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The stochastic properties of fluctuating electromagnetic fields are defined in terms of

the joint moments of the probability distribution.
are briefly described, and the

higher order correlations)

Their physical interpretations (coherence,
connection is indicated between

the complete set of correlations and the quantum theory of radiation.

1. Introduction

This paper deals with the stochastic theory of
radiation. It 1s the electromagnetic field itself
which fluctuates here, not the medium: we are simply
concerned with an extension to the space domain of
the usual communication-theoretical treatment of
signals fluctuating in time. ‘

As usual in a stochastic theory, we must define the
variable and its ensemble, and describe a sequence
of joint probability densities that specify the sta-
tistical properties in greater and greater detail. Let
V(z, t) represent a voltage or electric field strength
(scalar for the time being) at point z and time .
Since the bandwidth of a physically realizable radia-
tion field is never zero, V cannot be periodic in time
but must fluctuate. Iet the ensemble be a set of
wavefields produced by one and the same source at
different times. If p,(V))dV; is the probability
that at the space-time point (z;, #,), V will have
a value that lies between V7, and V,-+dV;, then the
successive orders of joint probability densities are
defined as follows: p,(Vy,Vo)dVidV, 1s the ]()mt
probability that at the space-time point (z, t;), !
will lie within dV; and at (x, £,), within dV5;
sV, Vo, Vo) dVidVodVy refers analogously to three
space-time points, etc.

Certain weighted integrals of the joint probabilities
often turn out to have direct physical significance:
these are the joint moments, defined by the ensemble
average

F(DE‘/YL‘/Q .« .. ‘/71‘

=" [y vean,
V)dvV,dV,...dV,;
or equivalently, since we shall assume quasi-

ergodicity, by the time average

I‘”‘—llm fff ViV, ... V.dt,

which is usually abbreviated as 9=V, 1, ... V.
If the fields are stationary in time (and for conven-
ience we shall here restrict ourselves to these), the
prn(lu(l\ Vile, t)Va(xe, to)Vi(xs, t) become
Vilay, ©) Vy(a, t+17)Via(zs, t+7") . . ., and the second-
m(l(l joint moment, for (‘\dmplv is then explicitly

written as
=V.i(t)Va(t+1))

T (2)

(omitting the z; and ), which is recognized as the
the case of

cross correlation of Vi, and V.. In
quasi-ergodicity and stationarity, therefore, the
terms  “joint moment” and “correlation” are

interchanceable.

[t is often convenient (and in the context of the
quantum theory of radiation, necessary) to work
with the complex analytic signal V' rather than the
real signal V', the imaginary part of V' being defined
as the Hilbert transform of V7 (actually, since V
is a random function and therefore nonsquare-
integrable, its analytic continuation involves a
detour via a truncated V;). In terms of the analytic
signal, the second-order correlation, for example,
18

D =(V3(t) Valt+ 7)) =Tsa().

What is the physical significance of the several
orders of correlation? The first order is just the
time-average voltage (electric or magnetic) field
at a point, “which is usually zero. 'The second order,
I'io(7), traditionally called the coherence hm(ll(m
enters in the mathematical description of all inter-
ference and diffraction effects, and of instruments
based on these (e.g., the ordinary radio interferom-
eter). Referred to a single point, T';2(7) becomes
I'n(r) =< Vi) Vi(t+7)>, the automnolatl()n in
terms of I(t), the fluctuating “intensity” (or, eM:ept
for an admittance factor, the electromagnetic power
flow), T (r)=<_I:(t) >=1,, the mean (or “optical”)
intensity at the point. The third order, I heard
le('enth is being examined at present in cnnne('tlon
with the correlations between incident, reflected,
and transmitted rays in nonlinear interactions
between light and matter. A degenerate form of the
fourth-order correlation, applied to two rather than
four points:
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T =(VEt) Va(t+7) Vi) VE(E+7))
:<Il(t)12(t"|" r));

