
RADIO SCIENCE Journal of Research NBS/USNC- URSI 
Vo!' 68D, No.9, September 1964 

An Approach to Empirical Time Series Analysis 1 

Emanuel Parzen 

Department of Statistics, Stanford University, Stanford, Calif. 

(R eceived D ecember 6, 1963 ; revised January 24, 1964) 

This paper attempts to d evelop a philosophy for empiri cal time series a nalys is, in volving 
t h e routin e usc of four data handling proced ures (covariance estimatioll , spect. ral est im ation, 
au toregressive modrl fitting and spectral esti mation , and trend elimination and estim ation) 
embodied in a computer program. 

The cross-spectral analys is of a pair of time series, each con ist.in g of 4000 observations, 
r equires approximately 1.0 minutes on a 7090, in cludin g computation of covariances. Several 
examples of empir ical time series analys is arc given. 

1. Introduction 

The probabilistic theory of time series is now 
extensively developed, built on the pioneering work 
of ,Viener, Khintchine , Kolmogol'ov, Cramer, Loeve, 
and Karhunen in the 1930's and 1940's. The 
sta tistical theory also enjoys an extensive literature 
and a fair share of beautiful results . While the 
probabilistic theory can be pursued for the sake of 
its great beauty, it would be a mistake if the statisti
cal theory were to be developed only for i ts elegance. 
The ultimate aim of the statistical theory must be 
to provide data handling procedures for achieving 
the aim oJ Lime series analysis: synthesis of stochastic 
models which call be used to describe, and perhaps 
to control, the mech:1ni sms generating each time 
series and relating various time series. 

For this reason , one may define a field, wllich 
may be called empirical time series analysis, wi th 
aims such as the foll owing: 

(i) to develop efficient computer progr ams for the 
statistical treatment of empirical time series, paying 
especial attention to flexibility of input and output, 

(ii) to develop a philosophy, based on statistical 
theory, for judging and in tel'preting the statistical 
data reduction provided by the computer output, 

(iii) to provide experience in the small sample 
applicability of s tatistical procedures derived from 
asymptotic theory, 

(iv) t.o focus attention on the theoretical questions 
requiring furth.er investigation, such as the problem 
of how to transform observed data to put them into 
a form where they satisfy the assumptions required 
to apply various sttLtistical data reduction routines. 

I Paper presented at the Symposium on Signal Statistics in Seattle, Wasil., 
Dec. 6-7, 1963, und er the tit le "Statistical Methods for Stochastic Proce8scs." 
Prepared und er the auspices of National Science Foundation Grant G P-82. 
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The goal of empirical time analysis is precisely Lhat 
enunciated by Richard Hamming [1962] for numerical 
analysis: the seeking of insight mther t itn,n numbers. 
One should not expect empiri cal t im e series an tilysis 
to be a mere matter oJ grinding out clll swers. Rather 
one desires to obtain a wealth of cU1 swers which 
can be tempered by imagination and judge ment to 
achieve models for time series. 

:My aim in this paper is to sketch an approach to 
empirical time series analysis whose basic attitude 
is: one should analyze the data in anum bel' of ways, 
each corresponding essentially to a ditrercJ} t possible 
model for t he observed time series. Ec).ch analysis 
provides estimates of the parameter (or incompletely 
specifled probability hwr characteristics) involved 
in the model. Comparing the analyses provides 
rough tests oj hypotheses concerning which model 
provides a better fit to the data. 

2. Standard Models 

The standard model adopted for the analysis of 
a time series {X j(t), t= l, 2, ... } is to write it as 
the sum 

(2.1) 

of its mean value function 

m j (t ) = E[Xi(t) ] (2.2) 

and the residuals or fluctuations 

(2.3) 

In order to have the possibili ty of statistical 
inference from a single fini te sample of a time series, 
one assumes that the residuals are covariance sta-



tionary [Pal'zen, 1962] in tlw sense that (for i, j=l, 2) 
there exist functions Rij(v) of integers v=O, ± 1, ... 
such that 

Cov [Xi(t), X;(t+v)]=E[Yi(i)Yj(t+v)]=Rij(v). 
(2.4) 

We call Rij(v) the cOI'ariance functions of the time 
series, and 

(2.5) 

the correlation functions. 
The covariance JUllctions Rij(v) always possess 

representations as Fourier-Stieltjes integrals. It is 
next assumed that they are Fourier transforms of 
spectral density functions j;J(w): 

(2.6) 

The (auto) spectral density function Ju(w) IS a 
nonnegati ve even function of w: 

(2.7) 

The cross-spectral densi ty functionJij (w) is in general 
complex valued; its real and imaginary parts are 
called respectively the co-spectral density, denoted 
cJw), and qnaclrature spectral density, denoted qilw). 
These functions possess the following properties 
(writing z to denote the co mplex conjugate of z) 

called the phase difference between the two senes 
at frequency w; 

(2.13) 

called the error spectrum of the predictor of Xi·) 
given X;(.). 

In the sequel we shall discuss the question oJ 
estimating the mean value functions and spectral 
functions associated with. time series. In terms of 
the spectrum, one can del'ise yarious physical 
mechanisms (especially filters) which might have 
generated the time series and which might be used 
to simulate them. 

3. Sample Covariance and Correlation 
Functions 

A basic step in empiri cal time series analysis is 
to form estimates of the covariance, correlation, and 
spectral functions. I belieye it correct to say that 
these estimation problems do not as yet have 
generally accepted solutions. One of the aims of 
this paper is to stress the points at issue. 

The :first point I desire to raise is that for the sake 
of de lreloping a modular computer program we should 
adopt the following de:finitions for the sample 
covariance functions R Il (.) and R 22 (· ), and sample 
cross-covariance functions H12 (·) and R2! (. ): for 
i,j= 1, 2, 

v=O, 1, . . • ,N-l. 

(3. 1) 

(2.8) For negative values of v we defne 

One can define for two join tly covariance station
ary time series X i ( · ) a ITariety of spectral quantities, 
as follows: 

IJij(w)12 
J ii (w)fjj (w) 

dj(w) +q~j(w) 
fii(W)Jjj(w) 

(2.9) 

called the coherency between X i(·) and Xi · ) at 
frequency w; 

gilj (W) If ij (w) I (2 .10) 
J j(w) 

called the gain at frequency w of the predictor of 
X i (.) gi ven X;C- ) ; 

g . . ( )= lfij(w) 1 
JIt W .fi(W) (2 .11) 

called the gain a t frequency w of the predictor of 
X;C-) given XtC· ); 

.p(w) = arc tan (q iJ(W») 
Cij(W) , (2.12) 

(3.2) 

For the sake of distinguishing the es timates from 
the population quanti ties they are estimating one 
should wri te Rt(v) instead of Rij(v) to indicate 
that i t is an estimate. F or ease of wri ting we omit 
such asterisks. H owever , they should be inser ted 
by the reader when discussing the proper ties of the 
estimates. 

