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The disturbances produced by a slightly inhomogeneous random medium on a passing
wave can be classified into contributions depending on an increasing number of successive
scatterings. The individual contributions appear in an expansion of the solution of an in-
tegral equation. The first term, the Born approximation, only accounts for a single scat-
tering. Convenient expressions for this approximation result from a saddle point treatment for
short distances, and from a Fraunhofer approximation for larger distances. The evaluation
of the higher-order contributions, describing plural-scattering effects, leads to mathemat-
ical difficulties which are evaded by considering the scattering mechanism as a Markovian
process. The corresponding theory can be developed with the aid of an integro-differen-
tial diffusion equation; the latter refers to the joint probability density of the lateral and
angular deviations suffered by the trajectory of the passing wave. The equation in question
can be solved with the aid of four-dimensional operational calculus; it reduces to the simple
differential equation of Fokker-Planck under special conditions. The application of the gen-
eral equation to tropospheric point-to-point radio communication is worked out. It is shown
that the far-distance field, associated in this case with multiple scattering, does decrease
proportionally to the second or third power of the inverse distance.

1. Introduction

By volume scattering we understand the property that each volume-element of a slightly
inhomogeneous medium does deviate a fraction of the energy of any incident radiation from its
original propagation direction. In its simplest form such scattering is described by a scalar
wave equation with a term consisting of the product of the wave function and the fluctuating
component of the refractive index. By solving this equation while treating this term as if it
were known we obtain an integral equation. The successive terms of the Neumann expansion
of its solution represent the primary field (corresponding to a medium without a random com-
ponent of the refractive index), the contribution due to a single scattering, that produced by
two successive scatterings, three successive scatterings, and so on.

Most attention has been paid to the single-scattering contribution which is known as the
Born approximation. Convenient expressions can be deduced from its rigorous representation,
either by applying a saddlepoint method, or by taking account of the dimensions of the relevant
coherently scattering parts ol space (‘‘blobs”) which are small compared to their distances to
the transmitter and the receiver. The saddlepoint method involves geometric-optical approxi-
mations for the distortions of the wave fronts which would leave the transmitter undisturbed
in a nonfluctuating medium. The other method (Fraunhofer approximation) leads to the
distribution of the scattered energy over the various directions around the original propagation
direction. In either method the correlation between the field strengths observed at two
different (or identical) places at two different (or identical) moments can be derived from a
corresponding correlation function for the random fluctuations of the refractive index.

Mathematical difficulties till now prevented a similar treatment of the higher-order
scattering contributions. Therefore, the successive scatterings have simply been assumed as
completely independent of each other, which is certainly justified if they do not take place too
close to each other. This Markovian scattering process can be described with the aid of a joint
probability density A, which combines the chances for special, both lateral and angular, devia-
tions away [rom the rectilinear propagation path covered in the case of a homogeneous medium.
This probability density satisfies a transport or diffusion equation which can be solved rigorously
if the equation is first simplified in view of the assumption of small final angular deviations.
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The equation in question reduces to a second-order Fokker-Planck equation if terms depending
on the average fourth, sixth, etc., power of the angular deviations (connected with a single
scattering) may be neglected.

The probability density A, being known, it is possible to compute the field strength for
tropospheric radio propagation if the radiation diagrams of both the transmitter and the
receiver are given. The explicit evaluation is difficult but approximations for large distances,
which include the effects of scatterings of any order, can be worked out for special models, for
instance for Norton’s modified Bessel model. Such calculations show the insufficiency of the
corresponding expressions derived from the above-mentioned Fokker Planck equation.

The various items indicated here are discussed in more detail in the subsequent sections.

2. Integral Equation of a Slightly Inhomogeneous Medium

The elimination of the magnetic field from Maxwell’s equations for a medium with a die-
lectric constant

6:60+6€(x} Y, Z)

leads for time harmonic solutions proportional to e~“* to the equation:

VQE—I—V(V Ine- E) +w2per:0.

The gradient term can be neglected provided that the changes of de¢/e, are small over one wave-
length. The equation can then be put in the following form, for each component of £:

V2E 4 wugeod = — w?ugde .

By treating this wave equation as if the right-hand side were a known function, we get the
following ‘‘solution”
\/[.LDQOQP

E(P)=Ep(P)+52 [arpe QEQ 55— 0

which, as a matter of fact, constitutes a scalar integral equation for each component of the
unknown wave function E(P) The integration extends over all volume-elements dr, of
the space containing de fluctuations. The term F,,(P) represents the primary field, that is
the solution in the absence of the random component de; QP is the distance from the integra-
tion point ¢ to the point of observation P (receiving antenna).

The Neumann Liouville expansion of the solution of (1) starts with

E(P)=Ep(P)+ 52 [ trpe QB (@ “

+(42) [ are@ [[drase@ En@) S gp + -
=E,.(P)+E®(P)+E®(P)+ .. ., say. (ko= po€0) - 2)

The second term represents the contribution due to single scatterings and constitutes the Born
approximation for the total scattered field. The third term @ (P) is recognized as the effect
of two successive scatterings at two volume-elements dr, and drq ; the fourth term likewise
represents the contribution of third-order scatterings, and so on. Most literature only con-
cerns the Born approximation.

