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The term " Sig na l P rocessing" is i nterpreted as a n operat ion on the sig nal that is deli berate 
(as dist ing uish cd from the u navoidable) a nd a ri sing from : 

(a) Opt imi zation: a n o peratio n on th e data t o opt imi ze extract ion or det ection a~ in 
r adar or communication or s imilar a ppli cations. 

(b) Rou t ine da ta ha nd ling : o perations s uch as sampli ng a nd /or q uantitizing, sca le 
cha nges, e tc. 

(c) Ad ap t ive tec hn iques : oper a t io ns t hat a re ch a racteri s t ic of ad ap t ive syste ms where 
no a priori kn owledge of signals and/or syste m p a rameters ma y be available and a self­
learni ng p roced ure is necessary . 

The main in terest is in t he eff ec t of t hese operatio ns on th e signa ls; more specifi call y, if 
we represent t he p rocessor as a blac k-box, t he sig nal being its " i np ut ," \I'e st ud y the stat ist ics 
of t he " output" sig na l. We examine cer t ain aspec ts of t hese proble ms of rece nt sig ni fi cance 
to r adi o phys ics . 

1. Introduction 

The term "Sign al Processing" is in terpreted as an operation on the signal that is deliberate 
as distinguished from the unayoidable, as for instance, the effect of atmospheric turbulence on 
propagation and so on. T he deliberate or in tentional processing that is of concern can, for 
the purposes of this paper, b e com-enien tly grouped as arising from: 

(a) Optimization: a n operation on the data to optimize extraction or detection as in radar 
or communication 01' similar applications. 

(b) Routine data ha ndling : operations such as sampling and/or quantitizing, scale changes, 
etc. 

(c) Adap tive techniques: operations t hat are characteristic of adap tive systems whe1'e 
no a priori knowledge of signals and/or system parameters may b e available and a self-learning 
procedure is necessa1'y. While these can be viewed under (a), th ere are cer tain unique features 
of t he kind of analysis involved which merit special attention. 

Our main in terest is in examining the effect of these operations on the signals; more specifical­
ly , if we 1'epresent th e processor as a black-box, the signal b eing i ts " input," we wish to study 
the statis tics of t he "output" signal. If we interpret this broadly, the input signal being a 
random function of time or a s tochastic process, any functional on a stochastic process can be 
included under the heading of this paper. This generali ty of course t akes in too much terri tory 
to b e susceptible to any sensible rm"iew and in this paper we sh all examine cer tain aspects of 
t hese problems based on what can only be an arbitrary judgmen t on the par t of the a ut hor as 
to what is of recent significance to radio physics. In t he m athem atics there will be no attempt 
at maximum of vigor with minimum of hypothesis. It will be assumed, for instance, that the 
signal is an extremely well-behaved stochastic process wi th all m omen ts fini te and correlations 
bounded etc. , withou t fur ther ado. On the other hand, on occasion, the signal may be a white 
noise and no special fuss need be made over this. Well-recognized mathematical techniques 
are available that are designed to frame our statements wi th t he necessary rigor. This being 
the case it will be assumed that the interested reader can make the modifications necessa.ry for 
rigor where this is impo rtant. 
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2. Processing Arising From O ptimization 

Let us represent the signal by x(t), where lit" may be discrete or continuous and x(t) may 
be a real or complex variable or an n-dimensional \rector. Since the generalizations involved 
are more or less routine, we shall assume here that x(t) is a real variable to avoid notational 
complexity. Also "t" will be taken as continuous and to include the discrete or sampled-data 
case, one has only to replace the integrals in what follows by appropriate sums. Any physical 
system has at any given time only a finite time-segment of signal or data at its disposal. This 
fact will also be assumed in what follows. 