the cross correlation between the intensity fluctua-
tions at two points, underlies all intensity inter-
ferometry (Hanbury Brown-Twiss effect, etc.) and
two-point photoelectron coincidence counting. The
fifth order seems to have no application. The sixth,
in a degenerate form applying to only three points,
appears in H. Gamo’s triple-correlator interferom-
eters which, for certain specialized measurements
(for example, the spectrum of gas discharge tubes)
offer important advantages over ordinary amplitude
and intensity interferometers. Orders higher than
the sixth have not so far been found physically
significant, but the set of all orders taken as a whole,
i.e., the complete stochastic description of the field,
turns out to be highly significant in the quantum
theory of radiation. We shall return to this peint
after examining the second- and fourth-order
correlations in somewhat more detail.

2. Second-Order Correlations

In figure 1, a plane, circular source of diameter 2p
illuminates slits 1 and 2 in a screen; we will show that
in the case of quasi-monochromatic radiation, the
intensity 7(P) at point P’ depends on the se('ond order
correlation, the coherence function I'y(7). Let Vi (w)
be a spe(‘tml amplitude component of the voltage V', (f)
at slit 1, and note that the corresponding power
spectral line of I,(t) is iy (@) = Vi(w)*V 1(w) The volt-
ages at P superimpose: V(P w) =a,V(w)exp (ikr,) +
a,Vi(w)exp(ikry) (where the a’s represent the individ-
ual slit patterns and the 1/? decay), and therefore

1P, ) =(V(P, w) V*(P, w))

=] %1 (w) 1| az| 72 (w)
+2al @[ Re {(Va(e) Vi(w)eer},

where w7 is the phase difference corresponding to the

path-length difference ¢7 in figure 1. (All mathe-
Indtlcal detaﬂs mvolving the trunc: ated functions
have been omitted.) The total 1(P) is obtained by
integrating i(P,w) over the bandwidth Aw< <@ (the

B

Fraure 1. Two-slit interference.

mean frequency); noting that the last term on the
right-hand side then represents the Fourier transform
of the mutual power spectrum between slits 1 and 2,
which is well known (Wiener-Khinchine theorem) to
be the cross correlation function, we obtain

](p):[a1|2[1+{a2|2[2 +2la/1

las]| T12(0)|coswr,

in which the last two factors could also be written
as Re I'y(7).  (Atradio frequencies, amplitude inter-
ferometers are used in lieu of the optical arrangement
of figure 1: a phase shifter produces the path length
difference, and either, as 1 figure 2a, a detector
registers [(P) or else, as in figure 2b, a correlator
consisting of multiplier and integrator reads out I'i2(7)
directly.) Tt can be easily shown that [12(0)| must

lie between /1,7, and 0. If we choose I,=1I,=1, then
I(P)=2|a]*I(1+coswr) at the wupper bound and
I(P)=2|a*I at the lower, as illustrated in ficure 3a

(deep nulls, “complete coherence’) and figure 3d
(no nulls, “complete incoherence’”), respectively; the
dashed curve in (a) and solid curve in (d) trace the
individual slit pattern contained in the coefficient a.
Cases (b), (¢), and (e) are intermediate (‘“‘partial
coherence”): for small 7 (near the center), the fringe
contrast 1s good, but gradually it ‘“washes out.”
The approximate path-length difference at which the
fringes disappear for visual observation is called the
“coherence length” er,, where the “coherence time”
TC~27r/Aw the coherence length is about 0.1 um for
white light, 3 yards for a very narrow spectral line,
200 miles for a 2ood laser, and 2,000 miles for a well2
stabilized kly%tmn.

