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The term “Signal Processing’ is interpreted as an operation on the signal that is deliberate
(as distinguished from the unavoidable) and arising from:

(a) Optimization: an operation on the data to optimize extraction or detection as in
radar or communication or similar applications.

(b) Routine data handling: operations such as sampling and/or quantitizing, scale
changes, ete.

(¢) Adaptive techniques: operations that are characteristic of adaptive systems where
no a priori knowledge of signals and/or system parameters may be available and a self-
learning procedure is necessary.

The main interest is in the effect of these operations on the signals; more specifically, if
we represent the processor as a black-box, the signal being its “input,” we study the statistics
of the “output’ signal. We examine certain aspects of these problems of recent significance
to radio physies.

1. Introduction

The term “Signal Processing’ is interpreted as an operation on the signal that is deliberate
as distinguished from the unavoidable, as for instance, the effect of atmospheric turbulence on
propagation and so on. The deliberate or intentional processing that is of concern can, for
the purposes of this paper, be conveniently grouped as arising from:

(a) Optimization: an operation on the data to optimize extraction or detection as in radar
or communication or similar applications.

(b) Routine data handling: operations such as sampling and/or quantitizing, scale changes,
ete.

(¢) Adaptive techniques: operations that are characteristic of adaptive systems where
no a priori knowledge of signals and/or system parameters may be available and a self-learning
procedure is necessary. While these can be viewed under (a), there are certain unique features
of the kind of analysis involved which merit special attention.

Our main interest is in examining the effect of these operations on the signals; more specifical-
ly, if we represent the processor as a black-box, the signal being its “input,” we wish to study
the statistics of the “output” signal. If we interpret this broadly, the input signal being :
random function of time or a stochastic process, any functional on a stochastic process can be
included under the heading of this paper. This generality of course takes in too much territory
to be susceptible to any sensible review and in this paper we shall examine certain aspects of
these problems based on what can only be an arbitrary judgment on the part of the author as
to what is of recent significance to radio physics. In the mathematics there will be no attempt
at maximum of vigor with minimum of hypothesis. It will be assumed, for instance, that the
signal is an extremely well-behaved stochastic process with all moments finite and correlations
bounded ete., without further ado. On the other hand, on occasion, the signal may be a white
noise and no special fuss need be made over this. Well-recognized mathematical techniques
are available that are designed to frame our statements with the necessary rigor. This being
the case it will be assumed that the interested reader can make the modifications necessary for
rigor where this is important.
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2. Processing Arising From Optimization

Let us represent the signal by x(f), where “¢’” may be discrete or continuous and z(f) may
be a real or complex variable or an n-dimensional vector. Since the generalizations involved
are more or less routine, we shall assume here that z(f) is a real variable to avoid notational
complexity. Also “¢”” will be taken as continuous and to include the discrete or sampled-data
case, one has only to replace the integrals in what follows by appropriate sums. Any physical
system has at any given time only a finite time-segment of signal or data at its disposal. This
fact will also be assumed in what follows.

An integral representation for any operation, linear or nonlinear, that arises in optimiza-
tion—such ¢ aken as:

y(t):fl Vit;o;x(o))de+ ft fl Vo(t; oy, 09; 2(0y))doyda, . . .
=1 JI—-T Hi=i

+f f V.t;o1, 00, .. .0, 2(0),x(0) ...x(0,))dods, . .. ds, (2.1)
Ji1-T

where Vi(t; oy . . . o5 o, . . . xx) 1s a function of (2k+1) variables, with t— 7T <gy,

0 <t,—o <, . .. 1 <+owo. The point is that any optimal operation can be approximated

)

arbitrarily closely by choosing “n” large enough. The modifications necessary to specialize
to time-invariant processors are obvious. Our first problem then can be stated as that of
obtaining the statistics of the output process y(f), given the statistics of the input process z(f)
and the functions V(. . .). No general method is available yet that comes even close to
solving this problem. Kven if we restrict the processor to be linear, there are no general
methods known except of course for the well-known (and now trivial) case where the input
signal 1s a Gaussian process.