An integral representation for any operation, linear or nonlinear, that arises in optimiza­
tion- such as optimal prediction, estimation or detection- can be taken as: 

where 17k (t; 0"1 • •• O"k; Xl , ... Xk) is a function of (2k+ 1) variables, with t - T <5. 0"1 , 

O"k<5. t, -oo <5.x], ... Xk<5.+ oo . The point is that any optimal operation can be approximated 
arbitrarily closely by choosing lin" large enough. The modifications necessary to specialize 
to time-invariant processors are obvious. Our first problem then can be stated as that of 
obtaining the statistics of the output process y(t), given the statistics of the input process x(t) 
and the functions 17k ( . .. ). No general method is a\Tailable yet that comes e\"en close to 
soh-ing this problem. E \Ten if we restrict the processor to be linear, there are no general 
methods known except of course for the well-known (and now trivial) case where the input 
signal is a Gaussian process. 

There is one method of some generality which is pertinent here. This is the theory of 
additive functionals on a Markov process [Balakrishnan, 1963 , and Fortet, 1958]. In view of 
the vast literature on it [Fortet, 1958], perhaps it would be unfair to pass it over, although as 
we shall see, in terms of providing practically useful answers, much remains to be done even 
here. For this we need to assume that the signal x(t) is N[arkovian. Let p(x], t]; x2, t2) be the 
transition density kernel of the transition to X2 at time t2 condi tioned on x(t l ) = XJ' Let us first 
consider a system or processor represented by: 

(2 .2) 

The theory develops a method for determining the characteristic function of the random 
variable y(t). Actually one considers the conditional characteristic function: 

E [ eiUY Ct) [x(t) = X2] 
x (s)= xJ 

and the main result is a pair of linear integral equations for 

r(xJ, s; X2, t ; U) = E [ eiuv Ct) [x((t» = X2] p (XI' s; X2, t). 
X S -- Xl 

The integral equations themselves are 

r(xJ, s; X2, t; u)=p (XJ, s; X2, t) + iu .f elt' f -"'", r(x', t'; X2, t; u)17(t', x')p(xJ, s; x', t')elx' (2.3) 

r(xJ, s; X2, t; u) = p(xJ, s; X2, t) + iu .f elt' f -"'", r(xJ, s; x', t'; u) 17 (t', x') p(x', t' ; X2, t)dx' (2 .4) 

954 



whero (2.3) is, for ob vious reasons, called the " backward" equation and (2 .4) the " forward" 
equation. 

Let us now consider some of th e drawbacks in 
fun ctional (2.2) is not general enough for 0 111' purposes. 
is timo-invarian t, t hen wo would !leed to consider 

this approach. In the first place, the 
F or instance, if the processor or system 

y (t )= f t V (t - u; x (u))elO' 

and this is of course not reducible to the form (2.2), excep t in special cases. One such case 
is where 

V(t -u; x(u)) = Aek(l-u)V (x(O')) (2.5) 

since one has only to consider y (t )ekt in place of yet). F or the sligh tly m oro genernl case where 
the " memory" is all in the linear p ar t of t he processor , the lin enr par t coming fr om a rational 
transfer function, we need to consider 

7n 

V (t - O'; x (O')) = L:: aieki(l-u)V (x(O')) . ... (2.6) 
1 

F or t his case i t is p ossible to obtain an in tegral equation again bu t one which is slio'h tly more 
co mplicated than (2.3) and (2.4). Sin ce this is new wi t h this papor , wo shall sketc h t he method 
of deri ,ration as well. Let 

[

no It k·(t-u) IX(t ) = X ] ' . . _ _( if";II;. e 'V(.r(u)) (/u 2 
1(X I,S,X2, t,U)- E e 

XeS) = Xj 

where U is the m-vector (u" . . _ urn). ' Ve noto t hat wo obtain tho chautcteri stic fu nc ti on 
for y et) by taking Ul =U~ .. . = Um . Let us co nsider the forward equation. For t his, as in t he 
usual derivation of (2.4), wo tako 

m It k(t - u) i:1: ";11; c' V (x(u) ) (/u 
1 • 

e 

:Mul tiplying by p(Xj, s; X2, t) and takin g condi tional expecta tio ns, and using t he proper tios of 
a Markov process in dealing wi th the in tegral on tho right side, we obtain : 

r(xl, s; X2, t ; U) = P(XI, s; X2, t) + .r elt' I-"'", (i.~ UP j) V (x')r(xl, s; x', t '; U)p(x', t'; X2, t )elx' 

i t f '" 7n 0 + elt' L:: ikj~ r(xj,s;x',t ' ;U)p(x ' , t' ;X2, t) elx ' . 
s - '" 1 v Uj 