Computing the sample covariance and cross
covariance functions will b e one of t he mos t time 
consuming aspects of a time series analysis of real 
data. It turns out that on e can choose a convenien t 
number VITI ax, less than N, such that one need 
co mpute only 

v= O, l , ... , V max' 

One rarely chooses Vmax to b e greater than 40 percen t 
of the sample size N, and often it will be 0. 25 N. 
Some consider a tions on how to choose 17m ax are 
discussed below. We call V rnax the covariance 
trnncation p oin t . 
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From t ile sample covarifince and cross-co\'l1riancp 
functions, one forms sample conelatio n find cross
correlfition functions, defi ned by 

for 11 = 0, 1, ... , maX' As a ll ex:unple of the 
meaning of (3 .3) note th a t 

]\T -v 

;cXi(t)Xi(t+v) 
Pu (v) = t,--~-,-l_~N~--- v= o, 1, ... , N-l. 

~XW) 
t~ l 

(3.4) 

It should be noted that some writers would esti
mate pu(v) by the ordilUu')' correlation coefficient 
between the two se ries 

{X;( t), t= l ,2, .. . ,N-D} and 

{X j (t + v), t = l,2 , . .. ,N-v } (3 .5) 

which is gi \'e ll by 

defining 
1 N - v 

X1.0=~T :6 X;(t) , 
1 \ -v t ~ 1 

(3. 7) 

(3.8) 

The nexCtwo secLions discuss the 1ll 0L inl.tio ns for 
a nd impli cations of defmit-ions (3. 1) a nd (3 .3), and 
why we oppose definition (3 .6) . 

4. Mean Subtraction 

It seems odd that we do not use in the sample 
covariance func tion the deviations X(t) - X of the 
observations from the sample m ean 

_ 1 N 

X=N~X(t) 

series about the trend assumed to be covariance 
stationarv. 

Olle is 'in terested in the trend for two purposes: 
(i) to estimate it, as an important part of the 

model one is fitting to the time series, 
(ii) to eliminate it in su ch a way as to obtain esti

mated ntlues of' the residual se ries EO so that its 
co\'ariance and spectral st ructure can be estimated. 

Tit optimum procedure for estimating the trend 
depends on the co\'ariHl1ce structure of the residuals. 
Consequently, in a sense, the pr oblem of trend elim
ination needs to be sol \'ed before one can solve the 
problem of trend estilml.tion. 

Detrending refers to sub tracting nn esti mated mean 
yalue functioll I?~(t) frolll a time se ri es X(t) to pro
duce a new time se ries Xd(t) = X(t) - I?~(t). We call 
Xa(-) u cletrcnded versioll of X(-) about its mean 
yalne fUll ct ion. Detrendillg meth ods difl'er OJll~T in 
the way in w hic: h th e estinmtecl mean \,/tluc [unction 
is ['orllled. 'l'wo impOl'lall t wnys ill which one at
tempts to eliminate trend (o r cleLrend) arc m ean 
detrellciillg IIlld linonr de lren cl ing. 

lvfean (1PiI'ending. The cstilllated Ill ean \'ltluo func
ti on is the arithmetic a\'crage of th e time scries 
obser n ttions : 

A 1 N -
m(t) = N ~ X(s) = X for t= l , 2, . . . , N (4.1) 

8~J 

The de trended time sories is 

t= l, 2, . .. , N (4.2) 

Lineal' detrending. Tho es timated mefill value 
fu nction is a regression line fi tted to t he time series 
by t he meth od of le'l.st sqllll.res: 

m (t)= X + b(t - t) for t= l , 2, . . . , N (4.3) 

where 

- 1 N 
LY = N:6 X (t ), 

t ~ J 

_ 1 N 

t= Nf;; t=(N + 1) /2, 

N _ N .:st X (t) - t >= X(t) 
b= t~ l t~ 1 

11' 
:6 t2-Nct)2 
t = 1 

(4 .4) 

(4 .5) 

N __ 

~tX(t)-NtX 
1~ 1 (4.6) 

rather t han X(t ) i tself. T o explain our p osition on 
this poin t we i nt roduce t he notion of detrencling . The detrendcd time series is 

In an alyzin g a tim e series { X(t), t = 1,2, .. . ,N, } 
one usually adopts a m odel for Xc-) of the form, 

X(t) = m(t) + E (t), 

where m(.) is the mefin value function, sometimes 
called the trend, and E(-) is the fluctuation or residual 

Xa( t) = X(t ) -[X + b(t - t )], t= l , 2, ... , N . 

(4.7) 

-VVe n ow see why in forming sample co vari ances 
one should not necessarily subtract out the m ean of 
a time series. W e believe that one should assume 
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that the time sories ej th er have zero means or rep
resent residuals after de trending. Further, there 
will be occasions when automatically subtracting out 
the mean limits our ability to compute interesting 
estimates. ' Ve win often desire to consider a con
stant time sories 

X(t) = 1, all t, (4.8) 

which we do not desire automatically to replace by 
the zero time series. 

5. The Divisor Question: N - v or N 

In the definitions given by (3. 1) for Rij(V) we have 
chosen to divide by N (the number of terms in the 
series) rather than N-v (the number of . terms being 
summed to form R ij(V)). Many researchers seem to 
prefer to divide by N-v on the grounds that it leads 
to an unbiased estimate of the true covariance 
B iiv) (in the case of time series X iO with zero 
mean) : 

The suggestion that it is preferable to use the 
divisor N rather than N-v, which is adopted in this 
work is ~otivated by the following two considern
tions: Let us cnll R (j (v) with a divisor of N-v the 
unbiased estimate and B ilv) with a divisor of N 
the biased estimate. 

One may show that 
(i) The unbiased estimate regarded as a function 

of v is not a positive definite function while the 
biased estimate is. This property is desirable for 
two reasons; first, because we nre estimating a posi
tive definite function, and second, because it ulti
mately leads to nonnegative estimates of the spec
tral density function. 

(ii) One may show that in many cases the biased 
estimate has a smaller mean square error than the 
unbiased estimate. While this seems to be true in 
o·eneral , a rigorous proof has not as yet been found 
[see Schaerf, 1963, for proofs in various special casesJ. 

