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Two problems of a nonlinear character concerned with random processes are discussed.
In both cases the processes are assumed to be stationary.

The first problem is concerned with the representation of a discrete time parameter
stationary random process as a one-sided function (nonlinear generally) of independent

random variables and its shifts.
purely nondeterministie.

This is a representation one might expect if the process is
Comments are made on the continuous parameter version of this

problem, indicating that it is likely to be much more difficult and perhaps less important

from a practical point of view.

tion of the moments (of degree two or higher) of stationary random processes.

The second problem is concerned with the harmonie resolu-

The har-

moniec resolution of third order moments (the “bispectrum’’) is considered in some detail and
remarks are made about statistical estimates of the bispectrum.

1. Introduction

1.1. Representation of Discrete Time Parameter
Processes

Let { X3; k=0, +1, ...} be a discrete time param-
eter stationary random process. It will be conven-
ient to introduce the following notation. Let @3, (.X)
be the Borel field of events generated by X, X, ...

@IL<‘\'>: -([)) {‘ V/.'; ICSIL}; <1>

@B, (X) is the smallest collection of events containing
the events

{Xi<ai}, k=n,n—1,.. .,
with the x,’s any real numbers, that is closed under
countable union and complementation of events. If
time n is considered the present, 3,(.X) can be

thought of as the carrier of the information (non-
linear) from the infinite past to the present. If the

intersection I 33, (X) of the Borel fields @B,(X) is

n
the trivial Borel field consisting only of the empty
set (up to a set of probability zero) and its comple-
ment, we call the process { X} purely nondeterminis-
tic. This means that the infinite past contains no
information about the present. Notice that the
concept of a purely nondeterministic process is in-
timately associated with a sense of time direction.
A process may be purely nondeterministic and yet
if we look at it with the time direction reversed, it
may become purely deterministic (the infinite future
contains all the information about the present).
This contrasts strongly with the linear (or weak)
version of the notion of a purely nondeterministic

real-valued process. The following well-known
process is easily seen to be purely nondeterministic

looking forward in time and purely deterministic
looking backward in time.! {X.} is a stationary

Markov process on the unit interval 0<z<1 with
instantaneous distribution uniform and the following
simple transition mechanism

3z with probability 3

2 0<z<1. (2
N1 1y with probability 2
Let us now discuss the representation problem of
interest.  We wish to find out when one can find a
one-sided Borel function f of independent random
variables {&,; k=0, +1, ...} uniformly distributed
on [0,1] such that the process { X/}

< y}ézf(flc: 5/;71; f/cfz; o o -);

has the same probability structure as {X; k=0,
41, .. .}. One can easily show that such a
representation cannot hold unless {X,} is purely
nondeterministic  [Rosenblatt, 1959]. In fact, 1if
{ X} is a countable state Markov chain the condition
that the process be purely nondeterministic is neces-
sary and sufficient for such a representation [Rosen-
blatt, 1960; Hanson, 1963]. It is a reasonable con-
jecture that this condition is necessary and sufficient
for such a representation in the case of a general
stationary process. As far as I know this has not
yvet been shown to be true. The following result for
Markov processes (see [Hanson, 1963]) is an interest-
ing step in this direction. Assume that { X} is a
purely nondeterministic Markov process with in-

k=0, +1,..., (3

1 This was pointed out to the author by B. Jamison.
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stantaneous distribution P(-) and transition function
P(-,-). Further let there be a measure ¢ and events

A, B with P(A) >0, ¢(B) >0 such that
P(z, B") > ¢(B’) (4)

for all zeA and all B’c B. Then a representation
of the desired type exists for the process { X }.

The problem we have discussed above can be
analyzed in greater detail with some benefit. Let
us allow {&,} to be any sequence of independent
identically distributed random variables. For ex-
ample, the common distribution function might be
discrete. If

Xe=f(tx 1y - - )

with some given f, and { X} has the same probability
structure as {X,} we ‘shall say as before that we
have a one-sided representation of the process { X,}.
Now let L,(X;n) be the family of square integrable

functions measurable with respect to @3,(.X). Fur-
ther let ,(X)0L,(X;n) be the square integrable {unc-
tions measurable with respect to B(X) = B.(X)
that are orthogonal to L,(X;n). Weshallsay that the
representation (5) is a one-sided canonical representa-
tion of X if Ly(&;n) is orthogonal to Ly(X")0L.(X;n).
Essentially this says that there is no information
about the present and past of the ¢ process in the
future of the X’ process. If B,(&) = B(X), we
will call (5) a one-sided properly canonical representa-
tion of X. In Rosenblatt [1959], it is shown that a
one-sided properly canonical representation is ex-
tremely rare for finite state Markov chains. Let
P=(p;;) be the transition probability matrix of the
chain.  Then a necessary (but not sufficient) condi-
tion for such a representation is that all the row
probability distributions {p,;, j=1, 2, .} be the
same except for permutation. However, a one-sided
canonical representation is always possible for a
purely nondeterministic chain (see [Rosenblatt, 1959]
for details). The impossibility of a properly canoni-
cal representation, even though a canonical repre-
sentation 1s possible, appears to be due to the fact
that the probability space of the process is not rich
enough.

