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The disturbances produccd by a sligh tly inhomogeneo us r andom mcdium o n a pass ing 
wave can be classified in to co ntr ibutions depe nding on a n inCl'easing llu mber of successive 
scatterings. The indi vidu al co nt ribu t ions a ppear in an expansion of t he Ro lu t io n of a n in ­
tegr al equation. The first te rm, the Born approximation , o illy accou nts for a sing le scat­
tering. Convenient expressions for t hi s approx imation res ult from a sad dl e poi li t t reatment for 
s hor t distances, and from a Fraun hofer approximation for la rge r di stances . The evalu a\ ion 
of t he higher-order co ntr ibu t ions, describi ng plura l-scattering effects, leads to mathemat­
ical d iffi cul t ies which a re evaded by co nsidering t he scat terill g; mecha ni s m as a M a rkov ia n 
p rocess . The correspond ing t heory can be developed with t he a id of an integro-dir-feren­
t ial diffusion eq uation ; t he latte r r efers to t he join t probabili ty de nsity of t he lateral and 
angula r deviations suffered by t he trajecto ry of t he passi ng w'tve . The equat ion in quest ion 
can be solved w ith t he a id of four-d imensiona l operat iona l calc ulu s ; i t red uces to t he simp le 
d iffere nt ial eq uat ion of Fok ker-Pla nck und cr s pecial co nd itio ns . The appl ication of t he gen­
eral equat ion to t ro pospheri c point-to-point rad io comm uni cation is work ed out. It is sh own 
t hat t he fa r-d istance fi eld, associated in t his case with multip le scattering, docs dec rease 
proportio na ll y to t he second or t hird powe r of t he in verse di stance. 

1. Introduction 

By volume scattering we understand the proper ty t hat ea,ch volume-element 01" a sligh tly 
inhomogeneous medium does deviate a I"ntction or the energy or any incident radiaLion hom i ts 
original propagation direction . In its simplest rorm such. sca,ttering is descri bed by a scalar 
wave equation with a, term consis ting or t he product of the wave fun ction and the fluctuating 
component or the r efractive ind ex. By solving t his equation while trefl.ting this term as ir i t 
were known we obtain an integral eqmtLion . The successive terms of t he Neumann expansion 
or its solu tio n represent t lte prima,ry field (corresponding to a l11 ediwTl without a random com­
ponenL of t he refractive index), the contribution due to ::t single sca,ttcring, that produced by 
two successive sCfl.tterings, t hree successive scatterings, a nd so on . 

Most fl.ttention hfl.s been p::tid to t he si ngle-scattering contri buLion whi ch is known as the 
Born approximation. Co nvenient expressions C~tn be deduced from its rigorous representation , 
either by applying a saddlepoin t method , or by t::tking accoun t of the dimensions or the relevant 
coherently scattering parts or space ("blobs") which are small compared to their distances to 
the transmitter and the receiver . The saddlepoint method involves geometric-optical approxi­
mations for the distortions of the wave fron ts which would leave the transmitter undisturbed 
in a nonfluctuating medium. The other method (Fraunhofer approximation) leads to the 
distribution of t he scattered energy over the various directions around t he original propaga tion 
direction. In either method the correlation between t he fi eld strengths observed ::tt two 
different (or identical ) places at two different (or identical) moments can be derived from ::t 
corresponding correlation function for the random fluctuations of the refractive index. 

Mathematical difficulties till now prevented a similar treatment of the hi gher-order 
scattering contributions. Therefore, the successive scatterings have simply been assumed as 
completely independent of each other, which is cer tainly justified if they do no t take pl ::tce too 
close to efl.ch other. This Markovi::tn scattering process can be described with the aid of a joint 
probability density h, which combines the chances for special , both lateral and a,ngular , devia­
tions away from the rectilinear propagation path covered in the case of a homogeneous m edium. 
This probability density satisfies a transport or diffusion equation which can be solved rigorously 
if the equfl.tion is flrst simplified in view of the assump tion or small fin al a,ngular deviations. 
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The equation in question reduces to a second-order Fokker-Planck equation if terms depending 
on the average fOUl'th, sixth, etc., power of the angular deviations (connected with a single 
scattering) may be neglected. 

The probability density hz being known, it is possible to compute the field strength for 
tropospheric radio propagation if the radiation diagrams of both the transmitter and the 
receiver are given. The explicit evaluation is difficult but approximations for large distances, 
which include the effects of scatterings of any order, can be worked out for special models, for 
instance for Norton's modified Bessel model. Such calculations show the insufficiency of the 
corresponding m .. rpressions derived from the above-mentioned Fokker Planck equation. 

The various items indicated here are discussed in more detail in the subsequent sections. 

2. Integral Equation of a Slightly Inhomogeneous Medium 

The elimination of the magnetic field from Maxwell's equations for a medium with a die­
lectric constant 

E= EO + OE(X, y, z) 

leads for time harmonic solutions proportional to e- iw t to the equation: 

The gradient term can be neglected provided that the changes of DE/Eo are small over one wave­
length. The equation can then be put in the following form, for each component of E: 

By treating this wave equation as if the right-hand side were a known function, we get the 
following "solution" 

(1) 

which, as a matter of fact, constitutes a scalar integral equation for each component of the 
unknown wave function E(P). The integration extends over all volume-elements dTQ of 
the space containing OE fluctuations. The term Epr(P) represents the primary field , that is 
the solution in the absence of the random component DE; QP is the distance from the integra­
tion point Q to the point of observation P (receiving antenna). 