(2.7) 

The backward equation can be obtained in an obvious manner. 
But even in these cases the problem of a general solution of these equations does not appear 

to bo an easy one. Computer solu tions based on iteration (successive approximation) run 
in to t he difficul ty that the successive approximations have to b e restricted to be characteristic 
fun ctions. 

If one has to be satisfied wi th approximations to the characteristic functions, i t m ay 
niso suffice perhnps to ob tain the moments. The moments, for tunately, can be calculated 
directly from t he integral represen tation. Thus for 

y(t )= .r V(t= O'; x(O'))dO' 
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we have 

(2.8) 

where P (x, <T) is the fu's t order densi ty of x( <T) . Similarly, 

E[y(t)zJ= .r d<Tj.r d<T2V (t-<Tl; Xl)V(t-<T2; XZ)P(XI' 0'1; Xz, O'Z)P(Xl , O'I)dx1dxz (2 .9) 

E[1I(t )3J= I _ro", I -"'", I-"'", .r i t.r dO'!d<Tzd<T3V(t-<TI; x) 

V (t-<Tz; Xz) V (t-<T3; X3)P(X)O'I; X2, <T2; X3, <T3) dxldxzdxa 

where p(x), <Tl; X2, <T2; X3, 0'3) is the joint density of X(<Tl) , X(<T2) , X(O'3), and can of course be further 
simplified using the .Markovian property. However, it is possible to avoid the use of multiple 
integrals by using (2.4) or the backward equation corresponding to (2 .7). For this, let 

Iln[X, sJ = E[y(t)n lx(s) = xJ. 

'IV e use the backward \rersion of (2.7): 

rh, s; xz, t; U) = P(Xl, s; X2, t)+ i t elt' I -OO", (i ~ Ujaj ) V(x')r(x', t'; X2, t; U)p(X) , s; x', t') 

+ ( t dt' f OO [2: ikj -;...0 . rex', t';xz, t ; U) ] p(Xl, s; x', t')dx'. (2.10) J s • -co u U J 

Let 

[ J.' k/'-u) I ] 
¢[XI' s; t; UJ = E eil; u;a; . e F (.r(u))du X(S) = Xl . 

Then integrating (2.10) with respect to the variable X2, we have 

m ° ] + 2: ikj ~¢(x', t' ; t; u) P(Xl, s; x', t')dx'. 
1 u U j 

To obtain a recurrence relationship for the moments we can make a Taylor expansion in 
U for ¢(Xl, s; t, u) and equate coefficients on both sides. We omit the details here. After 
we find the moments we still have the problem of approximating the distribution should this 
be required. Moreover the question is moot as to whether the moments determine the 
distribution. It would be natural to assume that in all physical processes this would be so 
if the input signal statistics have the same property, although a general proof of this sort is 
not available. It is possible to state some sufficient conditions of some generality. Suppose, 
for instance, we consider 

We assume that the process x(<T) is such that 

which is a sufficient condition which guarantees moment-determinateness for x(t). If we 
note that 

IE[y(t) nJI:::; [i t Ik(t, <T)ln ln- 1d<TJ-1it M n+m (0') dO' 
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we can readily deduce a similar sufficient condi tio n for yet) provided we assume that for n>l, 

which is entirely reasonable. A so mewhat related condition is this: supp ose the density of 
x(t) is su ch that any f(x) such that 

'Vhere p (x) is the density corresponding to xCt), we can find a sequence of polynomials Pn(x) 
such that 

E[ lf(x) -Pn(x) n --70. 

The ques tion is whether yet) will also satisfy a sim il ar condi tion under reason able r estrictioll s 
on the processor , and as far as the author is aware, no general answcrs are a l-ailable. Again, 
[or all pbysical systems the answer s hould be affirlllati lTe. 