In her Stanford Ph. D. thesis, Mirella Casini 
Schaerf [1963J shows that while the unbiased sample 
covariance function usually has a greater mean square 
errol' than the biased sample covariance function , 
neither seems to provide a really satisfactory esti
mate of the true covariance function. The sample 
covariance functions never damp out to zero , which 
we assume is the case for the true covariance func
tion. Schaerf examines various ways of modifying 
the sample covariance function to improve its prop
erties, with somewhat pessimistic results. 

Nevertheless it seems that when properly trans
formed the biased sample covariance function (in 
spite of failing to give a r easonable picture of the 
true covariance function) does yield estimates of the 
spectrum which provide a reasonable picture of it. 
It possesses the essential property which the sample 
coyariance function must have (in order for its 

Fourier transform to be interpretable as a spectral 
density function), namely positive definiteness. 

The definition of the sample correlation function 
given by (3.6) is not positive definite. There seems 
to be no reason to use such an estimate. In what 
way is it relevant to our aims in time series analysis? 

6. Estimates of the Spectrum and Cross 
Spectrum 

The theory of estimation of the spectrum and 
cross spectrum is too extensive to be conveniently 
summarized here. We can only state the estimates 
which present theory seem to indicate should be 
formed as the first step to understanding the spec
trum (I h ave tried to summarize this theory in 
Parzen [1961 and 1964]). 

Three methods of computing spectra seem to be 
available for consideration: 

(i) the indirect or transform method, which Fourier 
transforms weighted co variances to estimate spectra, 

(ii) the direct or filter bank method, which esti
mates spectra as the variance and covariance of 
various filtered time series, 

(iii) the method of autoregressive spectral estima
tion. 

We discuss method (i) in this section and method 
(iii) in section 8. We do not discuss method (ii); 
see Ormsby [1961], Welch [1961] , and Brillinger 
[1963]. 

Let Rij(V) denote either the sample cross covariance 
or the sample cross-correlation function. While in 
our opinion one should use the latter for ease of 
interpretation, the graphs one obtains have exactly 
the same shape in either case since they differ by 
constant factors (assuming (3 .3) is used). 

As an estimate of the true cross-spectral density 
function f ij (w) one f01"ms the estimate 

which depend on a choice of two quantities: 
(i) an integer )J1, called the truncation point of the 

spectral estimate (we usually choose several trunca
tion points in practice) 

(ii) a kernel k( .) known as the lag window of the 
spectral estimate; its Fourier transform 

K(w) = - e-ivw k(u)du If 00 

271" -00 

(6 .2) 

is the spectral window generator of the estimate while 

is called the spectml window of the estimate; it may 
be shown that approximately 

(6.4) 
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There is a third choice to b e made in forming th e 
estimate j ij(W) , and this is th e number of p oin ts on 
the interval 0 to 7r at which i t will b e co mputed . 
W e adop t th e 1l,LLit ude that j ii w) sh ould be comp uted 
for 

7r 7r 
w= O, Q' 2 Q" . . , 7r (6.5) 

where Q is an in teger Lo b e ch osell . We call Q 
the spectral computation number . 

Spectral window gen erators . In this work, we 
use only th e following spectral window gen er a tor : 

k (u) = 1- 6u 2 + 6U3 , 

= 2(l - U)3, 

=0, U 2:: 1 

0 :S;u:S; 0.5 

0. 5:S; U :s; 1 

= lc (- u ), u :S; O. (6.6) 

A theory of sp ectral window O'e nerators is de veloped 
in P a rzen [1964]. I t is shown t hat the kern el (6.6) 
always leads to llonnegati\Te spectral estim a tes whose 
\~ariance (when properly n orm al ized [ 01' co mparison) 
is slightly less t ha n the varia nce of various other 
estimates conside red. I n p ar ticlilar a co mp ariso n 
is m ade with certa in other kernels which ha,\'e been 
'widely used ; see Blackrnll,n a nd Tukey [195R]' p. 9R. 
One such kernel is 

1 
lc (u ) - 2 (l + cos 7ru) , 

= 0, o Lhel'\\'i se . (6. 7) 

S tatistical si.9n~ficance oj spectral esti mates. Assum
ing normali ty of t lte obsen 'ed tim e series, i t may be 
shown that th e yariance of the estimated spectral 
density 

depends on the sample size N, the kernel lc (.) , the 
t runcation point M , and the true spec tral density 
j i' (W) as follows : 

Val' [fi~(w)l=~~jMw) {f '" k 2 (u )clu ~ if O< w< 7r 
1v _ a> ) 

=2~jMw) {r '" k 2 (u) clu ~ 
Lv . ' _ a> ) 

if w= O or W= 7r. (6 .9) 

It should be n o Led LiJ at t he equ ali ty in (6.9) is only 
approximate; from a rigorous poin t of yiew it 
should be wri tten as a l'el n. ti on t hat h old s in tbe 
limi t. 

No te that Lhe y,l rinnce in (6. 9) increases as the 
truncation p oint 1\;[ increases. Therefore one I S 
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temp ted to m ake 11;[ small. H owever the smaller 
1Ii{ t he larger is the bias of j ;, (w) as an estim ate of 
.f;.(w). Thus arises th e crux of the spec tral estima
Lion problem- how to choose the truncation point 
so as to optimally co mpromise between a number of 
co n Oicting obj ecLiYes. 

If instead of j t(w) one plo ts its logari thm loge 
it. (w) one achie ves two ad n l.ll tages : 

(i) one m agnifies Lhe graph of the estimated 
densi ty in regions where i t is s ill all , enabling one to 
more easily study the beha \Tior o[ t he spectrum at 
t hese frequencies, 

(ii) one achieyes a n es tim ate whose sampling 
proper ties are the same for all frequ encies since by 
large sample s t fl. tistical th eory (6.9) implies 

Val' [Iogej i; (w) l =~{ .L"'", 1c2(u)dtL} if O< w< 7r, 

'If rr '" } = 2N\. _'" F (u )du if w= O or W= 7r. 

(6. 10) 

\iVhel'en.s a confidence b a nd flbou L the es timated 
spectral density h as a widLh which varies wi th the 
height of ti tO density, a co nfidence ba nd ab ou t the 
10gf'lriLlull of t he density ha.s a co ns t/tn t widLh: 

( 11;[[ '" } 1/2 
I l oge fi~(w)- loge .fii(w) 1 :S; 2 ~ N' - lc2 (u )clu 

\... . -'" 

(6. 11) 

cfl.n be considered to be a co nfidence b an d for each 
w ill 0< w< 7r of approx ilTl fl.te conflcl ence 95 percent. 