3. Statistical Properties of the Born Approximation

The random character of the fluctuations in slightly inhomogeneous media suggests to
introduce statistical quantities right at the beginning, thus applying methods labelled as
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“dishonest”” in Keller’s paper [Keller, 1962] on the subject. The statistical properties concern,
e.g., the average field strength and the correlation between the fields observed at two neighbor-
ing points P; and Ps, possibly at different moments ¢; and t,. These properties can be derived

from the quantity
(EO (P, t) EV"(Py, 1))

for which we obtain, in view of the above expression for £V,

(%g)ZdeQlEpr(Ql) (;;P deQZ)E,,T(Qz) 0 P (56(@1, t)6e(Qs, 1)). (3)

A further evaluation needs an explicit statistical assumption concerning the average of
the product of the dielectric-constant fluctuations at two different places. It is customary
to introduce here the hypothesis of ‘“‘homogeneous turbulence” according to which this average
only depends on the relative positions of ¢, and (., and the time difference #,—t,.. Neglecting
further the time variations this amounts analytically to a dependence on the differences of the
coordinates of ¢, and (), or on the vector @@ The homogeneous turbulence can then be
fixed completely with the aid of the following normalized autocorrelation function:

(0e(Q)oe(Q))
@) )

We next assume a primary field due to a point source at 7', and normalized according to the
formula

e (@1@2) =

zx(,m
rpr(Q T J (5)

The substitution of (4) and (5) into (3) yields:
EO(PYE®*(P,))— w’lo 26 Y W) ! ¢ (Pt F1~ 9" daPD O, (00 6
EOPYE P)—(42) 66) [dra, [ dre, oo p om0 gop, (e @@ ©)

This expression with a double integration over the entire randomly fluctuating medium is basic
for all investigations starting from the Born approximation.

4. A Saddlepoint Method Applied to the Born Approximation

Saddlepoint approximations are always applicable for frequencies which are sufficiently
high. Its application to the Born approximation £ (P) as defined by (2) amounts to replacing
the integration point ¢ in the denominator by its projection " on the line 7P connecting the
point source with the point of observation, and to expanding the exponential up to second-
order terms with respect to the coordinates y, and z,; the  and z-axes are here assumed as
perpendicular to the line TP constituting the z-axis. We then obtain, also using (5),

E® (P)u__

;é”(&m—}p) (vi+22)
"‘OTPfd‘rQae 2
QT-QP
We pass from the dielectric constant e,+de to the corresponding expression
n’=¢e/eg=1-+20n

for the refractive index n, so as to have de=2¢0n. A substitution of the Taylor expansion
(up to second-order terms) for én, as a function of Y, and Z, then leads to a result derived
[Bremmer, 1958], which can be interpreted by a phase shift

sp=F, f . dzgon(Q’), (M)
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and a relative change of the amplitude given by:

s 1 QT QP o%n , %\
T f d Lo ay 622 by (8)

The phase correction is quite obvious in view of the fluctuations of the refractive index
n. The amplitude change points to a lens effect. In fact, the regions with a negative or posi-
tive value of (9%/0y*-+0?/0z%)én cause a small increase or decrease of the field which is equiva-
lent to a focusing or a defocusing.

It is also possible to derive statistical averages for these geometric-optical quantities
when assuming homogeneous turbulence. For instance, the variance (6¢? of the phase
fluctuations at a special point, or the correlation between these fluctuations at two different
points are obtained from a double integral consisting of the product of two expressions (7),
substituting the autocorrelation function corresponding to (4) for the refractive-index fluctua-
tions. This autocorrelation function may be represented by

—_— Xo.—2,
Cs, (Q1Qs) = ym(%)

in which we introduce the scale of turbulence / in order to get a function of a dimensionless
parameter. The variance in question then becomes as follows at a point at a distance TP=d
from the point source, provided that d )) I:

(66%) =202 (5 1d ﬁ " WOn(y)=8d/d,  say. )

A similar computation, starting from (8) and to published elsewhere, leads to the following
corresponding expression for the variance of the amplitude fluctuations:

/(34V CE_C®) V. gy (s @
\< )= 15f { 3 }(l&(an)p. (10)

Variances of other geometric-optical quantities, such as angular deviations from ray tra-
jectories which are rectilinear in the absence of the random fluctuations, can be computed in a
similar way. We refer in particular to the investigation [Muchmore and Wheelon, 1955]
and to a discussion of the wave-front disturbances caused by turbulent random fluctuations
[Bremmer, 1963].

5. Fraunhofer Approximations of the Born Approximation

The limited range of noticeable coherence of the de-fluctuations involves a splitting up of
the integral of (6) into terms comprising a double integration over individual incoherently
scattering volume elements. These elements or “‘blobs” may have dimensions of the order
of the parameter / introduced above in the autocorrelation function Cj,.

In the application to far-distance tropospheric propagation the effective blobs are situ-
ated in a rather small part of space situated simultaneously above the tangenting plane to the
earth (horizon plane) through the transmitter, and above that through the receiver. The re-
sulting conventional theory is summarized below, emphasizing the influence of the finiteness
of the blob dimensions.

The size of the blobs being small compared to the distances ;7' Q:7, Q1 P;, Q:P; from their inner points to
the transmitter and the points of observation, it is justified to replace these inner points by a fixed central
point @, of the blob in question when considering the denominator in (6). Moreover, these distances may be
approximated in the exponential by expressions which are linear with respect to the coordinates of ¢; and @,

(the origin being at ), that is the components of two vectors 7 and :;2. We further introduce new mixed
coordinates (components of two vectors £ and 5) according to:
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N T

E=x+x1, n=02—21.