The forms in (2.2) can be somewhat simplified [Balakrishnan , 1963] for "physically rcali;t,­
able" processes. We can use instead a Volterra ex-pansion 

One obvious advantage in using these form s is t hat the moments of yet) can be expressed in 
terms of the moments of the x(t) process without requiring t he full joint densi ties. The seco nd 
degree form 

occurs in recen t work in I-olving detection of noise in noise. For a Gaussian signal and posi ti I'e 
definite W 2( •• • ), approximations to the distribution h".ve been given recently by Grenander, 
Pollak, a nd Slepian [1959] . 

In view of the di ffi culties il)l'oll-ed in soh ·i ng (2.3) and (2.4), it would appen.l' that for 
specific sys tems Monte Carlo methods would be a feasible computing al ternati I'e. Su ch 
methods h a l-e indeed been reported [Tlwler and Meltzer , 196] ] for the linear-filter-nonlinear­
device-linear filter system that is of interest in radar applications. 

'Vhen the Marko lT process is of the diffu sion type, so t hat Fokker-Pln.l1ck equations are 
ayailable, it is possible [Deutsch, 1963, and Fortet, 1958] to obtclin partial differential equ atio ns 
in addition to the integral equations. But from t he point of view of practical solutions for 
the general cases this merely trades one difficult problem for a n equally difficult one. 

Systems represented by differential equations. So far we 11 a ITe assumed the processes 
arising from optimal operations to h ave a n in tegral or system-function representation. In 
some cases the representation may be in terms of dy namical equations. Of importance to 
radio and communication is the phase-lock-Ioop system. 

The " inpu t" in this case is the slow-varying phase of a narrow-banded signal which is ac­
companied by acld i ti I'e noise. We may represent the noisy signal by 

A sin (Wot + <PI (t)) + x(t) cos wot+ y(t) sin wot 

x(t), yet) being gaussin.n noise processes. The purpose of the phase-lock-loop is to produce a 
"clean" signal of t he form 

B sin (wot+<Pz(t)) 

where the phase <Pz(t) is to "follow" <P1(t) and the feedback or closed-loop is designed to achieve 
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this. D etails of the system may be found in Viterbi [J 963] . H ere we note that the relationship 
oJ the ou tpu t phase </>2(t) to the "input" </>l(t) is described by a differential equation of the form 

[a sin </>(t) + n(t)] = bL(D ) [¢l (t) - 4> (t)] 

where L (D ) is a differential operator (usually rational in D ), n(t) can be taken to be white 
Gaussian, a and b are constan ts and 

The difficulty in the analysis is caused by the appearance of the nonlinear function sin </> on the 
left, and in the earlier literature it has been customary to use an approximate linear analysis. 
Howeyer , more recently, the statistics of rf>(t) have been examined using F okker-Planck equa­
tions by Vi terbi [1963] and Tikhonov [1959] among others. This approach is feasible when 
</>l(t) is nonrandom, since in this case </>(t) is a stationary Markovian or one componen t of a 
stationary vector \1arkov process. For instance, if one considers the simplest case when 

we have a stationary 'Markov process and the Fokker-Planck equ ation- t he backward equa­
tion- is easily derlyed using standard techniques as: 

and since this con tains only one space variable considerable progress can be made [Viterbi, 
1963] toward obtaining the transi tion densities. This simplicity is lost as one considers more 
general forms of t he operator L (D ) , since now the Fokker-Plan ck equations contain more than 
one sp ace variable. Some of these cases have been considered by Tikhonoy [1959] and Viterbi 
[1963]. The former deals with 

L (D) = (D + k) 

while the latter examines the more realistic case (in the Communication Engineering context) : 

L (D)= D + a. 
D 

The analysis is shifted from a nonlinear ordinary equation to (the Cauchy Problem) a linear 
p ar tial differ enti al equation in several space variables (two in the cases above) . While there 
is considerable recent work in the mathematical literature on the Diffusion equations that 
arise, much still remains to be done in specializing and applying these results to the present 
problem. The linearizing or quasi-linearizing techniques which h a\Te been used [D evelet, 
1956] appear to provide reasonable answers but a measure of the accuracy of the approximation 
is lacking, and must await more exact analysis. 