F or Lhe k el'l1el (6.6), f _"'", lc2 (u )clu= 0 .54. Therefor e 

Lhe l'igh t-hfl.nd side of (6. 11) , hereafter denoted ~, 
is 0.33 [or M IN = O.05 a nd 0.46 for 111IN = O.1O. 
T he value of ~ for o t her r atios JI;[IN is t hen easily 
Ilpproximated (thus, ~ is 0.46 , 14 = 0.92 for lYflN = 
0.40) . 

From (6.] 1) i t follows that for each w in 0 < w< 7r, 
with approxinm le confidence 95 percen t, 

(6 .12) 

It is worth noting h ow quickly the limi ts in (6. 12) 
increase as ]o.;[IN increases; thus 

NI l N e-6 - 1 eo. - l 

O. 05 - 0.3 O. 4 
. 10 - .4 . 6 
. 20 - 5 .9 
.4 0 - . 6 1. 5 



Only for Af/N less than 10 percent is the percentage 
error of th e estim ated spectrmn of reasonable si;-;e. 

The staListical significance of cross spectral esti· 
mates is discussed by Jenkins [1963], and Goodman 
[1963] . 

Choice of truncation point. It seems to be in
creasingly accepted among workers in statistical 
spectral analysis th at the spectrum should be 
co mputed for several choices of truncation point 1.11. 
As yet we do not have routine quantitative (or even 
qualitative) procedmes for interpreting the spectra 
obtained from seyeral choices of 1.11. Such procedures 
are still under development. My experience has 
led me to feel that a good picture of the spectrum 
can be obtained by takin g t hree truncation points 
]y[\ <M2< 1.113, I choose M\ to be an even number 
between 5 percent and 10 percent of the sample 
size N . I then choose ]Y[z = 2M\ and },!{3= 2M2 • In 
section 9 we gi ve examples of spectra computed wi t h 
se \-eral truncation points. 

Choice of spectral computation n1Lmber. The spec
tral computation point Q has in the past frequently 
been chosen to be equal to the truncation point M. 
One can prove a sampl ing theorem to the effect that 
the estimated spectrum (which is a function of w, 
measured in cycles per unit of observation time, 
in the in tenal 0 ~w~ 0.5) can be recoyered from its 
value at M equally spaced points. However, this 
recovery cannot necessarily be done by linear 
interpolation. If the graph of the estimated spec
trum is to be obtained by merely drawing line 
segments connecting t he computed values, one needs 
to compute the spectrum at Q equispaced frequen cies, 
where Q should be at least 2M and perhaps should 
be4M. 

If one uses 3 truncation points M\ < 1\112< 1.11" it 
has seemed reasonable to me to compute each 
spectrum at Q= M 3 points. However , one should 
choose Q (approximately equal to M ,) such that the 
frequencies which are multiples of 7f /Q are of physical 
interest. For economic time series of monthly data 
we usually choose Q to be a multiple of 12. 

STEP 2. Choose three trun cation points MJ, M z, 
1.113 , For each truncation point, carry out steps 3 
to 5. 

STEP 3. Choose an integer Q. Then for each 
frequency 

w= O ~'2~, · ·· , 7f 
'Q Q 

(7.3) 

compute the quantities described in steps 4 and 5. 
STEP 4. vVe prefer to compute normalized cross 

spectra (the transforms of cross correlations rather 
than of cross covariances) since they seem to be 
easier to graph and to compare. 

The normalized spectral density functions, co
spectrum, and quadrature spectrum 

(7.4) 

at frequency w could be compu ted by the formulas 

jii(w) =~{~RI2(0) + #t cos (vw)k (lJ)Rii (v) } , 

(7.5) 

CI2(W) =~{ ~ RI2 (0) +~ tr cos (vw) k (~) 

[R I2 (V) +R21 (V)] (7.6) 

where },!{ denotes the trun cation point. 
These spectral quan tities are most efficiently com

pu ted not by using the explicit formulas above but 
by using an efficient procedure for evaluation of 
finite Fourier transforms due to Goertzel [1960] . 

STEP 5. We next compute the following spectral 
quantities: 

7. Computation Formulas for Cross-Spectral Phase, 
Estimates by the Transform Method 

The time series Xl (.) and X 2(-) whose cross spectra 
one is estimating are usually not the directly observed 
time series but rather the result of various de trending 
and ftl.tering operations. Assuming that we are 
dealing wi th two time series ready for cross-spectral 
analysis, the following computations are performed. 

S'l'EP l. Let N be the number of observations in 
the two series. Choose an integer Vrnnx < N and 
comp.ute, for v= O, 1, 2, ... , Vma" the cross 
covanances 

R l1 (v), R 22(v), R I2(V), R21 (V) (7.1 ) 

and the cross correlations which we denote by the 
notation 

Rl1 (v), R22(V), il12(v), R21(V). (7.2 ) 

Coherence, W I2 (W) = 1.!12(W)l2+Jl1 (W)j 22(W) 

Gain 1/2, G1/ 2(W) = AI2(W) +j22(W) 

Gain 2/1, G2/ 1 (W) = AI2(W)+.!11(W). 

Computation time. It may be worth explicitly 
no ting two ways which we have found for reducing 
the compu tation time required. 

In computing covariances we call upon an external 
procedure for computing inner products which exe
cutes faster than the equivalent codin g in program
ming language. Figure 7a lists our covariance 
computation routine. 