The Neumann Liouville expansion of the solution of (1) starts with 

(2) 

The second term represen ts the contribution due to single scatterings and constitutes the Born 
approximation for the total scattered field. The third term E(2) (P ) is recognized as the effect 
of two successive scatterings at two volume-elements dTQ and dTQ'; the fOUl'th term likewise 
represents the contribution of third-order scatterings, and so on. Most literatUl'e only con­
cerns the Born approximation. 

3. Statistical Properties of the Born Approximation 

The random character of the fluctuations in slightly inhomogeneous media suggests to 
introduce statistical quantities right at the beginning, thus applying methods labelled as 
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"dishonest" in Keller's paper [Keller, 1962] on the subject. The statistical properties concern, 
e.g., the average freld strength and the corr elation between the fields observed at two neighbor­
ing poin ts PI and Pz, possibly at differen t moments t l and t2. These properties can be derived 
from the quantity 

for which we obtain, in view of the above expression for E W, 

(3) 

A further evaluation needs an explicit statistical assumption concerning the average of 
the product of the dielectric-constant fluctuations at two different places. It is customary 
to introduce here the hypothesis of "homogeneous turbulence" according to which this average 
only depends on the relative positions of QI and Qz, and the time differ ence tl -t2• Neglecting 
further the time variations this amounts analytically to a dependence on the differences of the 
coordinates of QI and Q2, or on the vector QIQ;. The homogeneous turbulence can then be 
fix ed completely with the aid of the following normalized autocorrelation function : 

(8 ~ (QI) 8~ (Qz» 
(8~Z(Q» 

(4) 

We next assume a primary fi eld du e to a point source at T, and normalized according to the 
formula 

(5) 

The substitution of (4) and (5) into (3) yields: 

(6) 

This expression with a double integration over the entire randomly fluctua ting medium is basic 
for all investigations starting from the Born approximation. 

4 . A Saddlepoint Method Applied to the Born Approximation 

Saddlepoint approximations are always applicable for frequencies which are sufficiently 
high. Its application to the Born approximation EO) (P) as defined by (2) amounts to r eplacing 
the integration point Q in the denominator by its proj ection Q' on the line TP connecting the 
point source with the point of observation, and to expanding the exponential up to second­
order terms with respect to the coordinates yq and Zq; the y and z-axes are here assumed as 
perpendicular to the line TP constituting the x-axis. We then obtain, also using (5), 

ikO( 1 1) ( , 2 ) 
2 f "2 Q'T+ Q'P YQ + ZQ 

E(1)(P) =~.2 eiko PP dT a€ (Q) e • 
41r Q Q'T·Q'P 

We pass from the dielectric constant ~o+ a€ to the corresponding expression 

nZ=t/€o= 1 + 2an 

for the refractive index n, so as to have 8~= 2~o8n. A substitution of the Taylor expansion 
(up to second-order terms) for anQ as a function of YQ and ZQ then leads to a result derived 
[Bremmer, 1958], which can be interpreted by a phase shift 

(7) 
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and a relative change of the amplitude given by: 

oA = _! r xp dXQ' Q'T · Q' P (020~ + 020~) . 
A 2 JXT TP oy- oz Q' 

(8) 

The phase correction is quite obvious in view of the fluctuations of the refractive index 
n. The amplitude change poin ts to a lens effect. In fact , the regions with a negative or posi­
tive value of (02/oy2+ 02/0Z2) on cause a small increase or decrease of the field which is equiva­
lent to a focusing or a defocusing. 

It is also possible to derive statistical averages for these geometric-optical quantities 
when assuming homogeneous turbulence. For instance, the variance (ocfl) of the phase 
fluctuations at a special point, or the correlation between these fluctuations at two different 
points are obtained from a double integral consisting of the product of two expressions (7), 
substituting the autocorrelation function corresponding to (4) for the refractive-index fluctua­
tions . This autocorrelation function may be represented by 

in which we introduce the scale of turbulence l in order to get a function of a dimensionless 
parameter. The variance in question then becomes as follows at a point at a distance TP=d 
from the point source, provided that d ») l: 

say. (9) 

A similar computation, starting from (8) and to published elsewhere, leads to the following 
corresponding expression for the variance of the amplitude fluctuations : 

(10) 

Variances of other geometric-optical quantities, such as angular deviations from ray tra­
jectories which are rectilinear in the absence of the random fluctuations, can be computed in a 
similar way. We refer in particular to the investigation [Muchmore and Wheelon , ] 955] 
and to a discussion of the wave-front disturbances caused by turbulent random fluctuations 
[Bremmer, 1963]. 

5. Fraunhofer Approximations of the Born Approximation 

The limited range of noticeable coherence of the o~-flu ctuations involves a splitting up of 
the integral of (6) into terms comprising a double integration over individual incoherently 
scattering volume elements. These elements or " blobs" may have dimensions of the order 
of the parameter l introduced above in the autocorrelation function Con. 

In the application to far-distance tropospheric propagation the effective blobs are situ­
ated in a rather small part of space situated simultaneously above the tangenting plane to the 
earth (horizon plane) through the transmitter, and above that through the receiver. The re­
sulting conventional theory is summarized below, emphasizing the influence of the finiteness 
of the blob dim ensions. 