There is one method of some generality which is pertinent here. This is the theory of
additive functionals on a Markov process [Balakrishnan, 1963, and Fortet, 1958]. In view of
the vast literature on it [Fortet, 1958], perhaps it would be unfair to pass it over, although as
we shall see, in terms of providing practically useful answers, much remains to be done even
here. For this we need to assume that the signal z(f) is Markovian. Let p(zy, t;; o, t,) be the
transition density kernel of the transition to z, at time #, conditioned on z(t;)=z,. Let us first
consider a system or processor represented by:

y(t):f: Vie; 2(0))do. (2.2)

The theory develops a method for determining the characteristic function of the random
variable y(f). Actually one considers the conditional characteristic function:

E [eiuy(z) x(t) :1'2:]
S =

and the main result is a pair of linear integral equations for

(t :Ip Xy, 8; Ty ).

r(x1, S; @, t; U) = E[e“‘/‘”

The integral equations themselves are

t ©
M, S5 @, G5 W)=, 95 @ t)—l—iuf dt’ f r@, t; e, t; VR, x)play, s; o', t')de’  (2.3)

7 ©
r(x1, 85 Xy, t; W="p(a1, S; T3, 1)+ f dt’ f r(xy, s; 2, t;wVE, 2 )pl, t'; x, t)de'  (2.4)
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where (2.3) is, for obvious reasons, called the “backward” equation and (2.4) the “forward”
equation.

et us now consider some of the drawbacks in this approach. In the first place, the
functional (2.2) is not general enough for our purposes. For instance, if the processor or system
is time-invariant, then we would need to consider

y(t)—*ftlv(t—a;x(a))(lo

and this is of course not reducible to the form (2.2), except in special cases. One such case

is where
V(t—o;2(c)) =A =2V (2(a)) (2.5)

since one has only to consider y(¢)¢" in place of y(t). For the slichtly more general case where
the “memory” is all in the linear part of the processor, the linear part coming from a rational
transfer function, we need to consider

V(t—o; 1(0)):7211 ;e =V (2(a)). . . . (2.6)

For this case it is possible to obtain an integral equation again but one which is slightly more
complicated than (2.3) and (2.4). Since this is new with this paper, we shall sketch the method
of derivation as well. Let

) igu,-a,ft FD Y (o) aa E() =2
e, By, o) =08|| @F  F

J:(N):.Tl
where U is the m-vector (uy, . . . u,). We note that we obtain the characteristic function
for y(t) by taking w,=wu, . . . =u,. Let us consider the forward equation. For this, as in the

usual derivation of (2.4), we take
iZ u,-u,-f‘ek"(t_") V (2())do
€

m 0 () —
i:)u,n,-f el’(t U)l’(.c(a))do.

t . m . . m 8 o, » 1
:1+f dt’ l:o, o ua V(@) +i >3 ujlc]a,f it =oY (I(G))(/J] e
S 1 1 Js
Multiplying by p(x,, s; @, t) and taking conditional expectations, and using the properties of
a Markov process in dealing with the integral on the right side, we obtain:

t @ m
(X, 8; %2, t; U) =p(a;, 8; 22, t)—l—f (lt’f (iz_‘, ujaj> V@ )r(x, s;z’,t";U)plx’, t’; xs, t)dz’
s — 1
2 © m . a
—+—f a’t’f > ik; o, r(xy,s; a,t7; U)pla’, t/; @, )da’. (2.7)
s —o 1 J

The backward equation can be obtained in an obvious manner.

But even in these cases the problem of a general solution of these equations does not appear
to be an easy one. Computer solutions based on iteration (successive approximation) run
into the difficulty that the successive approximations have to be restricted to be characteristic
functions.

If one has to be satisfied with approximations to the characteristic functions, it may
also suffice perhaps to obtain the moments. The moments, fortunately, can be calculated
directly from the integral representation. Thus for

y(t)=ft V(t—o; 2(0))do
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we have

Ely(t)]— f ‘do f " Vo e, o) 2.9)

where p(z, o) is the first order density of z(s). Similarly,

t t
E[?/(t)2J: f (]alf ([O’g"7(t—0'1; xl)V(t—O'b 1‘2)])(1?1, ay; L, 02)])(x1, O’])d.’l‘l({ﬂfg (29)

@ © © t t t
E['_I/(t)g]:f f [ f f f (10"1(10'2(10'3‘7@—‘0'1; xl)

V (t—os; 22)V (t—03; x3)p(2101; Xa, 09 T3, 3)dxidasds

where p (2, o1; o, 09; ¥, 03) 1s the joint density of z(qa)), (o), 2(a3), and can of course be further
simplified using the Markovian property. However, it is possible to avoid the use of multiple
integrals by using (2.4) or the backward equation corresponding to (2.7). For this, let

walz, s1=Ely(t)"|z(s) =x].