The central fringe contrast T',(0), termed the
“spatial coherence,” can be measured in the Michel-
son two-beam interferometer, figure 4a. If the source
is incoherent (e.g., a star), the Fourier transform of
T15(0) plotted against increasing separation between
incident beams traces out the intensity distribution
across the source (and thus also measures its diam-

Freure 2. Two microwave
with phase shifter and detector D,
and integrator 1.

amplitude

interferometers: (a)
(b) with multiplier M
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Figure 3.

eter). The autocorrelation I'y;(7), termed the “tem-
poral coherence,”” can be measured in the Michelson
split-beam interferometer, ficure 4b. The Fourier
transform of T, (7) plotted against increasing path-
length difference between mirrors 1 and 2 traces out
the power spectrum of the source.

The proof of these relations is best obtained from
the double wave equation

1 0°
(Vg 572) Pt =0,

which Wolf established for the coherence function;
it is a consequence of the scalar wave equation
satisfied by the analytic signals themselves. Thus
the coherence function changes as licht propagates
in space: for example, complete spatial incoherence
at the surface of a star is transformed into almost
complete coherence by the time the light enters the
aperture of a telescope (or else no Airy rings would
be formed). With the wave equation one can also
prove that the interference diagrams in figure 3
depend on the parameter-combination wsp/R in
figure 1: increasing the mean frequency of the
incoherent source, or its diameter, or the slit separa-
tion, or decreasing the source distance, all produce
precisely the sequence of patterns shown in figure 3.
(Note how the fringe contrast reappears in (e)
after it has already been washed out in (d), though
with less contrast than at its peak in (a), and with
a minimum rather than maximum at the center; all
of these effects stem from the behavior of the co-
herence function.)

The vector nature of electromagnetic waves is
taken into account by writing T'® as a matrix. For
polarized light beams, it is sufficient to work with

I‘Fn (T) Pa:u (7')
[Te(n)]= ,
= F-«(T) Pw(T)

n=1,2

Two-slit interference palterns.

0

& |

Frcure 4. Michelson interferometers: (a) two-beam, (b) split-
beam.
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where the subscripts specify which two transverse
E or H field (fomponents are being correlated. In
the special case [Ty (0)], these four parameters
characterize a quasi-monochromatic beam in the
same way as the Stokes vector characterizes a
monochromatic beam; the familiar polarization
algebra can therefore be developed, including
representation on a Poincaré sphere, splitting an
arbitrary beam into a fully polarized and a fully
unpolarized part, ete.

References to the many applications of the
coherence calculus in diffraction, antenna patterns,
optical 1maging, radio astlonomv, periodic and
andom media, ete., will be found in the last item
listed under “Bibliography at the end of this article.

3. Fourth-Order Correlations

Thermal sources consist of independently-radiating
atoms; we know from the central limit theorem that
all orders of the probability density distributions
must then be Gaussian, and that all higher joint
moments can be expressed in terms of the second.
In particular, the degenerate two-point fourth-order
correlation already introduced turns out to be related
to the coherence function by

(Li(OL(t+ ) =Ll +|Tia(7) [

if the field is linearly polarized; otherwise, a factor
multiplies the last right-hand term, for example
0.5 if the field is unpolarized. It is clear from this
expression that two-point intensity correlation yields
only the magnitude of the coherence function, but
the phase is sometimes recoverable by theoretical
arguments, and often recoverable by additional
measurements, for example with the three-point
interferometer mentioned in the Introduction.

In the Hanburv Brown and Twiss experiment,
figure 5, [T12(0)| is determined by the mtensity-
analocr of the two-beam amplitude interferometer in
ﬁgure 4a: the light or radio signals now are detected
D and amphﬁed A before belno correlated in the
multiplier-integrator unit. A lonper baseline can
therefore be used than alinement problems and
atmospheric turbulence permit with the Michelson
interferometer, but because of energy limitations
only a handful of stars have been mapped in this

Frcure 5. Intensily inlerferometer.
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way. The intensity analog of figure 4b yields
[Ty,(T)| and therefore the source spectrum (magni-
tude only unless known to be symmetric).

Of the several other experiments that depend on
intensity correlation, I will mention only that of
Alford and Gold, in which power spectrum modula-
tions are observed when a beam is recombined after
a path-length difference in excess of the coherence
length.