The size of t he blobs being small compared to the distances Q1T, Q:T, Q1PlJ Q,P2 from their inner points to 
the transmitter and the points of observation, it is justified to replace these inner points by a fixed central 
point 0 0 of the blob in question when considering t he denominator in (6). Moreover, t hese distances may be 
approximated in t he exponentia l by expressions which are linear with respect to t he coordinates of 01 and 0, 
(the origin being at Qo), that is t he components of two vectors -;'1 and ;;2. We further introduce new mixed 

coordinates (components of two vectors ~ and 7)) according to: 
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In t he case of spheri cal blobs of radius 1,/2 around t hcir central point Qo t he spli t tin g of (6) in t o contribu­
t ions over t he various blobs t hen can fi nally be r cpresen ted by: 

( 11 ) 

H er e we have introduced t wo other new vectors V and rv defined by : 

~ 1 ,..l.. ~ 

V =2 (uQop,-UQOPI )' 

where UQoP, marks a uni t vector in t he direction of QoP" t he other unit vectors bein g defin ed likewise; b repre­
sen ts t he bissectrix of t he a ngle if; = P I QoP ,. 

The special case P I == P, leads at on ce to th e differen tial scatterin g cross section IT which r epresen ts t he 
energy scattered by a uni t scatterin g volume into a unit infini tes imal solid a ngle along t he direction QoF', fo r 
a uni t energy-c uJ'rent density of t he ilJ eident radia ti on. This definit ion proves to be equivalen t wi t h t hat used 
later on (sec sec . 7). The former defini t ion impli es t he follow in g value fo r t he total scattcrin g cross section 
connected wi t h the N incohcrently scatterin g blobs conta ined in a unit volume-clement: 

t he index (1) here refers to t he contribu t ion connected wi t h a s ingle blob. H ence, in view of (11), 

IT 
N ( W2!io)2(Of 2) 

1287r' 

in which t he n ew unit vectors arc di rected along t he scat tered a nd t he in cident racliat ion (alon g QoP a nd TQo), 
respecti vely. 

The i ntegral over r a moun ts to t he volume of t he co mm on space of two spheres wit h radius L a ncl centers 

separated by a distance 2r;;1. This eommon space only exists if r;;1 <L. The blobs (the sphcrical form of 
which has only been ass umed in order to show t he influence of t he blob sizes in general) may be considered as 
a dj acen t so as to have N = I (4/3)7r L3 1-1. This factor disappears whell substitu t in g t he ment ioned volume for 

t he r in tegral. We t hus arri ve a t: 

d1]e iko( u ac-ui)'1COl f ~ ~ ~ ~ (2) (1 _zG1+!hI3). 
I 2 L 2£3 

I ~ I<L 

The last fa ctor of t he in tegrand points t o a n infiuence of t he blob dimensions which is not acco un tC'C\ [or 
by the aut ocorrela tion function. It t urns out t ha t t he crIect of t hese dimensions D can only be neglected if L 
(bein g of the order of t he scale of t urbulence I ) exceeds the maximal relevan t value of l-;tl. In view of t he 
oscillat in g charact er of t he other exponential factor this maximum is of t he order of 

{ ~ ~ }-l ( . {J)- l 
27r kcI1l,c-Ui/ = 2 7r 2ko Sill :2 ' 

(J being the "scattering angle" between t he propaga tion d irect ions TQo of t he incident racliation and QoP of 
the sca ttered energy. This angle being small in practice, we arrive a t the condi t ion 1> 27r (ko{J )-I, or {» A/l , 
in order t hat t he blob-size effect may be n eglected. This inequality characteri zes t he regi on beyond t hat of 
t he predominant forward scat t ering, that is t he r egion of most interest for propagation up to d istance's well 
beyond t he horizon of t he transmitter . In t his latter region it is also justified to extend t he -:: in teg rat ion up 
to infinity. The conven t ional formula for the scattering coefficient, viz, 

f d;eikO(";';,c-";';/>:"c!, O). 

o<r;I<oo 

t h en results; it refers t o scattering an gles included by t he uni t vectors 1:', a nd 1-::' 
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The re lation between this expression and the power spectrum PCZ:;) of the random fluctuations, to be defined 
with t he aid of the three-dimensional Fourier transform of the spatial distribution of these fluctuations is well 
known . If PC~) is normalized such as to obtain the unit constant when integrated (over all real values of 
WI, W2, and W3), we find 

We next consider the correlation, according to the Fraunhofer approximation, between the fields at two 

neighboring points P, and P2 • In view of the short distance of these points in practice, t he -;;; in tegra l in ( ll) 

is hardly changed from its value for the previous case in which the angle f vanished. However, the r integration 

becomes more complicated, the vector V now being different from zero. Its evaluation indicates noticeable 
correlation between the fields at P, and P 2 up to distances for which the angle f = P'()oP, becomes of the order 
A/I. In part icular, the correlation is well established between points situated on one and the same line t hrough 
the scattering so urce Qo, and least in directions perpendicular to such a line. 

6. Scattering Considered as a Markovian Process 

Statistical properties could in principle be derived for the higher-order scattering contribu­
tions in a similar way as indicated for the Born approximation referring to first-order scatterings. 
The results would depend on the averages < OEWI) OE(QZ) ... OE(Qn) > of multifold products. 
The corresponding final expressions holding for the combination of all terms of the Neumann 
expansion (2) would become extremely complicated though progress in this direction has been 
obtained [Hoffman, 1959, and Furutsu, 1963]. The difficulties here arising can be avoided 
when the successive scattering contributions, represented by the various terms of (2), may be 
considered as independent of each other. The Markovian character of the scattering mecha­
nism, then to be assumed, may be made plausible as follows. 