3. Routine Data Handling 

Of the many transform ations of signal in more or less routine or established modes of 
data handling the only ones that warrant examination here are Sampling and Quantization. 
Let the number of quanta or levels chosen be N so that 

i[x (t) ]= rf> i for ai :=:;x(t) < ai+I' 

The received or reconstituted signal y (t) is such that 

y(t) = m j 
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corresp onding t o the r ecei ved le \~el <P i> usually , 

where p (x) is the density corresp on din g to x(t). U sually the qu anti ty of interes t is the error 
(say mean squa re) rather than t he s tatis tics of yCt) . vVe m ay calculate this error, including 
errors due to cha nnel n oise. Thus, 

l a+ 1 

E[ (x (t )-y (tW ]= ~~ J (x- m J2p ijp(x) dx 
I J a j 

where P ij is t he condi tional probabili ty of receivin g the ith word assumin g the jth word h as 
been transmi t ted . This can be fur ther simplified t o 

(3.1) 

wh ere 

T he firs t two terms, whi c h ar e independ ent of cha nnel characteris tics, together y ield t he " qu an­
ti;t,ation error. " It must be noted that the proble ll1~ remains of the proper choice of the levels 
{ad , which make (3 .1 ) a m ini mum for a gil"e n N. Ordinarily , t hi s is n. nl.ther imprac tical 
problem sin ce t he signal s tatistics cannot be specifred a p riori wi t hin the precision desired. 
In deed, in practice one assum es that t he cha nnel error s can be neglected and that the sign al 
has a uniform dis tribu tion, in whi ch case t he problem becoilles trivial. 

Let u s next examine t he effects du e to sa mp lin g . Let 

xn= x(nT) . 

The sa mples represent the signal x(i ) in the sense t hat if t ile signal IS b and-limi ted to 

then 
() _ ...;; sin7r (2wt - n ) 

y t - L..J Xn (2 ) 
- ro 7r wt - n 

x(t ) 

so that the statistics are the same. In practice, of course, one mu st consider the effect due 
to having a :finite number of samples and secondly t he effect due to the fact t hat the sign al 
may not be band-limited . The first of these h as r eceived considerable a t ten tion and refer­
en ce is m ade to Thom as [1963] for details. The second is the so-called folding or a biasing 
effect, a nd t he error due to this should be consider ed well known [Balakrishnan , 1957]. A 
differ ent kind of errol' occurs due to imperfections of the sampler. One such error is due to 
timing jitter. The timing is usu ally deI'i\Ted from the zero crossing of a sine wave of fixed 
frequency but usu ally there is some phase noise present whi ch causes the axis-crossing tim es 
to jitter. This problem h as been studied by Balakrishnan [1962]. Thus, the sa mples ar e now 
gi ven by 

where {<Pn} is a random sequence, which to a first approximation can be taken to be s tationary . 
Let 0 be some operation desired on t he samples { x,, } . Then the first step is to determine the 
op timal op eration 0 ' on ji tte red samples {Yn}, so as to minimize t he error- say, mean squ ar e-

E[O[xn]- O' (y ,,) ]2 
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and calculate this minimal errOl'. The details may be found in Balakrishnan [1962]. Here 
let us note that {Yn} is stationary and the direct error 

where the signal is assumed band-limited with w= 1/2T, and p(j) is the spectral density of 
x(t), c(f) is the characteristic function of the random variable ci>n. For the case where p(j) 
is a constant, the normalized square error, expressed as a fraction of the average signal power, 
is given approximately by 

where 

This is also of course the mean square error in the direct "fitted" yet) usmg 

() ~ sin7r (2wt-n) 
y t = ~ Yn (2 t-) . 

