) is complicated.

On the other hand, it would be more convenient, in many cases, to use the Hankel type of
) ) ) o
integral rather than the Laplace transformation. However, as is mentioned above, ¢(z) is

usually more suitable to estimate P, Therefore the following well-known transformation

from F(\) to ¢(2)
4 =p L "5 FOd (32)

will be useful.

1000



4.2. Frror Probability

For the estimation of average error probability, as given by (31), it is sufficient to find the
characteristic function, ¢(z). On this basis, we shall proceed to calculate the error probability
of combined signals in diversity reception.

a. Case of Squared Addition

Let us begin with the case of the sum of squared signals:
PRI e o oariiE (33)

The characteristic function, ¢(z), is expressed by
¢(z) = f ¢ ?BItRt- - R (R R, ... R, dRdR,...dR,, (34)
0

where p(R,, R,, . . ., R,) is the joint probability density function of n-diversity signals.
For simplicity, we assume that the signals are independent of each other, then (34) takes
the form

=l

bi(2). (35)

1
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Accordingly, P, is simply expressed as
— no_
P=2""'11P, (36)
i=

where P, shows the error probability of the ith branch of signal.
Further, we shall consider the case of two correlated m-fading signals; then

(.

©

= f f e~ *BitED p (R, R,)dR.dR,, (37)
s

where p,, (R, R.) stands for (22). After some calculations, P, is obtained as

w1 1 .
Pe=3 [{ 15 2(orF o) F 22 A=) 070, }ngv (3%)

b. Case of Linear Addition

We shall treat the sum of two independent signals which follow the m-distribution. In
this case, ¢(z) takes the following form

#(z) :ffe—Z(Rl+R2)2 1 (R, m, Q) 11 (Ry, m, Q) dRdR,. (39)
0
Applying the well-known transformation
Ri=ue~*, Ri=ue”, (0
(39) is brought to
I 4m2m ” 2m—1 <’/_ﬂ_ p\ —2zu
¢(2)4I‘2(m)92’”£ wm 1K, {2 Q +4)u e~ du, (41)

where K,(z) is the modified Bessel function of second kind.
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In table 1 are shown some of the calculated results.

TasLe 1
7 ¢(2)
1 2 1 — 2Qz
2 T ,\/1_1_492 1+292
1 0z Qz
— =1
1 T [ Viteaz e
1
1 252
2 ———__16(1+Qz)3[16 160215022
302(1241202+50°2) | 0z ]
PN 240z

c. Case of Vectorial Addition
Next, we shall proceed to a more general case of two vectorial sum
R*=R3}+R3+2R R, cos 6, (42)

where we assume that 12, and R, follow the correlated m-distribution and # varies at random.
Then

27 o

—2(Ri+R3+2R, R; cos
6@ =g [ [ [T e, Ry aR R0 (43)
0 0

which yields, after some calculations.

4
¢ (2) :I‘(m)az(l—k‘z) (ck)™

f " K| 2(a--2)u s (2aku) I, Quz)du, (44)
0

where

1

01=—02—0, G:m'

For larger values of m, the calculations become more complex. The results are shown in
table 2, where calculations are limited to smaller values of m.

TABLE 2

m ¢ (2)

1
V{20z2(1+k)+1}{2oz(1—k)+1}
202{c(1—k?2+1}+1

2 N 2e2(1—k) + 111 202(1+ k) F 12
1+402{1+o2(1—k?) | +602-2{1+02(1—k?) }2
3 [1+40zF40222(1—k2) /2

1002



The author expresses his gratitude to Dr. William C. Hoffman, program co-chairman of
the symposium on Signal Statistics, who kindly gave him the opportunity of publishing the
present report in the special issue of the new Journal of Radio Science. His further thanks are
due to Professor Seiko Kaneku for his helpful discussions, and to Mr. Masamich Hatada and
Mr. Riuichi Akiyama for their assistance in preparing the manuscript of the report.

5. Reterences

Nakagami, M. (Feb. 1943), Statistical characters of short-wave fading, J. Inst. Elec. Commun. Eng. Japan
239, 145.

Nakagami, M., and T. Sasaki (Mar. 1943), Considerations concerning the resultant amplitude of a number of
vibrations whose phases are at random over certain limited ranges, J. Inst. Elec. Commun. Eng. Japan
228, 28.

Nakagami, M. ,and M. Nishio (1954a), A unified theory of diversity effects, Annual Convention Record No. 10,
J. Inst. Elec. Commun. Eng. Japan.

Nakagami, M., and M. Nishio (Aug. 1954b), On the fundamental characteristics of amplitude variation due to
fading II, Annual Convention Record No. 10, J. Inst. Elec. Commun. Eng. Japan 479.

Nakagami, M., and M. Nishio (Oct. 1955), A general theory of diversity effects, J. Inst. Elec. Commun. Eng.
Japan 38, 782.

Turin, G. L. (Sept. 1958), Error probabilities for binary symmetric ideal reception through non-selective
slow fading and noise, Proc. IRE 46, 1609.

(Paper 68D9-399)

1003



	jresv68Dn9p_995
	jresv68Dn9p_996
	jresv68Dn9p_997
	jresv68Dn9p_998
	jresv68Dn9p_999
	jresv68Dn9p_1000
	jresv68Dn9p_1001
	jresv68Dn9p_1002
	jresv68Dn9p_1003
	jresv68Dn9p_1004