Wiener has discussed one-sided properly canonical
representations in his interesting book on nonlinear
problems ([1958] lectures 12 and 13 on coding and
decoding). Let {X,} be a stationary purely non-
deterministic process with

)=P(X,<
=Tn-1, Xn~2:xn~2y . . ) (6>

k=0,41, . . . (5)

F(xlxn—ly Lp_gy « . x!anl

the conditional distribution function of X, given the
past of the process relative to n. Wiener states that
a properly canonical one-sided representation of

X,} is possible as long as F(z|z,_;, ©,_, . . .) is
properlymcreasmgfor almostevery pasta, i, ¢, o, ... .
It 1s not quite clear what is meant by the term
properly increasing. However, from the context it

would appear to be the case that a distribution
function is properly increasing if it is absolutely
continuous with a unimodal density function.
Wiener’s conjectured result may very well be valid
but the way in which he proposes to construct the
independent random variables ¢, in terms of which
the properly canonical representation is to be set
up will not generally work. He proposes to set

En:F(JxrnlfYn~1y 4Yn—2,~ O ) (7)

and the random wvariables ¢, will be independent
uniformly distributed random variables with

B.(¢) < B.(X) (8)

if F(x|x, 1, Ty, . . .)is a continuous function in z
for almost every past z, 4, #,_5, . . . . The follow-
ing example is one in which it is clear that B, (£)
B, (X)sothat X, cannot be fully reconstructed from
o il Wlth £, given by (7)

Let I(x) be an dbsolutelv continuous distribution
function with unimodal positive continuous density
function. The process { X, } is taken to be a station-
ary Markov process with conditional distribution
function

j F(a) it 2/ —1<w, ,<2j
| Fla—1) if 2j<a, 1< 2j+1
§=0, £1, +£2,.... (9

F(@|e,-.) =

One could, for example, take F(z)=®(z) with ®(x)
the standard gaussian distribution funection. In
such a case the process { X, } will certainly be purely
nondeterministic. Then, using the construction (7),

(F(X,) if2j—1<X, ,<2j
| F(Xn-0) if 2§ < X1 <2 +1

j=0, +1,.... (10)
However, using knowledge of &, k<n, we can not
determine whether the greatest integer less than or
equal to X, is even or odd.

The pr oblem of obtaining one-sided representations
of processes amounts to an investigation of the class
of processes one can obtain from independent random
variables by one-sided nonlinear filtering. In the
case of a one-sided properly canonical representa-
tion, the process is obtained by an invertible non-
linear filter whose inverse is one sided.

12r

Representation of Continuous Time
Parameter Processes

N. Weiner was also concerned with the one-sided
representation of processes in terms of the Brownian
motion (or Wiener) process in his book on nonlinear
methods in random theory [1958].  We shall describe
some recent work of M. Nisio [1961] on aspects of
this problem. Let { X(f), —eo<t< =} be a station-

934



ary purely mnondeterministic process and dB=
{dB{), —o<t< e} be the Wiener random measure.
Consider a sequenceol functions f={ f,, n=0, 1, 2,. . 1
where each f, is a symmetric L, funection ()l n \(111—

ables on the domain (—=, 0]*. Assume that Zn!
n=0

[| ful|*< e where | f,] is the Z,normof f,. Given any
such sequence f, we (l"fm(* the corresponding process

X'={X'(t), = o<t} as

o t
Zf
n=0 J— o
t .
I‘; ‘17L(tl_t’ sl=iety

where the nth term is an n-dimensional Wiener integral.

f{X’(t)} has the same probability structure as
{ X(t) } we say that (11) is a one-sided representation
of X in terms of the Brownian motion with { the kernel
of the representation. As before we say that the
I‘eples(‘ntatmn is canonical it L,(dB, t) L Ls(X")0L,
(X7, ). The l(‘])l(‘%(‘llldll()n i1s properly canonical
if L,(dB, t)=1,(X’, t). The terminology on repre-
sentations used in this paper was introduced by
M. Nisio in the continuous time context.