In computing spectra and cross spectra we use 
the Goertzel procedure mentioned after (7.7). Fig
ure 7b lists this computation routine. 
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Z PROCEDURE COVARIANCE(N9M,Ll,L2.XI) $ RIChR21)tCJ(I,CT()9 Dl ,D2~D3)$ 
2 COMME NT THIS PROCEDURE COMPUTES THE AUTO AND CROSS CORRELATI ON FUNC-
2 TIONS, RlcI),R2II),CIII) AND CTII), FOR I =1 ,2 ... uM+l e THE FUNCTION .. 
2 AT LAG ZERO IS STORED AT 1:1. THE FUNCTION AT LAG M IS STOR eD AT 
2 I=M+l. THE TIME SERIES ARE OF EQUAL LENGTH N AND BOTH ARE STORED IN 
2. THE ARRAY YI), ONE BEGINNING AT Ll, THE OT HER AT L2 . THE AUTO-CORR 
~ FUNCTIONS ARE NORMALIZED TO HAvE A VALUE 1 AT TH E ORiGIN AND THE 
2 CROSS CORRELATIONS ARE ALSO CONSIS TE NTLY NORMALIZED. THE NORMAl-
2 I ZI NG FACTORS ARE Dl,D2 AND D3. THE FUNCTIONS ARE ADDED INTO THE 
2 ARRAYS RI( ),R2( ),CI() AND CT() TO ALLOW POOLING OF (OVARIAN(ES. SUM= 
2. INPROD(K,L,N,A( I,B(» IS AN EXTERNAL FUNCTION EQUIVALENT TO 
2 I~UM"'O.O, FOR 1:(O,l,N-ll, SUM=SUM+A(K+I ).Bll+I)' $ 

2 BEGIN 
2 
2 

INTEGER I ••• ,J ••• ,K ••• ,L ••• ,M ••• ,N ••• $ 
D1 :: INPROD(Ll,Ll,N,X() ,XI 1)$ 

2 D2 '" INPROD(L2,L2,N,XI) ,X(»$ 
2- D3 :: SQRT(Dl.D2.) $ 

FOR KK ::: (1,1,"1+1) $ 

BEGIN 
~ 
2 
2 
2. 
2 
2 

R1IKK)=~1(KK)+INPROD(Ll,L1+KK-l,N-KK+l,X(),X( »/D1$ 
R2(KK)=R2(KK)+INPRODIL2.L2+KK-l,N-KK+l,XI),X( »/D2$ 
CI(KK,=CI(KK)+INPROD(Ll,L2tKK-l,N-KK+l,X(I,X( »/D3$ 
CT(KK,=CT(KK)+INPROD(L2,Ll+KK-l,N-KK+l,x(),X( »/D3$ 

2 END .$ 

2 RETURN END $ 

FIGUHE 7a . Proceclw'e covariance. 

The computation time T of tbe covari ances of a 
pair of time series is approxim ately the product of N 
(the length of t he Lime series) and M (the tl'uncatioll 
poin t) . Some typical values (on a 7090) are: 

N 

200 
1000 
4000 

111 T 

80 4 sec. 
200 1 m in . 
500 8 min. 

The computation time T of a cross-spectral analy 
sis is approximately the product. of M (the truncation 
poillt) and Q (the spectrum compu tation number) . 
Some typi cal valu es (on a 7090) are : 

111 Q T 

40 40 1 sec. 
80 80 4 sec. 
80 160 8 sec. 

200 200 24 sec. 
500 200 1 m in . 
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8. Autoregressive Spectral Estimation 

Gi \Ten autoregression coefficients aI, . . ., am one 
"-

can form a new time series, denoted X(·) , from a given 
time series X (·) , by the formulA, 

A 

X(t) = atX(t - l )+ ... + a",X(t - m). (8. 1) 

We say that XO is obtained by au toregressive filter
ing from XC- ). The residuals 

A 

E(t) = X(t) - X(t) (8 .2) 

are said to be autoregressive residuals. They are 
A 

examined to determine how good a predictor X(t) 
is of X(t). 

The au toregressive coefficients ar, ... , am may 
either be specified a priori or may be estimated from 
the data by a procedure known as stagewise auto
regressive estimation (see fig. 8a for t he compu tation 
r outine). In this case, one may be able to estim ate 
the unknown spectral density function of the time 
series X(·) by a method called autoregressive spectral 
estimation . T o describe this method we discuss some 
relations between transfer fun ctions. 



2 PROCEDURE TRANSFORMIM,N.WI) ,RIC I ,REC I ,ROI, ,R21 )Hl I I.F21' ,COl, ,QUf I IS 
2 BECiIN 
2 COMMfNT THIS PROCfDURE COMPUTES ~+l POINTS OF TWO ESTIMATED SPECTRAL 
2 DENSITY FUNCTIONS AND OF TWE (O-SPECTRUM AND QUADRATURE-SPECTRUM 
2 fROM RI1) AND R2C' WHICH ARE THE AUTO-(ORREL~TION FUHCTIO~S AND REI I 
2 ~ND ROC I WHICH ARE THE EVEN AND ODD PARTS OF THECROSS-(ORRELATION 
2 FUNCTION OF TWO TIME SERIfS. THE TRUNCHJON POINT IS M, THE WEIGHT 
ZING KfRNAL USE[) IS WI). THE SINES ANO COSINESNEEDE0 ARE COMPUTED 
2 RECURSIVELY. ~EFERENCES 1.'~AMMINQ.R.~.,INUHERICAL METHODS FOR 
2 SCI[NTISTS AND ENGINEERS' ,~CGRAW-HIlL 1962,PAGES71-74 $ 
2 INTEGER I ••• , J ••• , K ••• , l ••• , M •••• N ••• f 
2 PI -3.14J5927 $ PlY. 0.31630989 I 
2 C • N S Cl • (3 z Dl • COSIPI/C) $ 

2 04 • (2 • SINIPI/CI$ D6: 2.C} i 
2 PlzO.5.RlIll i P2"'0.~.REIlI" P4"O.5.R2111 S 
2 FOR I·I2,1,~.1' , 
2 BEGIN 
2 A-WIlli 
l P}::Pl+Rl(l).AS P2-P2+R[II-'.AJ P".P4+R2111.A$ 
Z END' 

FIll) • PI.PIV ~ 
COIl' • P2.PIV , 
FOR I • Il,I,N" 

F2(1) • P4.P!V S 
OUIlI • 0.0 , 

BEGIN 
Ull • Ul2 • Ul3 z Ul4 
FOR J • IM+l.-l,21' 

• UZl • U22 • U23 • U24 • 0.0 S 

BEGIN 
A • WIJ) $ 

U",l a D6.U21-UIl+RlIJI.~ , 
U3Z .. D6.U22-UI2+RfIJI.A , 
UB • D6.U23-UI3+ROIJI.A , 
U3 't - D6.U24-U14+RZIJI.A , 

2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 
2 

lJ I J • U21 $ U21 • U31 S Ul2 z tJ22 , un E U32 
u13 a U23 $ UB • U33 S Ullt • U24 , U24 '" U34 
END 1-

Flll+l~ :oIDl.U21.- Ull + RIIl).O.~I.PIV 5 
CO I 1+1 , ·ID~.UZ;I - UI2 + REIll.O.~I.PIY $ 
au I I+} , · · D4.UZ3.PIV.$ 
FZ(I+}} ·IOl.UZ4 - UI" ... R2111.G.I),.PIV , 
01 • (1.(3-(2.04 i D4 • D4.(I+(3.(2 5 
C3 a 01 5 06 • 2.01 , 
END I 

RETURN END S 

FIGU RE 7b. Procedw'e transform. 