In the case of spherical blobs of radius /2 around their central point @, the splitting of (6) into contribu-
tions over the various blobs then can finally be represented by:

2 iko(P1Qo—P2Q0) o < A A ’
(BO(P) B (Py)) =)’ “)Z b or, | 0| mendiie, (1) (11)

12872 TQi - QP - Q0P2
fn:FEl<L

Here we have introduced two other new vectors V and W defined by:

N &
W= (quP2 uQ,p,);
= a ~

T e
W =CO0s 2 ub—ume,

where UQuP, marks a unit vector in the direction of QoP,, the other unit vectors being defined likewise; b repre-
sents the bissectrix of the angle ¢ = ?1QyPs.

The special case Py = /% leads at once to the differential scattering cross section ¢ which represents the
energy scattered by a unit scattering volume into a unit infinitesimal solid angle along the direction Q,7°, for
a unit energy-current density of the incident radiation. This definition proves to be equivalent with that used
later on (see see. 7). The former definition implies the following value for the total scattering cross section
connected with the N incoherently scattering blobs contained in a unit volume-element:

o= N TQ; QuPHEY(P) EV*(P))y;

the index (1) here refers to the contribution connected with a single blob. IHence, in view of (11),

N (w2u,)2(5€2) T (i A v 7;
:ﬁng— X I dEJ‘dm’ koCugc u.)’l(/h <Z>,

[nF¢| <L

in which the new unit vectors are directed along the scattered and the incident radiation (along Q,/2 and 7'Q,),
respectively. N

The integral over ¢ amounts to the volume of the common space of two spheres with radius L. and centers
separated by a distance 2}?\. This common space only exists if ]%;|<ll. The blobs (the spherical form of
which has only been assumed in order to show the influence of the blob sizes in general) may be considered as
adjacent so as to have N={(4/3)xL?*|~'. This factor disappears when substituting the mentioned volume for

the ? integral. We thus arrive at:

(w?u0)?(be2) . 3n ] 7|
o= oge f""e““ ”"Cﬂf()<1 zz zﬁ)'

}nJ<L

The last factor of the integrand points to an influence of the blob dimensions which is not accounted for
by the autocorrelation function. It turns out that the effect of these dimensions L can only be neglected if 1
(being of the order of the scale of turbulence I) exceeds the maximal relevant value of |7|. In view of the
oscillating character of the other exponential factor this maximum is of the order of

= =
21r{kc|usc—u,~|} =27 <2k0 sin g) )

9 being the ‘“‘scattering angle’” between the propagation directions 7'Q, of the incident radiation and Q,F of
the scattered energy. This angle being small in practice, we arrive at the condition >2x(ky)~?, or 9 >\/I,
in order that the blob-size effect may be neglected. This inequality characterizes the region beyond that of
the predominant forward scattering, that is the region of most interest for propagation up to distances well
beyond the horizon of the transmitter. In this latter region it is also justified to extend the = integration up
to infinity. The conventional formula for the scattering coeflicient, viz,

=

2 2 2 =S - AN
=(—°°f§—>8$i> f dne"k“uu—"ﬁvcsi(%), (12)

0<Trl< e

then results; it refers to scattering angles included by the unit vectors uic and w.
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The relation between this expression and the power spectrum P(&) of the random fluctuations, to be defined
with the aid of the three-dimensional Fourier transform of the spatial distribution of these fluctuations is well
known. If P(w) is normalized such as to obtain the unit constant when integrated (over all real values of
wi, we, and w3), we find

o =17 () (3€) P ho(thag— s} }.

We next consider the correlation, according to the Fraunhofer approximation, between the fields at two
neighboring points P; and P,. In view of the short distance of these points in practice, the 7; integral in (11)
is hardly changed from its value for the previous case in which the angle ¢ vanished. However, tlur'{int(-gration
becomes more complicated, the vector ¥ now being different from zero. Its evaluation indicates noticeable
correlation between the fields at P; and P, up to distances for which the angle ¢ = P,QoF> becomes of the order
Al. In particular, the correlation is well established between points situated on one and the same line through
the scattering source @, and least in directions perpendicular to such a line.

6. Scattering Considered as a Markovian Process

Statistical properties could in principle be derived for the higher-order scattering contribu-
tions in a similar way as indicated for the Born approximation referring to first-order scatterings.
The results would depend on the averages < de(()) de(@:) . . . de(@,) > of multifold products.
The corresponding final expressions holding for the combination of all terms of the Neumann
expansion (2) would become extremely complicated though progress in this direction has been
obtained [Hoffman, 1959, and Furutsu, 1963]. The difficulties here arising can be avoided
when the successive scattering contributions, represented by the various terms of (2), may be
considered as independent of each other. The Markovian character of the scattering mecha-
nism, then to be assumed, may be made plausible as follows.