We use the backward version of (2.7):
t © m
r(x1, 8; 3, t; U)=p (@1, $; X2y t) + [ dt’ [ (i >3 u,a]) V@ )r@, t'; e, t; U)pl, s; ¢, t")
Js J - 1

‘ @
—I—f dt’ f I:Z ik; % r(x,t';x,, t;u):lp(xl, sy’ t)dx'. (2.10)
Js J - 7
Let

ki(t—a)

¢lzy, s; t; Ul=E [e"“f"fﬁt“ " vee

x(s) :rl].

Then integrating (2.10) with respect to the variable x,, we have

i @ m
ol 8; t;U1:1+f dt’f [(zZu @) V', Vs 60)

m
+f‘1_, ik, a%qs(x’, 6’5 tg u)] pay, s; 2, t")da’.
J

To obtain a recurrence relationship for the moments we can make a Taylor expansion in
U for ¢(zy, s; t, u) and equate coefficients on both sides. We omit the details here. After
we find the moments we still have the problem of approximating the distribution should this
be required. Moreover the question is moot as to whether the moments determine the
distribution. It would be natural to assume that in all physical processes this would be so
if the input signal statistics have the same property, although a general proof of this sort is
not available. It is possible to state some sufficient conditions of some generality. Suppose,
for instance, we consider

y(t)—= f "1, 0)(a)"do.

We assume that the process z(o) is such that
® t A,
Zf ZL"K,;,)—(LT "< o for some >0, M, (o) = E[|x(0)|"]
0 s =

which is a sufficient condition which guarantees moment-determinateness for z(f). If we
note that

IE[y(t)"]ls[f |k(t, 0)["/”_l(la:'n—lf:]\Iﬂ+m(o)do
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we can readily deduce a similar sufficient condition for y(¢) provided we assume that for n_>1,

)

which is entirely reasonable. A somewhat related condition is this: suppose the density of
x(t) 1s such that any f(x) such that

k(t, o) | tde <M< =,

I‘m | f(@)|2p(a)da< .

150

Where p(z) is the density corresponding to z(t), we can find a sequence of polynomials p,(x)
such that

The question is whether () will also satisfy a similar condition under reasonable restrictions
on the processor, and as far as the author is aware, no general answers are available. Again,
for all physical systems the answer should be affirmative.

The forms in (2.2) can be somewhat simplified [Balakrishnan, 1963] for “physically realiz-
able” processes.  We can use instead a Volterra expansion

:I/(f) ill [\ o o .f.t ”'k(f,al, 5o oo O'/;).If(o'l).l'(o'g) 5 s .'IT(O';\-)(/O'I 5o oo (/O'/;.

One obvious advantage in using these forms is that the moments of 7 () can be expressed in
{ { Y

terms of the moments of the x(¢) process without requiring the full joint densities. The second

degree form

(1) = f Woor, 0)a(00)2(00)dordos

occurs in recent work involving detection of noise in noise. For a Gaussian signal and positive
definite W,(...), approximations to the distribution have been given recently by Grenander,
Pollak, and Slepian [1959

In view of the difficulties involved in solving (2.3) and (2.4), it would appear that for
specific systems Monte Carlo methods would be a feasible computing alternative. Such
methods have indeed been reported [Thaler and Meltzer, 1961] for the linear-filter-nonlinear-
device-linear filter system that is of interest in radar applications.

When the Markov process is of the diffusion type, so that Fokker-Planck equations are
available, it is possible [Deutsch, 1963, and Fortet, 1958] to obtain partial differential equations
in addition to the integral equations. But from the point of view of practical solutions for
the general cases this merely trades one difficult problem for an equally difficult one.

Systems represented by differential equations. So far we have assumed the processes
arising from optimal operations to have an integral or system-function representation. In
some cases the representation may be in terms of dynamical equations. Of importance to
‘adio and communication is the phase-lock-loop system.