_ 00 7r W n 

We note that the error is proportional to the bandwidth. If x(t) is gaussian, then yet) is again 
gaussian, regardless of the statistics of {ci>n } . On the other hand, as shown by Balakrishnan 
[1962] for certain jitter statistics it is possible that a discrete component will arise in the 
spectrum of y et) even though x(t ) did not have any discrete components. If the jitter is "white" 
so that 

E[ci>nci>m] = 0, 

the spectral density of y et) is given by 

where the constant c is given by 

n~m, 

c(j) being the characteristic function corresponding to ci>n. 

4 . Adaptive Processing 

In recent years there has been a growth of interest in adapti,"e methods in communication 
systems because of the acceptance of special purpose computer and/or computer data 
processing as part of the system . The effect of adaptive methods of processing on signal 
statistics is of interest because the analysis im"olved in these problems exhibits certain features 
that are noyel. 

In this section we shall examine a particular adaptive system which, while perhaps not 
typical, serves to illustrate the ideas involved . The system we shall consider is a means of 
achieving signal rate 01' bandwidth compression when no a priori information concerning the 
signal statistics is available and the processing has included a learning feature. Without 
going into a precise definition of what an "adaptive" system is, let us say that an adaptive 
system is one which monitors its own performance, and when new conditions arise which 
degrade the performance, the system learns how these new conditions effect the performance 
and adapts or makes structural changes to restore the performance level. An adaptive system 
thus will have a self-monitoring feature and a learning and self-adjusting feature. To be more 
specific, let x(t) represent the continuous or discrete parameter signal. It is customary to assume 
that x(t) can then be regarded (at least for analytical purposes) as a stochastic process. If the 
time-parameter t is continuous, then it is often possible to assume that 
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in a suitable sense (that is, depending on whether we adopt the stochastic or nonstochastic 
viewpoint) for sufficiently large B, the bandwidth. By the well-known "sampling principle" 
then one can represent the continuous wave-form using periodic samples taken at t=n/2B. 
In most communication systems using sampled data of this kind, the sampling r ate is deter­
mined by the nominal, highest or cutoff frequency B expected in the data. Howeyer, in many 
kinds of data- such as in space-telemetry data- the actual cutoff frequency is usually much 
smaller for most of the time, so that there is no need to sample at the nominal rate of 2B. 
In other words, it is possible to "compress" the data sampling rate or channel bandwidth. A 
method of achieving such compression in P.C.M. systems is to exploit the redundancy or predict­
ability of the data. Thus, we employ a "predictor" at the transmitter which predicts the data 
at time t+~, based on the past up to time t. The actual value obsen-ed is then compared with 
the predicted. If the difference exceeds (in absolute value) a preset threshold, then the actual 
sample is transmitted. If it is below the threshold, a prearranged code word using, say, one or 
two digits is transmitted instead of the m digits, thus reducing the number of digits trans­
mitted per seco nd. A comma free code may be used to sort out the two kinds of words un­
ambiguously. We shall not go into instrumentation details such as the buffering and so forth 
needed, but concentrate on the adapti ,'e theory inyolved. The adaptive or learning feature 
comes in the predictor mechanism. The predictor is not operati\'e un til the threshold is ex­
ceeded, exhibiting the self-monitoring feat uTe. The predictor itself is based on a "learning" 
phase, and the prediction operator being adjusted accordingly . For details on the predictor 
itself, reference may be made to Bahtkrishnan [1961]. The significance of the adaptive predic­
tion feature lies in the fact th at no a priori statistics or other assumptions concerning the 
data are required, and, in particular, it is realized that there may be periods in the data where 
prediction (to the quality set) may not b e possible. (No prediction of the stock market prices 
is offered.) 