A narrow pencil of rays leaving some point source only produces a noticeable scattered
field after it has covered some minimal distance. The order of magnitude of the latter can be
estimated by investigating the scattered field produced by an antenna which radiates isotrop-
ically, as given by (5), into an infinite random medium without boundaries. In the case of
homogeneous turbulence the variance of this field follows rigorously from (6) by taking P,=P,,
the integrations extending over the entire space. Its computation has been worked out in
[Fannin, 1956] assuming an isotropic auto-correlation function <8e(Q:) de((:) > of gaussian
form with respect to the distance ¢);¢)»; this function could also account for an anisotropy caused
by wind effects. Fannin’s main result (for zero wind velocity) can be interpreted thus that
the variance of £@, divided by the squared primary field, does increase in proportion to d°/
(dod..?) up to distances of the order of d,,, while tending to a limiting value of the order of d/do
[see (8)] for d>d.,; the critical distance d.,,=/[*/\ is introduced here as a function of the scale
of turbulence / and the wavelength A. The increase of the variance for small distances shows
that the scattered field only becomes appreciable when the radiation has traveled over a distance
of the order of dy/® d2/® if this quantity proves to be smaller than d,,, that is if dy<ld.,. This
latter very general result proves to be independent of the special correlation-function model
chosen by Fannin, as can be shown with the aid of (10).

The importance of the dimensionless parameter d/d,,—dM/{?, here becoming obvious, can
be understood as follows. Forward scattering is mainly restricted to a cone of angular devia-
tions (around the undisturbed propagation direction) which are not larger than )\/l. An
originally sharp ray having traveled over a distance ¢ in a random medium is therefore broadened
to a beam with a cross section having a dimension of the order of d\/l. This cross dimension
just equals the size of a turbulent blob if d\/l=[, thatisif d=d.,.. Therefore, if d>d.,, the
radiation due to the scattering will have traversed, on the average, at least one blob. Also,
d/d., constitutes a measure of the number of blobs passed after traveling over a distance d in
the forward direction. The geometric optical approximations of section 4 refer to small values

of d/d.,.
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In view of the above remarks individual scatterings take place, on the average, once along
each section of alength of the order of &)/* d2/? it dy<d,,, but of dyif d,>d,,. Hence the scattering
angles associated with the successive individual scatterings may be considered as independent
of each other if the correlation between the refractive-index fluctuations at the end of such a
section proves to be negligible. This leads to the condition dy'? d.*? > if d<d,,, and d, > if
d>d.,. Itistherefore always sufficient to have d, >{il A<l (a condition satisfied for forward scatter-
ing in order that the scattering angles connected with the nth and (n—1)st scattering should
be statistically independent. The angular spread caused by the nth scattering then only de-
pends on the propagation direction obtained after the (n—1)st scattering, and not on those
obtained after the preceding scatterings. This makes plausible the Markovian character of
tropospheric multiple scattering (when occurring at all).

7. Equations Characterizing Markovian Small-Angle Scattering

Physical phenomena associated with scattering generally depend on both angular and
lateral deviations suffered by the energy bent aside by the irregularities of the medium. This
suggests to introduce a joint probability density £, fixing the distributions of both types of
deviations. Let us consider an energy unit (or a particle in the case of scattering of a stream
of incident electrons or atomic particles by other particles having random positions in the
medium traversed) which leaves an origin 0 in the Z-direction along a path which would be
rectilinear in the absence of scattering irregularities. We then define the function A, such that
hz (X, Y, x, y) dXdYdzdy constitutes the probability for the unit in question to pass the special
plane Z=constant through a prescribed surface element ¢.Xd) while traveling there in a direc-
tion comprised in an infinitestimal cone, likewise prescribed. This cone subtends a solid-angle
element dx dy if x and y are direction cosines with respect to the X and } axes (both perpen-
dicular to the Z-axis). The transport equation concerns the change of the function £y along a
line element ds= (dX*+dY?+4dZ?)*.

Our analysis will be confined to forward scattering which implies that all relevant angular
deviations (with respect to the Z-axis) may be considered as small. The limiting case of iso-
tropic Rayleigh scattering is then excluded. The theory dealing with scattering angles of any
magnitude usually resort at once to expansions in terms of Legendre functions, as discussed,
e.g., [Lewis, 1950].

In the small-angle case the angle between two directions fixed by the cosines (z1, 1) and (z, 1) can be
approximated by
I~ sin I~ | (x1—x2)2+ (y1— 12) 2} 4.

Moreover, all direction cosines with respect to the Z-axis may be replaced by unity.

The small-angle approximations involve a considerable simplification. As an example of its significance
we first consider the equation which expresses the property that scattering over a distance 7 can be split into
a pair of completely independent scatterings along any two subsections Z—7; and 7, such in view of the
Markovian hypothesis. The number of units passing the plane at a distance 7 —Z; from 0, with lateral devia-
tions &, 7, and angular deviations wu, v, is determined by the quantity hz-z, (¢, n, u, »). A fraction of these units
will arrive, after traveling over a further forward distance Z,, within a prescribed range dXdYdzdy of lateral
and angular deviations at the Z plane. During its propagation over Z; this fraction suffers a total lateral
deviation