A narrow pencil of rays leaving some point source only produces a noticeable scattered 
field after it has covered some minimal distance. The order of magnitude of the latter can be 
estimated by investigating the scattered field produced by an antenna which radiates isotrop­
ically, as given by (5), into an infinite random medium without boundaries. In the case of 
homogeneous turbulence the variance of this field follows rigorously from (6) by taking PI = P z, 
the integrations extending over the entire space. Its computation has been worked out in 
[Fannin, 1956] assuming an isotropic auto-correlation function < oe(QI) oe(Q2» of gaussian 
form with respect to the distance QI Q2; this function could also account for an anisotropy caused 
by wind effects. Fannin's main result (for zero wind velocity) can be interpreted thus that 
the variance of E ( I), divided by the squared primary field, does increase in proportion to d31 
(dodc/) up to distances of the order of deT) while tending to a limiting value of the order of dido 
[see (8) ] for d»dcr; the critical distance dcr=lzl A is introduced here as a function of the scale 
of turbulence l and the wavelength A. The increase of the variance for small distances shows 
that the scattered field only becomes appreciable when the radiation has traveled over a distance 
of the order of d~/3 d~~3 if this quantity proves to be smaller than dc" that is if do<dcT. This 
latter very general result proves to be independent of the special correlation-function model 
chosen by Fannin, as can be shown with the aid of (10). 

The importance of the dimensionless parameter dldcr= d.A/l2, here becoming obvious, can 
be understood as follows. Forward scattering is mainly restricted to a cone of angular devia­
tions (around the undisturbed propagation direction) which are not larger than A/l. An 
originally sharp ray having traveled over a distance d in a random medium is therefore broadened 
to a beam with a cross section having a dimension of the order of dAll. Tbis cross dimension 
just equals the size of a turbulent blob if dA/l= l, that is if d= dcr. Therefore, if d> dc" the 
radiation due to the scattering will have traversed, on the average, at least one blob. Also, 
dldcr constitutes a measure of the number of blobs passed after traveling over a distance d in 
the forward direction. The geometric optical approximations of section 4 refer to small values 
of dldcr. 
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In view vf the above remarks individual scatterings take place, on the average, once along 
each section of a lengtll of the order of cl~/3 d~~3 if d o< d c1 , but of do if do > dcr • Hence the scattering 
angles associated with the successive individual scatterings may b e consid ered as independent 
of each other if t he correlation between the refractive-index flu ctuations at the end of such a 
section proves to be negligible. This leads to the condition dOl /3 dc/ 13> l if d < dcT) and do > l if 
d > dcr • It is therefore always sufficient to have do> lif A< l (a condition satisfied for forward scatter­
ing in order that the scattering angles con nected with the nth and (n- l)st scattering should 
b e statistically independent. The angular spread caused by the nth scattering then only de­
pends on the propagation direction obtained after the (n- l )st scattering, and not on those 
obtained after the preceding scatterings. This makes plausible the Markovian character of 
tropospheric multiple scattering (wh en occurring at all) . 

7 . Equations Characterizing Markovian Small-Angle Scattering 

P hysical phenom ena associated with scattering generally depend on both angular and 
lateral deviations suffer ed by the energy bent asid e by the irregulariti es of the medium. This 
suggests to in troduce a join t probability density hz fixing the distributions of both types of 
deviations. Let us consider an energy uni t (or a par ticle in the case of scattering of a stream 
of incid ent electrons or ato mic particles by other particles having random positions in the 
medium tr aversed) which leaves an origin 0 in the Z-direction along it path which would be 
rectilin ear in the absence of scattering irregulari ties. We then define the fun ction hz such that 
hz (X , Y, x, y) elXdYdxd,y constitu tes the probabili ty for the uni t in question to pass the special 
plane Z = co nstant through a prescribed smface element dXdY while tr aveling th ere in a direc­
tion comprised in an infinitestimal cone, likewise prescribed. This co ne sub tends a solid-angle 
el ement dx ely if x and yare direction cosin es with respect to the X and Yaxes (both p m'pen­
dicular to the Z-axis) . The transport equation concerns the change of t he fun ction hz along a 
line element ds = (dX2+ clP+ clZ2) ", . 

Our analysis will be confined to forward scattering which implies that all relevant angular 
devilt tions (with r espect to the Z-axis) may be considered as small. The limi ting case of iso­
tropic Rayleigh scattering is then exclud ed. The theory dealing with scattering angles of any 
magnitude usually resort at once to e>.rpansions in term s of Legendre functions, as discussed, 
e.g., [Lewis, 1950]. 

In t he s mall-angle case thc anglc betwccn two directions fixed by the cosines (XI, YI) and (X2, Y2) can be 
appro xim ated by 

Moreove r, a ll dir'ection cosines wit h respect to t hc Z-axis may be replaced by unity. 
T he s mall-a ngle a ppro xi mations involve a cons ide rable s implificat ion. As an example of its sig nifica nce 

we first consider t he eq uat ion wh ic h expresses t he proper ty t hat scatte rin g ove r a distance Z can be sp li t inLo 
a pa il' of completely in depende n t scatterings a long any t wo s ubsections Z - ZI and ZI, s llc h in view of t he 
Marko via n hypothesis . The Jlumbe r of units passing the plane at a distance Z - Z, from 0, with lateral dev ia­
t io n s~, 1) , and a ngular dev iat ions u, v, is determined by the quantity hz-zl(~' 1) , U, v). A frac t io n of t hese units 
will arr ive, afte r traveli ng ove r a further forward distance Zil within a prescribed ran ge dXdYdxdy of lateral 
and angular deviations at t he Z p lane. During its propagation over ZI this fraction s u ffers a total late ra l 
deviation 