, 
S 

If the given time series X(- ) actually was a white 
noise process, with spectral density function 

representing (up to a factor eiwt ) the output of the 
operation defining ~ (-) when the input is eiwt . T here
fore 

1 
jy(w) =2''/ (8.3) 

then the time series e(·), defined by (8.2) would have 
as its spectral density 

j, (w) = fx(w)' IA(w) 12 (8.4) 

where A(w) is the frequency transfer function 

(8.6) 

Given autoregressive coefficients aI, __ ., am we 
denote the right-hand side of (8.6) by TRW (w), and 
call it the white noise transjer junction of the scheme. 

We desire to normalize the white noise transfer 
function to have unit area (over t he interval lwl ':::; 7r)_ 
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- ---- -- -
PR OC EDUR E SELECT( R(). K. L $COF().IN(). NC)$ BEGIN 
COMMENT THIS PROCEDURE COMPUTES THE BEST FITTING AUTO-REGRESSIVE 

COEF FICIENT S FOR A TIM E SER I ES WITH SAM PL E CORRELATION FUNCTION R() 
OF TR UNCA TION POINT K. l I S THE LE NGTH OF THE TIME SERIES. USED FOR 
COMPUTING DEGR EFS OF FREEDOM . THE Nt S I GNIF I CAN T COEFFICIENTS 
ARE R F:T URN E D I N CO F () vI! T H T H ": I R I N D I CE S IN I N ( ). REF ERE N C E S 1.) 
EFROYMSON.r-' .A •• ' MULTIPLE REGRESSION ANA LYS r S 'd N ' MA TH EMA TI CA L 
METHODS FOR DIGI TAL COMPU TERS '.EDIT ED BY RALST ON .A. AND WILF.H.S •• 
WIL EY . 1962 $ 

GLOBA L A(.) $ 
I NTEGER I •••• J •••• K •••• l •••• M •••• N ••• $ 
AR RAy CB (72) $ 

ARRAY (HI2 ( 52 ) =(6.63. 9.21 . 11.3. 13.3. 1 5 .1. 16.8. 18. 5 . 20 .1. 21.7 . 
23.2. 24 . 7 . 26 . ~. 27.7 . 29. 1, 30.6 . 32.0, 33.4, 34.8. 36 . 2 . 37 . 6 . 
38.9. 40.3 . 41. 6. 43.0 . 44.3. 45.6. 47.0. 4 8 . 3 . 49.6, 50.9. 52 . 2 , 
53. ~ , 54 . 8. 56.1. 57 . 3. 58.6. 59 .9. 61.2. 62.4, 6 3 . 7 . 65 . 0. 66.2 . 
67 .5. 68 . 7. 70 . 0 . 71 . 2. 7 2 .4. 7 3 . 7 , 74.9. 76.2, 77.4. 78 . 6 ) $ 

TOl = 0 .0 01 $ N = K+l $ F2 = E . 635 $ KP = 0 $ 
COMMENT PLACING THE COVAR IAN CE FUNCT I ON I N THE MATR I X $ 

FIV E •• 

FOR I=(l.l.N) $ 
BEG I N 
A(Id ) = 1.0 $ 

F()q J= ( ltl ,J- l ) t A( I. J) A(J tI) R(I-J+l) $ 
FNfJ $ 

KP ) $ PHI = l - KP -1 $ RT OT Fl = CH I 2 ( K 
VMIN = 2*30 '£ 
FOR 1= ( 1,1 • K) $ 

VMAX = C. O $ NMIN = NMAX = 0 $ 
IF ( A( I.I ) GrR TOl )$ 

BEGIN 
v =(A (I. N). A( N,I ) /A (I.I) $ 

0 . 0 1> 

IF V GTR 0.0 $ RTOT=RTO T+V $ COMMENT I NO T I N MODE L $ 
EITHEq IF ( V l SS 0.0 ) $ COMrvlENT I I S I N MODEL $ 

ElEG IN 
CB (I)=A(I.N) $ 
I F ( ABS (V) LSS ABS(VMIN) )$ (VMIN= V$ NMIN= 1$ ) $ 

FNO $ 
OR IF (V GTR VM AX) $ (VM AX= V$ NM AX= I $ CB ( 1)= 0 . 0$ )$ 
OTHE RWi SE $ CB (I) = 0 . 0 $ 
END $ 

EITHE R I F ABS (VMI N) lSS F2 .A( N,N)/PHI $ ( Kl=NMI N $ KP=KP-l~ ) $ 
OR IF RTOT GTR Fl.(A(N,N)/PHI)$ ( Kl = NM AX $ KP=KP+l $ ) 'j; 

OTHERWIS($ GO TO AlM $ 
COMMENT WE COMPUTE THE NEW MATR I X. IF Kl = NMIN THEN WE AR E DELETING A 
VARIA BLE. IF Kl = NMAX WE AR E ADDING A v ARIABLE . IN EITHER CASE TH E 
COM PUTATI ONS ARE THE SAME $ 

AU'I •• 

PIVOT = 1. 0 1 A(Kl.Kl) $ 
FOR J=(l.l.N)$ A(Kl.J) A(Kl.J).PIVOT $ COMMENT CHANGE PIVO TROW$ 
FOR 1=(l.l.N)1> IF I NEQ Kl $ 

BEGIN 
TEMP = A(I,Kl)$ 
FOR Jt(l.1,N)$ A(I.J)= A(I.J)- TEMP.A(K1.J)$ 
A(I.Kl)=-TEMP.PIVOT $ 
END$ 

A(Kl.K1) = PIVOT $ 
GO TO FIVE $ 

NC = 0 $ 
FOR I=(K,-l.l)$ 

IF (CB(I) NEQ 0 . 0 )$ (NC=N(+l$ COF(NC)=CB(I)$ IN(NC1=K~I+l $ ) $ 

IF NC GTR 20 $ NC = 20 $ 
RETURN END 1> 

FIG U RE 8a. Procedure select. 
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One may verify that 

I:". TRW (w)dw = l+ai+ ... + a!. (S.7) 

Therefore the normalized white noise transjer junction, 
denoted by TRWN (w), is given by 

TRW (w) 
TRWN (w)= l + ai+ . .. + a! (8.8) 

Note that this transfer function is normalized to 
ha ve uni t area over the in terval -71"::S w::s 71". 