HX— 73 u— 92+ (Y —Zs v—n)?)3s

relative to the rectilinear path covered if it would have continued in the direction (u, ») up to the plane at the
distance Z; in fact, along this latter path it would have arrived there at a point with coordinates Ziu- &,
Zw~+n, Z. The corresponding angular deviation amounts to {(z—u)2+ (y—0)?}2%. In view of the axially
symmetric character of the scattering, assumed throughout, the probability for these latter deviations would
be the same as that in the case of lateral displacements X —Zu—¢ and Y—Z,v—n in the X and Y directiong
respectively, combined with angular displacements corresponding to a diviation away from the Z-axis into a
direction with cosines z—wu and y—v. Hence the probability for arriving within the range dXdYdzdy at the
7 plane, after having passed the Z— 7, plane in the range d dn dudv, can be represented by

hz (X —Zwu—& Y—Zw—n, x—u, y—v) dX dY dzx dy.
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An integration over all possible situations in the (Z— Z,) plane, while taking account of the probability density
hz-z,(¢. m, u, v) for each of these situations, leads to the desired equation, viz,

hz(X,Y,x, y)szff didndudv hz—z (&, m,u, v)hzl(X—.E*Zlu, Y—n—Zw,x—u, y—v). (13)

The integration over the direction cosines has been extended here up to infinity. This is allowed since the
integrand will already be negligibly small near the limiting values -1 of the direction cosines with respect to
the X and Y axis, which would correspond to very large angular deviations. Therefore, the integrations can
just as well be continued over the complex directions fixed by cosines beyond these limiting values. Such
infinite integration limits will be used throughout in our further analysis when the integration should comprise
all real propagation directions.

Any equation characterizing a special scattering medium should depend on its differential
scattering cross section o(+va2+12), o dZ dx dy constituting the probability for first-order
scattering, during propagation over a forward distance dZ, into an infinitesimal range of direc-
tions (fixed by the cosines z and y) around a central axis in the Z direction. In view of the axial
symmetry ¢ only depends on the small angle (22412 of this direction with the Z axis, but it
proves to be convenient to define also a function o(z, y) of two variables connected with that
of one variable according to

a(x, ¥) = ({24,

The final equation completely fixing all scattering phenomena can then be represented by

dhy (0, 0 O\, vy SR PR 7 6 SE N7}
ds 7<IO‘Y+UO),+DZ hz(ﬁ,),x,y)—.[fdf(]n U(E; ﬂ)h/z@\;) , L 5,?/ 77) (10

(14)

The first two members of this special case of Boltzmann’s transport equation determine
the change of &, along the line element ds, the coefficient in front of 0/d, being unity in view of
the small-angle assumption. The integral term represents the energy units that arrive at
the plane Z=constant at prescribed points (X, ), traveling in directions prescribed by cosines
z—& and y—n, and which are scattered near this plane into the direction fixed by the cosines
z and y under consideration. The last term of (14) represents the loss due to the chance
a(x, y)dadyds for the units traveling along ds to be scattered aside into a new direction making
an angle (2*-+9%* with the original direction. Extending the integrations up to infinity, the
total amount of these losses becomes

(Isfftlxdy a(x,y):%’ say. (15)
D 0

Working out the integrations with the aid of (12), the quantity d, defined here proves to
be the same as that entering in the relation (8) for the varianceof the phase fluctuations. Accord-
ing to (15) d, represents the distance along which any energy unit becomes a chance 1:1 for
being scattered aside completely. Therefore, this distance has been termed ‘“‘mean free path
for scattering.” All terms of the transport equation (14) have thus been made clear.

8. Solution of the Transport Equation in Terms of Laplace Transforms

The integral term in the transport equation (14) constitutes a convolution product.
This special form, which can only be obtained in the small-angle approximation, enables the
solving of the equation with the aid of Laplace transforms; this has been worked out [Snyder
and Scott, 1949] for the projection of the scattering paths on a plane through the Z-axis. In
a completely four-dimensional treatment the transform in question may be defined by
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Lopl 55(X, Y, z, 1) - f f f f AXAY dady hy(X, Y , @, y) e~ #X-u¥=si=a.

Above we introduced the function 4. by considering a unit element leaving the origin
along the Z-axis. This implies the boundary condition h.=6(X)s(Y)dé(x)o(y) at Z=0. The
Laplace transform of the solution satisfying this condition proves to be given (in so far as
existing for special values of py, ¢1, 12, ¢2) by:

fZ/du
Lapl h, (X, Y, x,y) = e %% °

d;H (dyp1J+py, dya1i+ay)
)

(16)

as shown [Bremmer, 1963]. The function /(p,q) is defined here as the two-dimensional
Laplace transform of o(z,7). The function (16) also satisfies the Laplace transform of (13), as
it should.

The general solution obtained here contains as special cases the distribution functions
connected with the lateral deviations only, or with the angular deviations only. The former,
hz(X,Y) say, results after integrating (XX, Y, x,y) over all possible values — o < u,y< = of the
direction cosines x and 7. This integration corresponds to taking p,=¢.=0 in the four-dimen-
sional general Laplace transform. We thus arrive at the following Laplace transform for this
funetion of two variables only:

o[ 7 dujttaops, donp

Lapl hy(X, V) —e—"og 9° . (17)

The corresponding two-dimensional Laplace transform for the distribution function
hz(z,y) of the angular deviations is obtained by substituting pi=¢;=0 in (16). The final
result reads:

Lapl h;(x,y)=eZU® 0 —1/d} 18
1 Y

An integral expression equivalent to this relation has been derived in [Moliére, 1948].