rchLtive to the rectilinear path covered if it wo uld have co ntinued in t he direction (u, v) up to the pla ne at the 
distance Z; in fact , a long this latter path it would have a rrived t here at a point with coo rdin ates Zlll + i;, 
ZIV + 1) , Z. The corresponding angula r deviation amo unts to {(X-U)2 + (y-v)21>f. In v iew of the axially 
sy mmetric character of t he scatte rin g, ass umed t hrougho ut, t he probability for t hese latter deviations would 
be the same as that in t he case of late ra l displacements X - ZIU - i; and Y - ZIV - 1) in t he X a nd Y directio ns 
respectively, co mbined wi th a ngu la r displace ments co rrespo ndin g to a diviation away fro m t he Z-axis into a 
direction with cos ines X-1. anel v - v. Hence the probabili ty fo r a rrivin g wi thin t he range dXdYdx'l y at t he 
Z p la ne , a fter havin g passed the Z - ZI plane in the range di; d1) d1.dv, can be represe nted by 
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An intog ra tion over all possible situations in the (Z - Z, ) plano, while taking account of the probability dens ity 
hZ- Zl (~, '1 , U, v) for each of these s ituations, leads to the des ired equation, viz, 

'" 
hz ( X , Y ,x, y) =ffff d~d'ld1ldv hZ- Z,( ~ , 7) , u , V ) hZ,( X - ~ - Zl1l, Y - '1 - Z 1V, x-u, V- v) . ( 13 ) 

The intrgration o vor tho direction co sines has beon extended hore IIp to infinity. This is allowed since the 
integnwd will alread y be negligibly small near the limi ting values ± 1 of the direction cos ines with respect to 
the X a nd Y axis, which would corrospond to very large angular devia tions . Thorefore, the integrations can 
j ust as well bo continued o ve r the complex directions fixed by cosines beyond t hose limi t ing ya lues . Such 
infini to integrat ion limits will be used throughout in o ur furthe r an alys is whon the integra t ion should comprise 
a ll real propagation direction s . 

Any equation characterizing a special scattering medium should depend on its differential 
scattering cross section 0'( ,,/X2+ y2) , 0' dZ dx dy constituting the probability for first-order 
scattering, during propagation over a forward dis tance dZ, into an infinitesimal range of direc­
tions (fixed by the cosines x and y ) around a central axis in the Z direction. In view of the axial 
symmetry 0' only depends on the small angle (X2+ y 2)>> of this direction with the Z axis, but it 
proves to be convenient to define also a function O' (x, y) of two variables connected with that 
of one variable according to 

The final equation completely fixing all scattering phenomena can then be represented by 

'" 
dhz (0 0 0 ) h (X }7 ) f f Z d ( )/ (X }7 ) hz(X, Y, x, y) Ts = xox+ YoY+oZ Z "x, y = G ~'Y/O'~, 'Y/l,z " x- ~, y- 'Y/- do . 

(14) 

The first two members of this special case of Boltzmctnn's transport equation determine 
the change of hz along the line element ds, the coefficien tin fron t of % z being unity in view of 
the small-angle assumption. The integral term represents the energy units that arrive at 
the plane Z = constant at prescribed points (X, Y), traveling in directions prescribed by cosines 
x- ~ and y- 'Y/, and which are scattered near this plane into the direction fixed by the cosines 
x and y under consideration. The last term of (14) represents the loss due to the chance 
O'(x, y)dxdycls for the units traveling along ds to be sca ttered aside into a new direction making 
an angle (X2+ y2)! with the original direction. Extending the integrations up to infinity, the 
total amoun t of these losses becomes 

'" 
ds f f dxcly O' (x, y) =~, say. (15) 

Working out the integrations with the aid of (12), the quantity do defined here proves to 
be the same as that entering in the relation (8) for the varianceof thephasefluctuations . Accord­
ing to (15) do represents the distance along which any energy unit becomes a chance 1: 1 for 
being scattered aside completely. Therefore, this distance has been termed "mean free path 
for scattering." All terms of the transport equation (14) have thus been made clear. 

8 . Solution of the Transport Equation in Terms of Laplace Transforms 

The integral term in the transport equation (14) constitutes a convolution product . 
This special form, which can only be obtained in the small-angle approximation, enables the 
solving of the equation with the aid of Laplace transforms; this has been worked out [Snyder 
and Scott, 1949] for the projection of the scattering paths on a plane through the Z-axis. In 
a completely four-dimensional treatment the transform in question may be defined by 
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Lapl hz(X, Y, X, y) = II II dXdYdxcly hz(X, Y, x, y) e- PIX -QlY -P2X -Q2Y. 

Above we introduced the function hz by considering a unit element leaving the origin 
along the Z-aA'1s . This implies the boundary condition hz= o(X)o(Y)o(x)o(y) at Z = O. The 
Laplace transform of the solu tion satisfying this condition proves to be given (in so far as 
existing for special values of PI, ql , P2, q2) by: 

as shown [Bremmer, 1963]. 
Lapl fLCe transform of (J(x,y ). 
it should . 

(16) 

The function H (p, q) is defined here as the two-d im ensional 
The fun ction (J 6) also satisfies the Laplftce tran sform of (1 :3 ), as 

Th e general solution obtained here co ntain s as special cases the distribution functions 
co nn ected with the lateral deviations only, or with tbe angular deviations only. The former, 
hz(X, Y ) say, resulLs aJter in tegmting hz(X, Y ,x,y ) over all possible values - 00 < x,y < 00 of the 
direction cosin es x and y. This integrfttion correspond s to taking P2 = Q2= O in t he Jour-dim en­
sional general Laplace tmnsform. vV c thus arrive at the followin g Laplace transform for this 
fUllction of two variables only: 

dO! Zl d doj[(dop j, doqj) 

Laplhz(X,Y)=e-z/doe 0 • (17) 

The corresponding two-dimensional Laplace transform for the distribu tion function 
hz(x,y) of the angular deviations is obtained by substituting PI = ql = O in (16). T he fin al 
result read s: 

Lapl hz(x, y) = eZ {TI (1J, q)-l /do} . (18) 

An integral expression equivalent to this relation has been derived in [Moliere, 19481. 