The basic prediction philosophy may be indicated briefly . vVe are gil'en a "waye-form" 
of duration T -a function x(t), 0 5:. t 5:. T , in other words, and we are required to "predict" 
the value at time T+ ~. Any prediction operation is to be based on this data alone, no other 
additional a priori knowledge being ayailable. This is, of course, an ancient problem and 
h ere we wish to trMt it strictly in the telemetry data processing context, and note two major 
points of view in dealing with it. One which may be considered the "numerical analysis" 
point of yiew consists in assuming that certainly any phYi:3 ically r ealized waveform must be 
analytic and can thus be approximated by polynomials. The data may thus be "fitted" to 
a polynomial of high enough degree and we then simply use this polynomial to "predict" the 
future values . The other and more recent view is the statistical view in which we assume 
(perhaps with good reason) that the data is a finite sample of a stationary stochastic process 
whose average properties such as moments and/or distributions are known or calculable from 
the data. For a process of given description we can apply the well-developed mean square 
prediction theory. Perhaps the main adyantage with this view is that it gives us a quantita­
tive, albeit theoretical, notion of the errol' in prediction. The problem of measuring the 
ayerage statistics from a finite sample can be quite delicate, however. In the polynomial 
fi tting method, the interpretation of the prediction error-which is, after all, the crucial point­
is more nebulous, bound up with what degree polynomial to use and what portion of the data 
is to be fitted. Moreover, as ordinarily used, the fitting operations on the data are linear. 

We adopt a rationale for prediction which is free from a priori assump tions concerning 
the "model. " In a general sense what is involved in both the above methods is first "model­
making" consistent with the data and as a second step using the numbers derived therefrom 
to perform some optimal operations. If an understanding of the mechanism generating the 
model is desired, the first step is essential. If what we want is prediction, then we shall show 
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that it is possible to proceed directly (and hence more optimally) to the best prediction without 
the intermediate step of model-making. It may be, of course, that several philosophies lead 
to the same operations on the data. Even here, the present method offers some practical 
advantages. :Moreover, it is only natural to use the philosophy that requires the leas t prior 
assumptions. 

We note first that any prediction is an operation or operator on the part of the data, and 
in our case the finite part is all that is available. The main point of departure in our yiew 
is that if we have a prediction operator, which based on all the available input data , functions 
optimally in the immediate past of the point where the prediction is required, this is all that 
we can ask for meaningfully as a solution to the prediction problem. Thus, the only basis 
on which we can a priori judge any prediction method is to "back off" slightly from the present 
and compare the actual available data with the predicted value using the giyen prediction 
operator. Let us see how this can be formulated analytically. Let the total ayailable data 
be described as a function x(t), O::;;t::;;T, and let it be required to predict the value at T + b., 
b.> O, being a small fraction of T. Let us next consider the data in the interyal O< t< T - b.. 
If for any to in this interval we should choose to make a "prediction" of the function value b. 
ahead from the past values up to to denoting the predicted value by 

x* (to+ b.) 

we can explicitly observe the error 

Let us next note that the general prediction operator will be a "function" of a fini te segment 
of the past. Let us denote the length at this segment by S . Then, of course, 

(4.1) 

° representing the prediction operator. Next we have to specify the error criterion. Here 
we choose the mean square error, first because it is simpler analytically and is almos t uni­
versally used, making comparison with other methods possible. The kind of solution presented 
being definitely not "analytic," based rather on successive approximation, other measures of 
error can be used at the risk of greater complexity. As far as the rationale of the method is 
concerned, this is largely a matter of detail, rather than principle. We thus use t his method 
to determine optimality: 

(4.2) 

where L? S, and we proceed on the basis that the operator ° is best which minimizes (4.2) . 
We can, of course, generalize (4.2) as: 

T _~_ L IT -Ll pet) C(x* (t + b.) - x (t+ b.))dt (4.3) 

where pet) is a positiye weight function and CO is, say, a symmetric positiye cost function. 
Before considering the problem of determining the optimal operator 0 , let us note an important 
consistency principle. Suppose the data is regarded as one long sample of an ergodic process. 
Then (4.2) yields exactly the optimal operator in the statistical sense. However, we have 
not needed to make any such assumption concerning the data, nor have to compute average 
statistics first. The point is that while the data may not be enough for determining let us 
say the spectrum, it may be quite adequate for the prediction itself. Unlike the polynomial 
fitting, the operations on the data can be as nonlinear as necessary, and at the same time 
(4.2) normalized to 
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(4.4) 

yields a quantitative measure of the prediction error on which to judge how good the prediction 
will be. 