If X(·) is in fact an autoregressive scheme satis
fying the model 

where E(') is white noise, then from (S.4) its spectral 
density function is given by 

ix(w) = j,(u) +IA(w) 12 

= [271"{ (l-al cos w- ... -am COS mw)2 

+ (al sin w+ .. . + am sin mw)2 }]-I. (S.lO) 

We denote the right-hand side of (S.10) by 
TRAR (w) , and call it the autoregressive transjer Junc
tion of the scheme of coefficients ai, ., am. 
Note that 

TRAR (w) ={ 471" TRW (w) }-I. (S.l1) 

' Ve have not been able as yet to find a formula 
(convenient for computation) for the integral 

J : ".TRAR (w)dw. Since we prefer to compute nor

malized transfer functions, in practice we approxi
mately evaluate this integral by a crude method of 
numerical integration and thus compute the normal
i zed autoregressive transjer junction, denoted by 
TRARN (w) and given by 

TRARN (w) = ". {471" TRW (w) } - I . (S.12) I-} 471" TRW (w) }- Iclw 

We can describe the method of autoregressive 
spectral estimation. It consists of (i) determining 
autoregressive coefficients ai , . .. am by stagewise 
autoregressive estimation, (ii) estimating the spectraJ 
density functionj,(w) of the autoregressive residuals, 
(iii) if j,(w) is approximately the spectrum of white 
noise, we take the normalized autoregressive transfer 
function, defined by (S.12), as the estimated spec
trum of the original time series X(t) . 

The statistical theory of stagewise autoregressive 
model :6.tting is considered by Schaerf [1963]. 

9. Some Examples of Empirical Time Series 
Analysis 

One of the major aims of empirical t ime series 
analysis is to provide a modern solution to what 
classically has been called "the search for hidden 
periodicities." Classical approaches to this problem 
have been discredited because they seemed to pro
vide evidence for the existence of "spurious cycles." 
One way to avoid seeing cycles in data where they 
are not present is to compare estimated spectra from 
this data with the estimates formed under the same 
sample size and truncation point from data of known 
properties. 

As an example of the above method, an analysis 
of an economic time series will be carried through. 
The radio case would be essentially the same, apart 
perhaps from changes in length and time scale in the 
series, and the economic material has already been 
analyzed by our method. 

Given a series of length 180 (as many economic tim e seri es 
are) one might choose a minimum truncation point of 16; the 
other truncation points would then be 32 and 64. 

To obtain some idea of the rcsolution of our sp ectral win
dows, it is instructive to first perform a spectral analysis of a 
constant time series 

t= l, 2, . . . , N . ( 9.1 ) 

No mcan subtraction is pcrformed. The sample covariance 
function is given by 

1 T -v 
R (v)=r:S X(t) X(t+ V ) = 1 -~' ( 9.2 ) 

t = 1 

The resulting estimated spectral density func t ions are given 
in figure 9a. The curves corresponding to different truncation 
points are easily distinguished since at zero frcqu ency the 
curves increase in amplitude w ith increasing truncation point. 
The sp ectral density function corresponding to M = 16 has a 
local maximum of 0.175 whicll m ight be cons trued as a 
"spurious" cycle. 

Se ries of s tock price indexes have been cxtensively analyzed 
(see Granger and Morgenstern [1963]) . 'N e consider a 
monthly seri es of such an index, denotcd X 2(t), for the 180 
months in 1948- 1962, taking logarithms and mcan dc b·ending. 
The es timated spectra, given in figure 9b, are exactly a s in 
figure 9a, except for a little additional powcr a t h igh fre
quencies. 

Similarly we estimated the spectra of the linear series 

x 3(t) = t, t= 1, 2, .. . , 180 ( 9.3 ) 

with no detrcnd ing. The es tim ated spectra were again 
exactly as in fi gure 9a . 

The conclusion to be drawn is that for both the stock price 
ind cx sc rics and the linear series, the spect ru m consists essen
tially of a s ingle line (or spike) at zero frequ ency ; a more pre
cise sta tement of t hi s assertion m ight pe rhaps be made using 
techniques of mixcd spectral analysis such as those currently 
being inves tigated by George Il ext [1964]. 

To characterize more clearly th e mechanis m gen era ting the 
stock price index series and t he li near se ries, other than t o 
say they have a spectrum concentrated a t zero frequcncy, one 
fits these series by autoregressive schcmes using stagewise 
autoregressive estimation. For the stock price index series 
one fi nds the scheme 

( 9.4 ) 
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. J .2 .3 . q .5 
fREOUENCY IN CYCLES PER UNIT TIME 

FIG UR," 9a. Log oj estimated spectml dens"ity junctions, constant series . 

. J .2 .3 . II: .5 
FREOUENCY IN CYGLES PER UNIT TJME 

FIG U RE 9b. Log oj estimated spectml density J1lnctions, slack price index 48- 62, mean detrend. 
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,-'- .. ". h:r: i~ .' .~. "i:- I.:;:: 7" ;L ?'fe'·",; 

. 1 . 2 . S . Ii .5 
fAECUENCY IN CYCLES PEA UNJT TlHE 

FIG U R E 9c. Log oj estimated spectral den sily junctions, slocle pTice slagealilo . 

. 1 .2 . s . q .5 
fREQUENCY IN CYCLES PER UNIT TIME 

FIG URE 9d. Log oj estimated spectral density junctions, Fed. cash jTom pu blic 48- 62 mean detrend. 
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.J .2 . S . II .S 
fAEWJ EW CY IN CYCl.ES PEA UNlT T] M( 

FlO U Rr~ ge. Log of eslillwled speclTaI den sily funclions, /I'e d. cash slageaulo. 

while fo r the linea l' se ries 

( 9.5 ) 

We t hen csti male thc spect ra of t he residu al ti me series 
E2(1) and E3(l) . 

The estimated spectra l density funct ions of Lhe stock price 
index residuals a rc given in fi gure 9c; they are well \\'it hin t he 
confidence limi ts of white no ise spectra . The l ru e spectrum 
of white noi se OIl t he logarithmi c plot used in t he fi gure is a 
horizon tal line at 

log , (1000 ;"') =5.07 . ( 9.6 ) 

From the fo regoing anaiysis we h ave essentially obtained 
t he often found random walk model for t he logarithm s of 
stock market prices X 2 (l ): 

( 9.7) 

where 1': 2(0 is a white noise se ries . It would be interesting to 
investigate whether the models (9.4) and (9. 7) arc significantl y 
different. 