9. Poisson Distribution Connected With Multiple Scattering 

The function hz includes the scattering co n tribu tions of any order. Each individual 
scattering being associated with the scattering coefficient (J , the contribution of all scatterings 
of nth order can be recognized by the occurrence of n factors (J. The role of this function is 
taken over by that of H in the Laplace transforms. Hence tbe expansion with respect to H 
of any result expressed in these transforms will show the distribu tion over the contributions 
connected with specific numbers of scatterings. 

As an example we consider all energy units t hat have passed through a plane Z = constant. The units 
applied in t he definition of hz represent probabilities, hence their total number should equal uni ty. This 
total number is obtained, e .g., by integrating hz (x, y) over all values - 00 < x, y< 00 . The res ult equ als the 
two-dimensional Laplace transform of o-(x, y) at p = q= O. H ence we should have 

or, in view of (18), 

l = eZ { f/ (o. O) -!/do} =e-Z 1do i: Z n{ H (O, 0) In. 
n=O n! 

The nth term t hen co nstitu tes t he fraction of units that has s uffered n s uccessive scatte rings. Moreover, 

H ( O, O)= l jdo ( 19 ) 
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holds in view of t he definition of do. The probability pen) for n scatterings dming forward propagation 
ove r a distance Z can therefore be represe nted by 

P (n )=e-Z i dO (Z /do)n 
n! 

(20 ) 

This Poisson distribution here directly res ults as a conseq uence of the ass umption of a Markovian scatter­
ing m echanism. Equivalent derivations have b een given b y D exter and Beem an [1949] and F ejer [1953]. 

10. Fokker-Planck Equation as an Approximation of the General Transport 
Equation 

The influence of the medium under consideration on the transport equation (14) results 
from the occurrence of the function O'(~ , 1]). However, the equation only proves to depend on 
the discrete set of parameters: 

.L"",J dxdy O'(x, y) (X 2+y2) " 

.["'",J dxdy O'(x, y) 
(t?-i"), say, (21) 

which constitute the averages of the even powers of the scattering angles t?-l = (X2+ y2) 1/2 con­
nected with a single scattering. In fact, a Taylor expansion of the integral term in (14), as 
worked out by Bremmer [1964], leads to the following alternative representation of the trans­
port equation: 

(22) 

This equation suggests to consider the approximation obtained by restricting the l'ight­
hand side to its fiTst term the significance of which has been discussed by :Middleton [1960]. 
The approximation in question leads to a diffusion equation of the Fokker-Planck type, viz, 

Such an equation has been applied to particle scattering as early as 1929 [Bothe, 1929], at 
least insofar as the angular deviations are concerned. 

The exact s olution satisfying this F. P. e quation and a lso the previous boundary condition, t ha t is hz 
= o(X )o( Y )o(x) o(y) for Z = O, reads as follows : 

12110 Z 2 
12do' - -- {X2+y2_Z(Xx+Y y)+- (x2+V 2)} 

{h ( X Y ) I e (O'j')2Z3 3 
Z , ,x, Y F.P. = 7C2(Oi)2Z' ( 23 ) 

This exp ress ion is eq uiva lent to a s imilar one derive d [Rossi and Greisen , 1941] for scattering b y particles . 
Obvio usly, i ts applica bility re quires s uffi ciently s mall values of t he higher-order momen ts (Oll, (01), and so 
on. For t he sake of completeness we a lso m en t ion the corresponding probability densities for t he late ra l 
and an gular deviations on ly: 

3d 
3d ___ 0 (X 2+y2) 

h ( X Y ) _ __ 0_ (~') Z3 
Z .. , - .,,- (ODZ3 e j , 

d d _ _ 0_ (x2+y2) 

hz (x, y) = 7C (oh z e (oD Z ( 24) 

We infer an increase of the average lateral deviations which is roughly in proportion with Z3i 2, and of 
t he angular deviations with Z1/ 2. 
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II, Evaluation of Scattered Fields for Special Antenna Systems 

Tropospheric r adio propagation dep end s, among other t hings, on the radiation diagrams 
of tbe transmitter and t he receiver. Th at of t he form er may be given by the gain gtr(l, 1/;) as 
a function of two ind ependent angles fixin g the dircctions of t he r ays l eaving t he transmitter, 
We shall define I as the f1ngle b etween such a r ay and the local horizontal plane through the 
tr ansmitter , and 1/; as the angle b et ll'een (a) the vertical plane through thc uy in question , 
and (b) t he other phme through tbe transmi tter, the receiver and t he ccnter of the earth, 
The radiation diagram of the receiver can b e fixed by the gain g,(I', 1/; ') of the latter fo1' radi­
ations reaching it along directions fixed by two other angles I' and 1/;'; thcse angles m ay co n­
veniently be defin ed in an identical way with respect to th e r eceivcr. Th c analysis sketched 
below leads to the followin g ratio of the r eceived and transmitted encrgics: 