9. Poisson Distribution Connected With Multiple Scattering

The function /4, includes the scattering contributions of any order. Each individual
scattering being associated with the scattering coefficient o, the contribution of all scatterings
of nth order can be recognized by the occurrence of n factors o. The role of this funection is
taken over by that of /1 in the Laplace transforms. Hence the expansion with respect to /7
of any result expressed in these transforms will show the distribution over the contributions
connected with specific numbers of scatterings.

As an example we consider all energy units that have passed through a plane Z=constant. The units
applied in the definition of hz represent probabilities, hence their total number should equal unity. This
total number is obtained, e.g., by integrating hz(z, y) over all values — o <z, y< . The result equals the
two-dimensional Laplace transform of o(z, ) at p=¢=0. Hence we should have

1= [ [ andyhate, y) =1 Lapl ez, 1)1 -
or, in view of (18),

1= eZ{HO, 0—1/d)) — g—Z/dp i w
= n!

The nth term then constitutes the fraction of units that has suffered n successive scatterings. Moreover,
H(0,0)=1/ds (19)
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holds in view of the definition of dy,. The probability P(n) for n scatterings during forward propagation
over a distance Z can therefore be represented by

P(n)=e %/ (7/(]11)"

(20)

This Poisson distribution here directly results as a consequence of the assumption of a Markovian scatter-
ing mechanism. Equivalent derivations have been given by Dexter and Beeman [1949] and Fejer [1953].

10. Fokker-Planck Equation as an Approximation of the General Transport
Equation

The influence of the medium under consideration on the transport equation (14) results
from the occurrence of the function o(¢, 7). However, the equation only proves to depend on
the discrete set of parameters:

@ [w fdrdz/ oz, y) @*+y*)"
22 f dp o (p) "I ="=0 =(91"), say, (21)
B [ fdrdy o (z,1)

which constitute the averages of the even powers of the scattering angles ,=(z*-+7?'? con-
nected with a single scattering. In fact, a Taylor expansion of the integral term in (14), as
worked out by Bremmer [1964], leads to the following alternative representation of the trans-
port equation:

----- .o 5 S (b e
( a\’+J aY+a7> ha(X, Y, 2,9)= do ,,_14"(11' 07/ ha(X, ¥, ,9). 22

This equation suggests to consider the approximation obtained by restricting the right-
hand side to its first term the significance of which has been discussed by Middleton [1960].
The approximation in question leads to a diffusion equation of the Fokker-Planck type, viz,

o7 0? 4d,
(ﬁ YT A e aY“ aY+M al
Such an equation has been applied to particle scattering as early as 1929 [Bothe, 1929], at
least insofar as the angular deviations are concerned.

The exact solution satisfying this F. P. equation and also the previous boundary condition, that is &,
=6(X)o(Y)d(x)o(y) for Z=0, reads as follows:

12d, z2
2d3 S e Nl Z Sy S (e 2)

(ha(X, ¥,2,9) Jer = g ¢~ Top | 3 : (23)
07

This expression is equivalent to a similar one derived [Rossi and Greisen, 1941] for scattering by particles.
Obviously, its applicability requires sufficiently small values of the higher-order moments (%), (9), and so
on. For the sake of completeness we also mention the corresponding probability densities for the lateral
and angular deviations only:

3d,
(X24Y2)
hz(X W= 3d>0236 <!91>Z3 ’
l
. 1 = (13+y°>
hz(x,y)=7r<;g>z e (5 >7 (24)
1

We infer an increase of the average lateral deviations which is roughly in proportion with Z¥2, and of
the angular deviations with Z1/2,
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11. Evaluation of Scattered Fields for Special Antenna Systems

Tropospheric radio propagation depends, among other things, on the radiation diagrams
of the transmitter and the receiver. That of the former may be given by the gain ¢..(¢, ¢) as
a function of two independent angles fixing the directions of the rays leaving the transmitter.
We shall define { as the angle between such a ray and the local horizontal plane through the
transmitter, and ¢ as the angle between (a) the vertical plane through the ray in question,
and (b) the other plane through the transmitter, the receiver and the center of the earth.
The radiation diagram of the receiver can be fixed by the gain ¢,.(¢’, ¢/) of the latter for radi-
ations reaching it along directions fixed by two other angles ¢’ and ¢’; these angles may con-
veniently be defined in an identical way with respect to the receiver. The analysis sketched
below leads to the following ratio of the received and transmitted energies:

D 2
]I)W—C: )\ 5 f(lg'd\,bg”(g“, ) f(z’g“’(h//’_(/ree(g”,W)-haf){aﬁ <?—9+’Y>; ady, d+c+ vy \>. (25)
T _ 2 )

The lateral and angular deviations, away from the original direction fixed by ¢ and y¢, are completely
fixed by the four angles ¢, ¢, ¢/, and ¢’ when observing in a plane through the receiver that is perpendicular
to the original direction. We can determine the components X, Y, x, y of these deviations with respect to a
coordinate system the X and Y axes of which are perpendicular to the (¢, ¢) ray leaving the transmitter, the
X axis being situated in the plane mentioned under (b). An elementary, though tedious geometrical analysis,
shows that these components are given by

@ (545 ) avy, o+e+5% v+v, (26)

respectively, a being the earth’s radius and ¢ the angular distance from the transmitter to the receiver. These
latter expressions only result as approximations if @, ¢, ¢, {’ and ¢/ are assumed as small quantities of one and
the same order of magnitude. The propagation distance covered in forward direction may then be taken equal
to a 4.