The fourth-order correlation of nonthermal sources,
such as lasers and klystrons, does not depend on the
coherence function; in fact, an ideal single-mode am-
plitude-stabilized oscillator should produce intensity
fluctuations of zero correlation.

In optics, two-point coincidence counting is often
used in lieu of intensity correlation (P()und and
Rebka experiment, etc.). The equation that estab-
lishes a stochastic relationship between the proba-
bility distribution of the photoelectrons in time and
the intensity fluctuations is

pt)dt=al(t)dt,

where « depends on the efficiency of the photode-
tector. Originally suggested by Purcell on a semi-
classical basis applicable to monochromatic fields
only, this relation is now known to hold for poly-
chromatic fields within the accuracy of first-
order quantum-mechanical perturbation theory. A
straightforward calculation shows that the prob-
ability of finding n photons in a time 7' consists,
for thermal radiation, of two terms: a classical par-
ticlelike Poisson distribution added to a wavelike
Bose-Einstein distribution (not to be confused with
the basic Bose-Einstein statistics which underlies all
photon distributions). For ideal laser or klystron
radiation, the distribution is completely Poisson,

, like shot noise—which explains why there can
be no two-point intensity correlation in this case.

Returning to thermal radiation, the variance in
the number n, of photoelectrons ejected during 7T
follows from the distribution

(Ang) =nrp+02(IT)2

which again is the sum of a term due to classical
particles and one due to classical waves—just like
Einstein’s celebrated blackbody fluctuation formula,
but now valid also for radiation that is not in thermal
equilibrium. It can be shown from this expression
that the two-point coincidence counts, for 7> >z,
and linear polarization, are given by

AnAny,= azrch I'12(0) ! :

(with a factor 0.5 for unpolarized light). We have
thus available a third method for measuring the
intensity distribution across incoherent sources; a
related procedure yields spectral information.

The fourth-order correlation propagates through
space in accordance with a four-fold wave equation.
(And it is true in general that an nth-order correla-
tion satisfies an n-fold set of wave equations.)



4. Connection With the Quantum
Theory of Radiation

It is well known that statistical mechanics, which
treats ensembles of classical particles, contains more
physies than one might expect from an n-body prob-
lem in classical mechanics; in particular, it encom-
passes irreversibility, whereas the equations of
classical mechanics are reversible. This enrichment
in physical content comes from the assignment of
probability distributions to quantities that are
sharply defined classically (for example, the velocity
of molecules), and from certain auxiliary concepts,
especially equipartition and the rules for counting
degrees of freedom.

Here, too, we have “enriched”” a classical theory
with probability distributions; can auxiliary concepts
now be added so as to produce a physical theory of
larger scope than classical electrodynamics? The
answer is affirmative: the stochastic theory of classi-
cal radiation we have just sketched can be further
developed so as to encompass quantum effects; in
fact, recent work by Glauber and Sudarshan shows
that, for all linear interactions, the enlarged sto-
chastic theory is isomorphic with the quantum theory
of electromagnetic fields.

The basic correspondence is found to be that be-
tween the complete sequence pi, ps, p; - of prob-
ability distributions with which we introduced the
classical ensemble, and the quantum-mechanical
density matrix; the classical correlations are then the
expectation values of the quantum-mechanical ob-
servables. Two auxiliary concepts are implied by
this equivalence: First, because the quantum-me-

chanical operator representing the electromagnetic
field is complex, use of the analytic signal becomes a
necessity rather than a convenience. And second,
the Hermiticity of the density matrix forces the
probability distribution to become negative over cer-
tain ranges of the field variables; these turn out to
be unobservable because they violate the uncertainty
principle.

Could it be that the confrontation of the engineer
with areas of knowledge previously reserved to the
pure physicist, which occurred during the early
"Fifties in solid-state electronics, and more recently
in maser and laser technology, will now repeat itself
in the field of radio and optical wave propagation?
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