The “input’ in this case is the slow-varying phase of a narrow-banded signal which is ac-
companied by additive noise. We may represent the noisy signal by

A sin (wot+¢,(t)) +ax(t) cos wet+y(t) sin wot

x(t), y(t) being gaussian noise processes. The purpose of the phase-lock-loop is to produce a
“clean’ signal of the form

B sin (wot-+¢,(t))
where the phase ¢,(f) is to “follow” ¢,(¢) and the feedback or closed-loop is designed to achieve
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this. Details of the system may be found in Viterbi [1963]. Here we note that the relationship
of the output phase ¢,() to the “input” ¢,(¢) is described by a differential equation of the form

[a sin ¢(t) +n(t)]|=bL(D)[:(t) —d(t)]

where L(D) is a differential operator (usually rational in D), n(f) can be taken to be white
Gaussian, ¢ and b are constants and

b(6) =1 (t) — ¢:(£).

The difficulty in the analysis is caused by the appearance of the nonlinear function sin ¢ on the
left, and in the earlier literature it has been customary to use an approximate linear analysis.
However, more recently, the statistics of ¢(#) have been examined using Fokker-Planck equa-
tions by Viterbi [1963] and Tikhonov [1959] among others. This approach is feasible when
¢,(¢) is nonrandom, since in this case ¢(¢) is a stationary Markovian or one component of a
stationary vector Markov process. For instance, if one considers the simplest case when

L(D)=1,¢,(t)=»

we have a stationary Markov process and the Fokker-Planck equation—the backward equa-
tion—is easily derived using standard techniques as:

ow  b* O*w

ow
o 2 09 ¢

—[a sin ¢+»] Y

and since this contains only one space variable considerable progress can be made [Viterbi,
1963] toward obtaining the transition densities. This simplicity is lost as one considers more
general forms of the operator L(D), since now the Fokker-Planck equations contain more than
one space variable. Some of these cases have been considered by Tikhonov [1959] and Viterbi
[1963]. The former deals with

L(D)=(D+k)
while the latter examines the more realistic case (in the Communication Engineering context):

)=

The analysis is shifted from a nonlinear ordinary equation to (the Cauchy Problem) a linear
partial differential equation in several space variables (two in the cases above). While there
is considerable recent work in the mathematical literature on the Diffusion equations that
arise, much still remains to be done in specializing and applying these results to the present
problem. The linearizing or quasi-linearizing techniques which have been used [Develet,
1956] appear to provide reasonable answers but a measure of the accuracy of the approximation
is lacking, and must await more exact analysis.

3. Routine Data Handling

Of the many transformations of signal in more or less routine or established modes of
data handling the only ones that warrant examination here are Sampling and Quantization.
Let the number of quanta or levels chosen be N so that

Tz (t)]=¢: for a; <z (t) <.
The received or reconstituted signal y(¢) is such that

y(t)=m;
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corresponding to the received level ¢,, usually,

[ ”H]p (x)d

&7

%i+1
m, [‘ ap(x)de
Ja

i

where p(x) 1s the density corresponding to z(f). Usually the quantity of interest is the error
(say mean square) rather than the statistics of 7(¢). We may calculate this error, including
errors due to channel noise. Thus,

Bl -y =55 [ @—m)popds

where p,; is the conditional probability of receiving the 7th word assuming the jth word has
been transmitted. This can be further simplified to

El@®)—y@)))]=E[x(t)*]— > m3p,+>> (mi—m;)*pup; (3.1)

where

D;? [Hrly)(.r)([x.

if

The first two terms, which are independent of channel characteristics, together yield the “quan-
tization error.” It must be noted that the problem remains of the proper choice of the levels
{a;}, which make (3.1) a minimum for a given N. Ordinarily, this is a rather impractical
problem since the signal statistics cannot be specified a priori within the precision desired.
Indeed, in practice one assumes that the channel errors can be neglected and that the signal
has a uniform distribution, in which case the problem becomes trivial.

Let us next examine the effects due to sampling. Let

1

The samples represent the signal z(f) in the sense that if the signal is band-limited to
1 1
[— 9
2T 2T

sin 7 (2wt —n)

y(t)—*-fi z, e LRl

= (2wt —n)

then

so that the statistics are the same. In practice, of course, one must consider the effect due
to having a finite number of samples and secondly the effect due to the fact that the signal
may not be band-limited. The first of these has received considerable attention and refer-
ence is made to Thomas [1963] for details. The second is the so-called folding or a biasing
effect, and the error due to this should be considered well known [Balakrishnan, 1957]. A
different kind of error occurs due to imperfections of the sampler. One such error is due to
timing jitter. The timing is usually derived from the zero crossing of a sine wave of fixed
frequency but usually there is some phase noise present which causes the axis-crossing times
to jitter. This problem has been studied by Balakrishnan [1962]. Thus, the samples are now
given by