The estimated spectral density fun ctions of the linear series 
residuals are again exactly as in figure 9a. Examination of 
the printed residuals f 3(t) shows that they arc given by a 
linear series 

X 3(t ) = 1+ (1 - 1) 0.00831, t = l , 2, . . ( 9.8 ) 

Performing a stagewise autoregression on this series disclosed 
that it approximately satisfi es the model f 3(t) = 0.994f 3(t - 1); 
one wou ld con clude t hat t he original seri es X 3(t ) satisfi es 
X 3(t)- 2X3(l - I ) + X 3(t - 2) = 0 and thus is a straight line. 
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Our last example is intended to illust rate how auto re 
gressive spect ral estimation is used to check t he results of 
the t ransform method of spectral estimat ion . Let X.,(t) 
denote a monlhl .v se ri es of logari thm s of eash payments re
ceived by t he Fede ral Government from t he publi c. Its 
spectra a re g raphed in fi gure 9d. There are prominent peaks 
at w = 0 a ncl w = 0.33. There are questionable peaks at 
0.083, 0.167, 0.25, 0.'12 (fo r the in te rpretat ion of t hese fre
qu encies in terms of peri ods see t he table below). 

F i tting a n auto rcg ressive scheme to X 4(l ) by stagewise 
autoregressiv e es timation one find s the scheme 

X 4 (l) = 0.732X. (l - 3) + 0.825X.(l - 12) 
- 0.611 X.(l - 15)+ f ,(t) . (9 .9) 

The spec tra of t he residu als f ,(t), given in figure ge, are not 
qui te white; t he re is a slight predominance of power at low 
frequ ency which should be investigated. Neverth eless, it 
is white enough for us to feel justified in taking t h e normalized 
au tOl'egressive transfe r func t ion as an estimate of the spectrum 
of X,(t). This transfer funct ion is given in the l /TRANSFER 
column of figure 9f. All t he peaks previously found are 
still presen t, wi t h their relative size clearly indicated. The 
model given by (9.9) lends itself read il y to prediction. The 
relative mean square predic tion error is defined to be 

Val' [f 4( t ) ] 
Val' [X4( t ) ] 

These variances are routinely computed in our program. Their 
ratio t urns ou t to be about 0.1; the predictor is th us rather 
reliable . 

A ssocialina frequencies and periods . Consider a t ime series 
observed at monthly in te rvals. The following table shows 
the frequencies co rresponding to several important periods. 



AUTOREGKESSION COEFF IC I ENTS USED IN DETR ENOIN G ARE . nzz X(T- 31 
.fl252 X(T-121 

-.6103 XIT-151 

FREQ. TRAN SFER IITRfl NS F ER LOC (TRAN SI LOGll/TRANS) 

.0000 .00 0 2 3. 82 16 -R.650] 1.3401 
• 0104 . 0030 . n I , • -5. 302 0 -1.5076 
.0208 .01A5 . C3 6 2 - 3 .990& -3.3190 
.0312 .0553 . 0 12 1 - 2 .A949 -4.4141 
.0411 .1025 . 00 6 5 -2.2117 -5.0319 
.0521 .1271 . COS] -2.062 ': -5.2471 
.0625 • lOLA • C066 -2.<!851 -5.024 5 
.0729 .0401 .0167 -3.2163 -4.0933 
.0833 .0078 . 2403 -5.0840 -1.4257 
.0937 .0511 • a ll 7 -2. 8 636 -4.4461 
.1042 .2165 • CO 31 -1. 5299 -5.7797 
.1146 .4123 . 0016 -.8860 -6.4236 
.1250 .52 es . 0013 -.6i 17 -6.6720 
.1354 .4841 .0014 -.7254 -6.5843 
.1458 .2998 • C022 -1.2046 -6.1050 
.1563 .0941 .0071 -2.3629 -4.9467 
.1667 .00S4 • 1241 -5.2228 -2.0869 
.1171 .0941 .0071 -2.3629 -4.9 l ,67 
.1875 .2998 • 0022 -1.<!046 -6.1050 
.L979 .4841 .0014 -.7254 -6.5843 
.2083 .5285 .0013 -.6317 -6.6720 
.2188 .4123 • 0016 -.U860 -6.4236 
.2292 .216 S • 0031 -1.5299 -5.1797 
.2396 .0571 .0117 -2.8636 -4.4461 
.2500 .0028 . 240 3 -5.8840 -1.4257 
.2604 .0401 .0167 -3.2163 -4.0933 
.2708 .1018 .C066 -2.2851 -5.0245 
.2813 .1271 .00 5 3 -2.0625 -5.2471 
.2917 .1025 .0065 -2.2777 -5.0319 
.3021 • 055 3 .0121 -2.8949 -4.4147 
.3125 .01A5 .0362 -3.9906 -3.3190 
.3229 .0030 .2214 -5.8020 -1.5076 
.3333 .0002 3.8218 -B.&503 1.3407 
.3438 .0030 .2 2 14 -5.8020 -1.5077 
.3542 .01A5 .0362 -3,9906 -3.3190 
.3646 .0553 .0121 -2.8949 -4.4147 
.3750 .1025 .0065 -2.2777 -5.031 9 
.3854 .1271 .C053 -2.0625 -5.2471 
.3958 .1018 .0066 -2.2851 -5.0245 
.4063 .0401 .0167 -3.2163 -4.0933 
.4167 .0028 .2403 -5.B8H - 1.4257 
.4271 .0571 .0117 -2.8636 -4.4461 
.4375 .2165 .0031 -1.5299 -5.7797 
.4479 .412.3 .0016 -.8860 -6.4236 
.4583 .5285 .0013 -.6317 -6.6120 
.4688 .4841 .0014 -.7254 -6.584.3 
.4792 .2998 .0022 -1.2046 -6.1050 
.4896 .0941 .0071 -2.3629 -4.9467 
.5000 .005" .1241 -5.2228 -2.0869 

F IGURE 9f. Transfer f1tnclions. 

950 



- - -- -------_. 

Period 0, length 
of a cycle 

1 
2 
3 
4 
6 

12 
24 
48 

Freque ncy = I /O 
cycles p er month 

O. 000 
.500 
.333 
. 250 
. 167 
.083 
. 042 
.021 

It is a pleasure to thank Howard Taylor who 
contributed the bulk of the computer program that 
we use for empirical time series analysis. I desire 
to express my appreciation for the great intelligence, 
ingenuity, persistence, and patience that he brought 
to bear on this work. 

(Paper 68D9- 394) 
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