The products di¢dy and d{’dy’ constitute solid-angle elements of infinitesimal pencils of rays leaving the
transmitter or reaching the receiver respectively. Therefore, in view of (26), the probability for an energy
unit to leave the transmitter along a given (¢, ¢) direction and to reach the receiver within a preseribed d{’dy’
range is given by

—~
o
~1

~—

ha -{(u‘l <';)—|—g'> ady, S+ ¢+, vty ][ Arec(¢7, ¥)dE dy

in which
)\ZZ
Aree($'5 V) =7 grec($', ¥')
4
constitutes the effective area of the receiver for the radiation arriving from the direction (¢, ¢/).
The energy leaving the transmitter in a preseribed range d¢dy further amounts to

L¢d
Pt‘r%"égtr(yy v):

™

The fraction of this energy that reaches the receiver within the other range d¢’dy’ is obtained by multiplying
the latter quantity by (27). The total received energy then results from an integration of this product over
all relevant values of ¢, ¢, ¢/ and ¢/, which leads to the final expression (25).

The ¢, ¢’ integrations may be restricted to positive values of { and {’; in fact, negative
values correspond to rays suffering a reflection against the earth’s surface while the effect of
such rays could be included (at least for far-distance propagation) in the relevant radiation
diagram. The conventional computations referring to the Born approximation would corre-
spond to a substitution of the expression

hy)=e~%"g (z, )8 (Y —yX)U <§>

for hz, U («) being Heaviside’s unit function (unity or zero according as a >0 or «< 0).
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Apart from the difficulties connected with the exact determination of hy, the influence of
the radiation diagrams will involve new mathematical complications. It is therefore recom-
mendable to resort to simple representative situations. For instance we may consider the
combination of a very narrow transmitting beam with an isotropic receiver. Under idealized
conditions this corresponds to

Gu=4m8()8(Y); Gree=0r,
g, being independent of ¢ and ¢’. In this special situation the received field only depends on
the lateral deviation a 6*/2 away from the single original propagation direction {=y¢=0. The

resulting field is thus completely conditioned by the function A,(X,Y) of (17), and the general
formula (25) here reduces to

P ad? .
Lo X b (25 0) 28)

An application of this relation is discussed in the next sections.

12. Expansion for the Distribution of the Lateral Deviations Only and That of
the Angular Deviations

The last example shows the importance of the function A,(X,Y) in tropospheric far-distance
propagation. According to (17) this function depends on the Laplace transform H(p, q¢) of
the scattering coefficient o(z, 7). Assuming, once again, axially symmetric scattering, ¢ merely
depends on (2*+7?)'? and, consequently, H on (p* —Hf)”z For a very general class of scatter-
ing models the latter dependence is given by an entire function. The corresponding Maclaurin
expansion can be represented by

H(p, q)= f6p+e Oﬂ) o Ocn(xp +¢9)", (29)

in which ¢;=1 in view of (19). The introduction of the function f(s) of one variable enables a
reduction of (17) to:

f7\ 1ﬂ+r1-d e

0

Lapl by (X, V) =e~% ¢ “VPFE

In view of the above mentioned Maclaurin series this relation proves to be equivalent
to the following symbolical representation:
/Ovdsf(s)
Lapl by (X, Y)=¢=Zdod e %  ofoy gr2Vpite: . (30)

|8 rv=0

Each power of 9/0v here merely amounts to a multiplication by the same power of Z+p*+¢*
The transform variables now only occur in the last exponential which, fortunately, can be
recognized as the Laplace transform of an elementary function. In order to show this, we
start from the relation:
AVDEE 1
%: e ——————— (31)
Vprtg 2ri a2+ — N2
which holds when the following conditions are fulfilled simultaneously:
(a) vz2-+y*—\? has to be defined with a positive real part,
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(b) vp?+¢? has to be positive imaginary,
(¢) ImA>0.

This relation can be checked by introducing polar coordinates p, ¢ in the double Laplace integral
of its right-hand side. The ¢ integration then reduces to a zero-order Bessel function. The
remaining p integral constitutes a special example of Sommerfeld’s integral for the wave
function of a point source; this integral represents the decomposition of this wave function
into solutions of the wave equation that are separated in cylindrical coordinates.

A differentiation of (31) with respect to \ yields the relation to be applied to the last
exponential in (30). We thus arrive at the following representation for the function A, itself:

527 asrto

- Z do{ -1 0%
h X, Y=— ¢ oy e .
Z< 211 (‘\z_'_) 3_73/_ 3/2 bty

After a substitution of the Maclaurin series for f(s) we may work out an expansion of the
exponential still occurring with respect to 0/0y.  We only need the odd powers, the even powers
vanishing when applied to the subsequent function of v.  Each odd power of 0/dy only affects
a single term of the binomial expansion of this last function with respect to v?Z%/(X*+Y?).
An elementary, though tedious evaluation finally results in an expansion of the function /i,
itself which starts with:

/4 Cq % / ('1(') = Fl Z>
[9 FNG. S OX ’H( a6 ([” S d )(\'Z+)”)w

C1Cy ’(i C|(‘) 72 (‘](’>/4 C _' .
I {o <10+<10 +< + (l’+144(/ 540(1(,}(\" H”" J (52)