Yn=—2 ('n‘ T+ ¢n)

where {¢,} is a random sequence, which to a first approximation can be taken to be stationary.
Let O be some operation desired on the samples {z,}. Then the first step is to determine the
optimal operation O’ on jittered samples {/,}, so as to minimize the error—say, mean square—

E[O[x,]—0O’ (y)I?
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and calculate this minimal error. The details may be found in Balakrishnan [1962]. Here
let us note that {y,} is stationary and the direct error

By =2 a—ethphi

where the signal is assumed band-limited with w=1/2T, and p(f) is the spectral density of
x(t), ¢(f) is the characteristic function of the random variable ¢,. For the case where p(f)
is a constant, the normalized square error, expressed as a fraction of the average signal power,
is given appronmately by
8w 2o W2
3

where

os=E[¢,].
This is also of course the mean square error in the direct “fitted” y(f) using

y(t)= ; Yn SL—-fn; g;jfi,,,)n )
We note that the error is proportional to the bandwidth. If z(#) is gaussian, then y(?) is again
gaussian, regardless of the statistics of {¢,}. On the other hand, as shown by Balakrishnan
[1962] for certain jitter statistics it is possible that a discrete component will arise in the
spectrum of y(¢) even though z(¢) did not have any discrete components. If the jitter is “white”’
so that

El$,,]=0, nFEm,

the spectral density of () is given by
le(H)*p(f)+c

where the constant ¢ is given by
—Ela 21— [ jeh) s

¢(f) being the characteristic function corresponding to ¢,.

4. Adaptive Processing

In recent years there has been a growth of interest in adaptive methods in communication
systems because of the acceptance of special purpose computer and/or computer data
processing as part of the system. The effect of adaptive methods of processing on signal
statistics is of interest because the analysis involved in these problems exhibits certain features
that are novel.

In this section we shall examine a particular adaptive system which, while perhaps not
typical, serves to illustrate the ideas involved. The system we shall consider is a means of
achieving signal rate or bandwidth compression when no a priori information concerning the
signal statistics is available and the processing has included a learning feature. Without
going into a precise definition of what an “adaptive” system is, let us say that an adaptive
system is one which monitors its own performance, and when new conditions arise which
degrade the performance, the system learns how these new conditions effect the performance
and adapts or makes structural changes to restore the performance level. An adaptive system
thus will have a self-monitoring feature and a learning and self-adjusting feature. To be more
specific, let z(f) represent the continuous or discrete parameter signal. 1t is customary to assume
that z(¢) can then be regarded (at least for analytical purposes) as a stochastic process. If the
time-parameter ¢ is continuous, then it is often possible to assume that
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in a suitable sense (that is, depending on whether we adopt the stochastic or nonstochastic
viewpoint) for sufficiently large B, the bandwidth. By the well-known ‘“‘sampling principle”
then one can represent the continuous wave-form using periodic samples taken at t=n/2B.
In most communication systems using sampled data of this kind, the sampling rate is deter-
mined by the nominal, highest or cutoft frequency B expected in the data. However, in many
kinds of data—such as in space-telemetry data—the actual cutoft frequency is usually much
smaller for most of the time, so that there is no need to sample at the nominal rate of 2B.
In other words, it is possible to “compress” the data sampling rate or channel bandwidth. A
method of achieving such compression in P.C.M. systems is to exploit the redundancy or predict-
ability of the data. Thus, we employ a “predictor’” at the transmitter which predicts the data
at time t+A, based on the past up to time¢. The actual value observed is then compared with
the predicted. If the difference exceeds (in absolute value) a preset threshold, then the actual
sample is transmitted. If it is below the threshold, a prearranged code word using, say, one or
two digits is transmitted instead of the m digits, thus reducing the number of digits trans-
mitted per second. A comma free code may be used to sort out the two kinds of words un-
ambiguously. We shall not go into instrumentation details such as the buffering and so forth
needed, but concentrate on the adaptive theory involved. The adaptive or learning feature
comes in the predictor mechanism. The predictor is not operative until the threshold is ex-
ceeded, exhibiting the self-monitoring feature. The predictor itself is based on a ‘learning”
phase, and the prediction operator being adjusted accordingly. For details on the predictor
itself, reference may be made to Balakrishnan [1961]. The significance of the adaptive predic-
tion feature lies in the fact that no a priori statistics or other assumptions concerning the
data are required, and, in particular, it is realized that there may be periods in the data where
prediction (to the quality set) may not be possible. (No prediction of the stock market prices
is offered.)