The late ra l and a ng ular cieviatio ns, ::tll'ay from t he origi na l ci ircctio n fiXC'd b y r and >/I, arc co mpletely 
fixed by tlle four angles r, >/I, r', and >/I' when ob~;('rvi n g in a plane through the r('ceil'c r t hat is pe rpendicular 
to the orig inal direcLion, 'vVe can determine the co mpo ne nts X, Y, x, y of these deviations w ith res pect to n 
coo rdinate s,vste m t he X nnd Y axes of which a re p erpendicular to t Il(' (r, >/I) ray leav in g t he trans m itter, i he 
X axis being s itunted in t he p lane me ntioned under (b), An ele mentary, though t edio us geo metrical analys is, 
s hows t hat t hese components are give n by 

( :26 ) 

respectil'e ly, (! being t he eart h's rad ius andl) t he an gular distance from t he trans mi tter to the J'('ceivel'. These 
latter express io ns only res ult as app roximations if l) , r, ,p, r' and >/I' arc ass umed as small quant ities o f one and 
the same order of m agni t ude, The propagation dis tance covered in forward direction may the ll be take n eq ual 
to a l), 

The p rod ucts drd>/l and dr'd>/l' cons titute solid-anglP d ements of infiniLes im a l pencils of ra,vs leav in g t he 
transmi tte r or reachin g the receive r respec ti ve],I', There fore, in v iew of (26), Lhe probabi lity fo r an (' n e rg~' 

unit to le a ve the transmitte r along a given (r, ,p) di l'eclion and to reac h thc rece iver wit hin a prcscribed dr'd>/l' 
range is give n by 

( :27 ) 

in whi ch 

constitutes the effective area of the receive r for t he rad iation a rriv ing from t he direction (r', >/I' ) . 
The energy leavin g the t r[lns mi Ltcr in a prcscribed range drd>/l furth er amounts to 

The fraction of t.his energy that reaches the receiver wit hin t he other ra nge dr'd>/l' is obtai ned by multiplyi ng, 
t he latte r quantity by (27), The total received energy t hcn results from a n in tegratio n of t his product over 
a ll re levant values of r, >/I, r' and >/I' , whic h leads to the final expression (25), 

The I, I' integrations may be restricted to positive valu es of I and I'; in ff1ct , negative 
values correspond to r ays suffering a reflec tion against the eaJ,th's surface while th e effect of 
such r ays could be included (a t least for far-distance propagation) in the relev an t radi ation 
diagram, The conventional computations referring to the Born approxim f1tion would corr e­
spond to a substitu tion of the expression 

for hz, U(O'.) being H eaviside's unit fun ction (uni ty or zero according as 0'. > 0 or 0'. < 0) , 
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Apart from the difficulties connected with the exact determination of hz, the influence of 
the radiation diagrams will involve new mathematical complications . It is therefore recom­
m endable to r esort to simple r epresentative si tuations. For instance we may consider the 
combination of a very narrow transmitting beam with an isotropic receiver. Under idealized 
conditions this corresponds to 

gr b eing independent of 1; ' and 1/;'. In this special situation the r eceived fi. eld only depends on 
the lateral deviation a (J2 /2 away from the single original propagation direction 1; = 1/; = 0. The 
res'ul ting fi eld is thus completely conditioned by the function hz (X, Y) of (17), and the general 
formula (25) here reduces to 

(28) 

An application of this relation is discussed in the next sections. 

12. Expansion for the Distribution of the Lateral Deviations Only and That of 
the Angular Deviations 

The last example shows the importance of the function hz(X, Y) in tropospheric far-distance 
propagation. According to (17) this function depends on the Laplace tran sform H (p, q) of 
the scattering coefficient cr (x, y). Assuming, once again, axially symmetric scattering, cr merely 
depends on (X2+ y2)1/2 and, consequently, H on (p2+ q2) 1/2• For a very general class of scatter­
ing models the latter dependence is given by an entire function. The corresponding Maclaurin 
expansion can be represented by 

(29) 

in which co= l in view of (19). The introduction of the functionj(s) of one variable enables a 
red uction of (17) to: 

In view of the above mentioned lVIaclaurin series this relation proves to be equivalent 
to the following symbolical representation: 

r ~ f~/o"Yd8f(8) c- } 
Lapl hz (X , Y) = e -Z/dO 1 e dO o/u"Y e"YZ "p'+q' 

~ v=O 

(30) 

E ach power of olav here merely amounts to a multiplication by the same power of Z~p2+q2. 
The transform variables now only occur in the last exponential which, fortunately , can be 

r ecognized as the L aplace transform of an elementary function. In order to show this, we 
start from the relation: 

e)o..,jP'+q' 1 
-== Lapl , 
, /p2+ q2 27ri~X2+y2_ 'A 2 

which holds when the following conditions are fulfilled simultaneously: 

(a) , /X2+ y2_'A2 has to be defined with a positive real part, 
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(b) .Jp2+ q2 has to b e positive imagin ary, 

This r elation can b e checked by introd ucing polm' cOOl'dinates P, cp in the double Laplace integral 
of i ts right-b and sid e. Th e cp integra tion then r edu ces to a zero-order Bessel function . The 
r emaining p integr al constitutes a sp ecial example of Sommerfeld 's in tegral for the wave 
function of a point so urce; this in tegr all'epresen ts the decomposition of this wave function 
into solutions of the wa.ve equation t hat are separated in cylindrical coordinates. 

A differ entia tion of (3 1) wi th r espect to A yields the r elation to b e applied to the last 
expon ential in (3 0) . vVe thus arrive a t the followin g representation for th e fun ction hz i tself : 

Af ter a substi tution of the Macl aurin series for }(s) we m ay work ou t an expansion of the 
exponen tial still occurring wi th r espect to 0/0,,( . vVe only need t he odd powers, the even powers 
vanishing wh en applied to th e subsequen t function of "( . Each odd power of 0/ 0,,( only a fl'ec ts 
a singlc term of the binomial exp ansion of this last fun ction wi th rcspect to "(2Z2/(X2+ y2). 
An elementary, t hough tedious evaluation fin ally r esults in an explw sion of the function hz 
itself which s tarts wi t h: 

(32) 

In special applications, such as given below, t he co nvergence of t his series proves to b e 
s ufficien tly rapid. 