In special applications, such as given below, the convergence of this series proves to be
sufficiently rapid.
The method, applied here, can be worked out in a similar way for the angular deviations,
starting from (18) instead of (17). The series corresponding to (30) then proves to read:
Z Z 42 @
C1 5 Gi || B =@ s —
L @h TR do dy 6 dj
‘)7I'l (IZ+7/3)4 2 (‘152_%"?/2)5/’
/%, ci(citewes) 28 cies 24| &8 2P
225, (’-—*‘F 01(4+C>F; : s = + -
{ ° dy ( ) l~ 2 di "6 diT120d;

" @) T

hy(X,V)-

7I'l

hz(z,y)=

13. Far-Distance Field in the Case of Norton's Model for Tropospheric
Scattering

The derivation of this field in the case of a narrow-beam transmitter and a wide-angle receiver is briefly
indicated below.
According to (28) the received energy is proportional to Az (X, Y):h7('\/X2* Y,) taken for the arguments

2
Z=a9, X*+ Y2~<"“9>
4a2
Substitution into the expansion (32) yields the following dependence on the linear propagation distance Z:
a? 7 c3 7Z  cico 22 ﬂ 73>
h""( 2 ‘“) [4“ dy i ( > T3 BT E

cs Z CiCy4 (‘)(3 (1c, lc; (ﬁﬁ et Z_"‘}Lﬂ_ :I .
etk 64{3’ Iu+( 6 do+< rl.,+ 72 di i 1020 @z zo T Lo
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For ¢;# 0 we get a dominating contribution, if 7Z>d,, which decreases in proportion to Z—4. This solution,
corresponding to multiple scattering, involves a field strength decreasing as Z=2.  On the contrary, for ¢, =0,
the dominating term of h; decreases as Z=6, and the field strength as Z=3. A vanishing value of ¢; occurs for
the “modified Bessel model,” originally proposed by Muchmore [Norton and Norton, 1956], which is char-
acterized by the isotropic autocorrelation function

Cse(p/l)=(p, )Ki1(p/l).

This model is in accordance with many observational data [Norton, 1959], as well as the Villars and Weisskopf
[1955] theory of turbulent mixing (turbulent blobs with dimensions conditioned by the vertical gradient of the
refractive index). In the small-angle approximations, the modified Bessel model can be characterized by the
isotropic case (p=1) of the derivation given in appendix 2 of [Norton, 1960]. The scattering function is
therefore given by

/(7rf]u(17 >) .
RPN L
{ <0>(x JFJ)[

The corresponding funetion f(s) of (29) reads:

a(x,y)= (34)

f(s)—p\/(d> <1 1“ ) (35)

This can be proved by putting (34) in the form:

232 0?2 1
wdy OB? (224 12+ B)1~2

oz, y)=-

for B=(93})/2,

and by applying (31) thereafter in order to obtain the two-dimensional Laplace transform.
The Maclaurin expansion of (35) yields the coefficients ¢;. Their substitution into (33) results in

m?- 6a5(93)3/2 [ IhHa 2 du>
ha » 0 )=——= —= =
Lad 5 7V 2dy 7 [ (lo/ g

For the transmitter and receiver here considered the decrease of the energy proves to be pro-
portional to Z7% in the plural-scattering range (d_>">d,); this corresponds to a field decrease
proportional to Z73.

14. Final Remarks

The conventional theories for volume scattering in random continuous media only consider
single scatterings (Born approximation). However, multiple-scattering effects may become
relevant under special circumstances, as shown by Bugnolo [1960] and Ament [1960] for far-
distance tropospheric radio propagation. It is therefore suggested to introduce in that case
first of all a phenomenological theory taking account of the radiation diagrams of the transmitter
and the receiver, without specifying the number of scatterings. Such a theory may start from a
joint probability density for the lateral and angular deviations suffered by an energy unit
which would travel along a rectilinear path in the absence of the random fluctuations of the
medium properties. This probability density /i, has to satisfy an integral equation, the “trans-
port equation’; it reduces to a much simpler second-order differential equation of the Fokker-
Planck type provided that very special approximations are justified. The general integral
equation depends on the scattering coefficient introduced in the theories dealing with single
scattering. The latter equation can be solved rigorously with the aid of Laplace transforms,
the solution including the contributions associated with all orders of scattering. These con-
tributions can be identified individually by a proper expansion of the solution. The Born
approximation fits in this general theory by taking a proper function for A;.

The application of the general theory to the modified Bessel scattering model, which agrees
with the Villars and Weisskopf turbulence theory, leads to a decrease of the far-distance field
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in the multiple-scattering range which is proportional to the inverse third power of the distance.
This result is quite different from the exponential decrease conditioned by the Fokker-Planck
approximation, or also from the corresponding decrease associated with exponential models
(instead of the algebraic model of Norton) for the autocorrelation function fixing the scattering
function ¢. The above shows that the complete transport equation has to be applied in tropo-
spheric propagation theories in order to get reliable results for the nonexponential autocorrela-
tion functions confirmed by empirical data.

The author acknowledges his contact with Dr. A. E. Goertz (CRPL Laboratory, Boulder,
USA) who directed in particular his attention to the comprehensive literature on the subject.

Eindhoven, October 31st, 1963
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