The basic prediction philosophy may be indicated briefly. We are given a “wave-form”
of duration 7'—a function z(t), 0<¢t<7T, in other words, and we are required to “predict’’
the value at time 74A. Any prediction operation is to be based on this data alone, no other
additional a priori knowledge being available. This is, of course, an ancient problem and
here we wish to treat it strictly in the telemetry data processing context, and note two major
points of view in dealing with it. One which may be considered the ‘“numerical analysis”
point of view consists in assuming that certainly any physically realized waveform must be
analytic and can thus be approximated by polynomials. The data may thus be “fitted” to
a polynomial of high enough degree and we then simply use this polynomial to “predict” the
future values. The other and more recent view is the statistical view in which we assume
(perhaps with good reason) that the data is a finite sample of a stationary stochastic process
whose average properties such as moments and/or distributions are known or calculable from
the data. For a process of given description we can apply the well-developed mean square
prediction theory. Perhaps the main advantage with this view is that it gives us a quantita-
tive, albeit theoretical, notion of the error in prediction. The problem of measuring the
average statistics from a finite sample can be quite delicate, however. In the polynomial
fitting method, the interpretation of the prediction error—which is, after all, the crucial point—
is more nebulous, bound up with what degree polynomial to use and what portion of the data
is to be fitted. Moreover, as ordinarily used, the fitting operations on the data are linear.

We adopt a rationale for prediction which is free from a priori assumptions concerning
the “model.” In a general sense what is involved in both the above methods is first “model-
making”’ consistent with the data and as a second step using the numbers derived therefrom
to perform some optimal operations. If an understanding of the mechanism generating the
model is desired, the first step is essential. If what we want is prediction, then we shall show
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that it is possible to proceed directly (and hence more optimally) to the best prediction without
the intermediate step of model-making. It may be, of course, that several philosophies lead
to the same operations on the data. KEven here, the present method offers some practical
advantages. Moreover, it is only natural to use the philosophy that requires the least prior
assumptions.

We note first that any prediction is an operation or operator on the part of the data, and
in our case the finite part is all that is available. The main point of departure in our view
is that if we have a prediction operator, which based on all the available input data, functions
optimally in the immediate past of the point where the prediction is required, this is all that
we can ask for meaningfully as a solution to the prediction problem. Thus, the only basis
on which we can a priori judge any prediction method is to “back off”” slightly from the present
and compare the actual available data with the predicted value using the given prediction
operator. let us see how this can be formulated analytically. Let the total available data
be described as a function z(t), 0 <t<T, and let it be required to predict the value at 7+A,
A >0, being a small fraction of 7. Let us next consider the data in the interval 0<t<_7T—A.
If for any ¢, in this interval we should choose to make a “prediction’ of the function value A
ahead from the past values up to ¢, denoting the predicted value by

x*(th+4)
we can explicitly observe the error

z*(t+A) —x(to+4).

Let us next note that the general prediction operator will be a “function” of a finite segment
of the past. Let us denote the length at this segment by S. Then, of course,

o (tg+24) =0 (2 (0) :t— S <o<t0), (4.1)

O representing the prediction operator. Next we have to specify the error criterion. Here
we choose the mean square error, first because it is simpler analytically and is almost uni-
versally used, making comparison with other methods possible. The kind of solution presented
being definitely not “analytic,” based rather on successive approximation, other measures of
error can be used at the risk of greater complexity. As far as the rationale of the method is
concerned, this is largely a matter of detail, rather than principle. We thus use this method
to determine optimality:

1 O o
TATT L [2*(t+A)—z(t+A) Pdt=¢ (4.2)

where L.>S, and we proceed on the basis that the operator O is best which minimizes (4.2).
We can, of course, generalize (4.2) as:

ﬁ fIT_Ap(t)('(;r*(t—l—A)—x(t—}—A))dt (4.3)

where p(?) is a positive weight function and C(.) is, say, a symmetric positive cost function.
Before considering the problem of determining the optimal operator O, let us note an important
consistency principle. Suppose the data is regarded as one long sample of an ergodic process.
Then (4.2) yields exactly the optimal operator in the statistical sense. However, we have
not needed to make any such assumption concerning the data, nor have to compute average
statistics first. The point is that while the data may not be enough for determining let us
say the spectrum, it may be quite adequate for the prediction itself. Unlike the polynomial
fitting, the operations on the data can be as nonlinear as necessary, and at the same time
(4.2) normalized to
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yields a quantitative measure of the prediction error on which to judge how good the prediction
will be.