Th e method , applied here, CH.n b e worked out in a similar way for the ang ular deviations, 
starting from (18) instead of (17). The series corresponding to (30) then proves to r ead : 

13. Far-Distance Field in the Case of Norton's Model for Tropospheric 
Scattering 

The derivation of t his field in t he case of a narrow-beam transmitter a nd a widc-anglc receiver is briefl y 
indicated below. 

According to (28) t he received energy is proportional t o hz (X, Y ) = h7 (.y X 2 Y2) taken fo r t he a rgumen ts 

Subst it ut ion into t he exp ans ion (32) y ields t he following dep endence on the linear propagation distance Z: 

+')')5 64 ~.':'.+ CIC, + C2C3 .':'...+ CIC,+C,C3 .':'...+c,C,.':'... + _ Cl_ .':'... ~+ . ' { Z ( ) Z 2 ( , 2 ) Z 3 a Z . .5 Zs} 7 ] 
W W . 3 do 5 6 d5 18.16 dJ 72 d~ 1920 dg Z IO .. 

(33) 
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For c,,;e ° we get a dominating contribution, if 7,>do, which decreases in proportion t o 7,- '. This solu tio n , 
co rrespondin g to multiple scattering, involves a field strength decreasing as 7,- 2. On the contrary, fo r c, = 0, 
t he dom inatin g term of hz decreases as 7,-' , and t he field strength as 7,- 3. A vanishing value of c, occurs for 
t he " modified Besscl model, " originally proposed by Muchmore [Norton and Norton , 1956), which is char · 
acte ri zed by the isotropic autocorrelation fun ction 

C,,( p/ l )= ( p, l ) [( ,( p/ l) . 

This model is in accordance with m any observational data [Norton, 1959), as well as the Villars and Weisskopf 
[1955) theory of turbulent mixing (turbulent blobs with dimensions conditioned by t he ver t ical gradient of the 
refractive index) . In t he small-a ngle approximations, the modified Bessel model can be characterized by t he 
isotropic case (1-' = 1) of the derivation given in appendix 2 of [Norton, 1960]. The scattering function is 
t herefore given by 

( 34) 

The corresponding function f( s) of (29) reads : 

. /(~D 8 ( fUr') ) 
f ( s) = e',,\ 2 1- i-y-t- s . ( 3.'> ) 

This can be proved by puttin g (34) in the form: 

2B3/2 02 1 
oo(x, y)= 7rdo OB 2 (X2 + y2+ B )1 /2 

for B = (lJ i) / 2, 

and by apply ing (31) t hereafter in order to obtain t he two-dimension al Laplace transform . 
The M acla urin exp a nsion of (35) y ields t he coefficients Ci. Their s ubstit ution into (33) res ults in 

( alJ2 ) _ 6a5(lJi)3 /2 J ~ (lJ i) a2 ( _~~) }. 
hao 2 ' 0 - r.c r. II + 3 d Z 1 5 Z + ... 

7r -V 2duZ' 0 ~ 

For the transmitter and receiver here considered the decrease of the energy proves to be pro­
portional to Z -6 in the plural-scattering range (d> > do); this corresponds to a field decrease 
proportional to Z-3. 

14. Final Remarks 

The conventional theories for volume scattering in random continuous media only consider 
single scatterings (Born approximation). However, multiple-scattering effects may become 
relevant under special circumstances, as shown by Bugnolo [1960] and Ament [1960] for far­
distance tropospheric radio propagation. It is therefore suggested to introduce in that case 
first of all a phenomenological theory taking account of the n.diation diagrams of the transmitter 
and the receiver , without specifying the number of scatterings. Such a theory may start from a 
joint probability density for the lateral and angular deviations suffered by an energy unit 
which would travel along a rectilinear path in the absence or the random fluctuations of the 
medium properties. This probability density hz has to satisfy an integral equation, the "trans­
port equation"; it reduces to a much simpler second-order differential equation of the Fokker­
Planck type provided that very special approximations are justified. The general integral 
equation depends on the scattering coefficient introduced in the theories dealing with single 
scattering. The latter equation can be solved rigorously with the aid of Laplace transforms, 
the solution including the contributions associated with all orders of scattering. These con­
tributions can be identified individually by a proper expansion of the solution. The Born 
approximation fits in this general theory by taking a proper function for hz . 

The application of the general theory to the modified Bessel scattering model, which agrees 
with the Villars and Weisskopf turbulence theory, leads to a de'crease of the far-distance field 
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in the multiple-scattering l'fwge which is proportional to the inverse third power of the distance. 
This result is quite differen t from the exponential decrease conditioned by the Fokker-Planck 
a pproximation, or also from th e corresponding decrease associated with exponential models 
(i nstead or the algebraic mod el o[ Norton) for the autocorrelation function fixing the scattering 
function rJ. The above shows Lhat Lh e complete transport equation has to be applied in Lropo­
spheric propagatio n t heori es in ord er to get reliable results for the nonexponential autocorrela­
tion functions confirm ed by empiri cal da,ta,. 

The author acknowledges his contact with Dr. A. E. Goertz (CRPL Labora tory, Boulder, 
USA) who directed in particular his attention to the comprehensive literature on the subject. 

Eindhoven , October 31st, 1963 
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