To continue I\'ith the descrip tion of the system, we assume that the receiver performs a 
prediction operation similar to the transmitter. In other words, th e receiver predicts the 
vftlues of the nontransmitted data using the transmitted as well as predicted sections of the 
data. This would mean that the receiver sets the same level of possible complexity of the 
prediction operator as the transmi tter does , and in particular, the transmi tter itself has to base 
its prediction using, as necessary, predicted data points that did not exceed threshold error. 

So far we have determined the optimal adapt.ive stru cture, bu t thcre still remai ns the 
question of evaluating the system. For instance, it is natural to ask how much compression 
it is possible to obtain in this way on the averftge, and what the overall en ol' will be. H ere 
we have to postulate some structure for the data source and then calculate the l'esulLing 
compression using the adaptive system. \iVe shall now briefly indicate wh at an analysis of this 
type involves. Not to unduly compli cate the analysis, let us consider th e prediction operation 
in the transmitter based only on the actual samples. l __ et us denote the data samples by { x,, }. 
We assum e that the data can be taken as a s taLionary stochastic process. We may fur ther 
assum e that the process is Gaussian since the maximum prediction errOl' (and hence the 
minimum compression) occurs in this case because the predi ction operation includes only the 
linear. Let us consider the case wh ere the adaptive predictor is also constrained to be linear. 
In this case the optimal filter-weigh ts {aj} are determin ed by minimizing 

(4 .5) 

where the past available data consists or N samples and the predi ction is based on "m" samples. 
vVe are, of course, considering the " analog" method above. The con espollding (squared) 
error is then 

(4.6) 

The transmission is based on (4.6) 
determine the statistics of (4.6) . 
will satisfy 

exceeding a threshold "t" . Hence, what we want firs t is to 
We note first that the optimal {ad that minimizes (4.5) 

lc= l, .. . m . 

Let Y" b e the N -column vector 

Then the minimum of expresslOn (4.5) becomes 

where DmH is the determinant of the m + l by m + 1 matrix with entries 

Y i • Y j , i, j= O, - 1, .. . - m 

and Dm is the determinant of the m by m matrix with entries 

Y j • Y j, i, j=- l, - 2, ... -m. 
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On the other hand, we are interested in the error (4.6), which is 

~6 [m;Nl=(Dj;,:1)2 (4.7) 

where D;"+ l has first row 

and is otherwise the same as Dm+1 • Our first interest is in the statistics of (4.7). ''Ve need to 
know 

which is the probability of exceedance of the threshold, and the attainable compression ratio is 
then readily deduced from this. 

vVe shall not go into the details of these calculations. However, if we simplify matters and 
assume that N is large enough so that we can replace the "time" average in (4 .5) by a phase 
average, the {{X;} of course become the optimal regression coefficients that minimize 

and the error ~6[m; OJ 1 is now the residual 

But 

is Gaussian and the threshold probability we want can be calculated simply from 

(T2[m, CX) 1= E[f6[m; OJ ll· 

Hence, the first step is to calculate this. This is already a nonstandard problem, in that 
explicit expressions for this error are not known. Some asymptotic estimates are given. 
The complete analysis thus involves some labor, unless simplifying approximations can suffice. 
For instance, in computing the statistics of (4.7), we may be content to compute the first 
moments. We omit the details of these calculations since our purpose here is merely to 
illustrate the kind of analysis is involved. 

Vie note that the adaptive theory winds up with an "optimum" procedure. To evaluate 
how good the system actually is, we have to specify the class of input or system parameters- or 
their statistics if they are regarded as randomly varying. Very often there may not be any 
clear-cut "optima." This means that we may have to be satisfied with suboptimal systems and 
there will usually be many of these, and the problem of deciding among them by analysis in 
any quantitative way can be a hard one. 

In conclusion, let us note that adaptive processing methods in communication theory are 
still in their formative stage. We have discussed an example which illustrates most of the 
features that characterize the theory involved in these methods without any pretense at being 
exhaustive. 
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