To continue with the description of the system, we assume that the receiver performs a
prediction operation similar to the transmitter. In other words, the receiver predicts the
ralues of the nontransmitted data using the transmitted as well as predicted sections of the
data. This would mean that the receiver sets the same level of possible complexity of the
prediction operator as the transmitter does, and in particular, the transmitter itself has to base
its prediction using, as necessary, predicted data points that did not exceed threshold error.

So far we have determined the optimal adaptive structure, but there still remains the
question of evaluating the system. For instance, it is natural to ask how much compression
it is possible to obtain in this way on the average, and what the overall error will be. Here
we have to postulate some structure for the data source and then calculate the resulting
compression using the adaptive system. We shall now briefly indicate what an analysis of this
type involves. Not to unduly complicate the analysis, let us consider the prediction operation
in the transmitter based only on the actual samples. Let us denote the data samples by {x, }.
We assume that the data can be taken as a stationary stochastic process. We may further
assume that the process is Gaussian since the maximum prediction error (and hence the
minimum compression) oceurs in this case because the prediction operation includes only the
linear. Lt us consider the case where the adaptive predictor is also constrained to be linear.
In this case the optimal filter-weights {a;} are determined by minimizing

1 0 < m 2 _
¥ 2 (B2, (4.5)

—N+1

where the past available data consists of N samples and the prediction is based on “m’ samples.

We are, of course, considering the “analog” method above. The corresponding (squared
;| ) - =} t=} 1

error is then

m 2
& [171;]\’]—*(11—}1:,(1,11_,)- (4.6)

The transmission is based on (4.6) exceeding a threshold “¢”’. Hence, what we want first is to
determine the statistics of (4.6). We note first that the optimal {«,.} that minimizes (4.5)
will satisfy

0 0
DO Tplax=2 D, iy Xn_r, k=1,...m.
—N+1 j m=—N+1

Let Y, be the N-column vector
[x+n) x-{—n—l; Y In—N—i—l]-
Then the minimum of expression (4.5) becomes

l Dm+1
N Dm

where 1), is the determinant of the m-1 by m-1 matrix with entries
Y, Y, 4,7=0,—1,...—m
and D,, is the determinant of the m by m matrix with entries
Y, Y, 1,j=—1,—2,...—m.
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On the other hand, we are interested in the error (4.6), which is

D?’IL &
€ [m; le(——D“> 4.7
where D), ., has first row
X1y, Loy L—1y « « oy Lomt1

and is otherwise the same as D,,;. Our first interest is in the statistics of (4.7). We need to
know

Pr-[[m; N]>t]

which is the probability of exceedance of the threshold, and the attainable compression ratio is
then readily deduced from this.

We shall not go into the details of these calculations. However, if we simplify matters and
assume that NV is large enough so that we can replace the “time’ average in (4.5) by a phase
average, the {a;} of course become the optimal regression coefficients that minimize

m 2
E [ ZO_Z I_jaj> ]
1

and the error ei[m; «] is now the residual

m 2
€ [my; ]:[%_2 x_jaj:l .
But
m
Lo— ; x_]-aj)
is Gaussian and the threshold probability we want can be calculated simply from
o*[m, ©]=E[e[m; ©]]

Hence, the first step is to calculate this. This is already a nonstandard problem, in that
explicit expressions for this error are not known. Some asymptotic estimates are given.
The complete analysis thus involves some labor, unless simplifying approximations can suffice.
For instance, in computing the statistics of (4.7), we may be content to compute the first
moments. We omit the details of these calculations since our purpose here is merely to
illustrate the kind of analysis is involved.

We note that the adaptive theory winds up with an “optimum® procedure. To evaluate
how good the system actually is, we have to specify the class of input or system parameters—or
their statistics if they are regarded as randomly varying. Very often there may not be any
clear-cut “optima.” This means that we may have to be satisfied with suboptimal systems and
there will usually be many of these, and the problem of deciding among them by analysis in
any quantitative way can be a hard one.

In conclusion, let us note that adaptive processing methods in communication theory are
still in their formative stage. We have discussed an example which illustrates most of the
features that characterize the theory involved in these methods without any pretense at being
exhaustive.
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