Miss Nisio has shown that a class of one dimen-
sional diffusion processes has properly canonical one-
sided representations in terms of Brownian motion.
What is much more surprising is that she has shown
that if P(t), —o <t <o, is a Poisson process with
parameter N\ then P(t)—-P({—1) (—wo <t <o) has
no canonical one-sided representation in terms of
Brownian motion. It is a very interesting question
as to whether there is any one-sided representation
of P(t)—P(t—1) in terms of Brownian motion. One
is inclined to doubt whether this is so on the basis
of her result. In the case of a discrete time param-
eter process it seemed reasonable to conjecture that
a necessary and sufficient condition for a process to
have a representation is that it be purely nondeter-
ministic. If there is a representation, it is always
possible to set it up in terms of independent uni-
formly distributed (on [0, 1]) random variables
However, if the conjecture on the impossibility of a
one-sided representation of P(t)—P(t—1) in terms
of Brownian motion is valid, it is likely that in order
to set up one-sided representations of purely non-
deterministic processes one must consider not only
representations in terms of Brownian motion but
also in terms of any differential process. Further
the appropriate differential process in which to set
up the representation is most likely determined by
the local properties of the given process X(1).

One should mention that a great deal of the dis-
cussion in Wiener’s book on nonlinear methods is
concerned with the computation of the expectation
of polynomial forms in a process with a representa-
tion in terms of Brownian motion. This study has
been extended by MecShane [1962] and more recently
Sinal and Shiryaev [1963] to processes with repre-
sentations of a much more general type.

X' (t)=

t,—8)dB ) . ..dB(t,)

(11)

2. Higher Order Moment Functions and
Their Spectral Resolutions

In the case of a Wenkly stationary process X, with
mean zero, KX,=0, the second order moments

LX0 X 1((—7) exist and it is well known that there
1s a spectral resolution

A= f_wm

where /7is bounded and nondecreasing.  Suppose we
assume the process X , 1\ strictly stationary and that
the kth moment /X [*< o for some integer £>2.

eI (N) (12)

Liet the mean KX, ‘w(un be identically zero. Then
E<‘Y’1 G oo A\Y,,‘_) — I/)/;(fl, “e ey f/.-) — /‘/c(tz*fly tk—tl)
(13)

, . and we might hope for a

-VT/L»I)

T/L,]} = f f(’)“f )\H/l' ()\1, . oy )\k71> (14)

exists for all ¢, ...
spectral representation of ri(7,, . .

)‘/\7(7-!5 s

in terms of a complex-valued function F,(\,,. . ., \ey)
of bounded variation. Blane-Lapierre .m(l Fortet
[1953] were among the earliest to discuss such higher
order spectral representations. Recently Kolmo-
gorov and Sinai gave examples of stationary proc-
esses for which £7|.X [*< o and yet r, has no spectral
representation in t,onns of an /7 of bounded variation.
In fact, in Sinai’s example [1963] all moments exist.
Of course, it is still possible that there may be such
representations with /', of unbounded variation.

In any case, it is still interesting to consider the
large class of processes for which such spectral
representations of higher order moment functions are
possible.  The spectral representation of the third
order moment function has drawn especial attention
(see Tukey [1959] for an example). Such an ap-
proach seems to be of some interest in studying
certain nonlinear problems in random process th(\my.
For a recent paper using estimation of the third order
spectral function (or bispectrum as it is sometimes
called) in the analysis of certain ocean wave patterns
see Hasselman, Munk, and MacDonald [1963].

We shall now briefly sketch the statement of a
result recently obtained by Van Ness [1963] on the
estimation of the bispectrum of a stationary process.
Let X, /X ,=0, be a real-valued stationary process
with ANX9<ew. Let its second and third order
spectral functions be absolutely continuous with con-
tinuous derivatives, the spectral density f(\) and
bispectral density function g(\;, \,) respectively

o fm COFN AN
r3(ty, tz):fm [e”l"ﬁ”zng()\l, No)dNdN,.  (15)
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The third order moment function 75(t, t,) has the
symmetry properties

r3(ty, t) =r3(ts, 1) =rs(—1ty, ta—11) (16)

because the process X, is real-valued. Van Ness
considers an estimate of g(\;, \,) of the form

N
O, M= | [emomoritBan, Bun)

pN(Vl, V2)(I’V1([V2

(17)

with py(v1, v.) the third order sample moment function

1 > v
p (w1, Vz):N J‘A Z‘Xl+v1Xt+y2(1t (18)

with ¢, t-+»,, t-+», restricted to the range [0, N] and
k(vy, o) anormalized (£(0,0)=1) continuous bounded
uniformly integrable weight function with the sym-
metry properties of r3(t;, t,). Here By—0 as N—w
so that the Fourier transform of k(Byv,, Byv,) behaves
asymptotically like a é-function. Under a variety of
boundedness and integrability conditions on the
moment functions up to sixth order, gx(N\;, \;) is
shown to be asymptotically unbiased as N—~ and

lim NBj cov [gh(\1, N2), g8 (Ns, Ay)]

Now
— o OO O NSO TN 2

{k16(N\2)8(A)[14-26(\) J[1-+25(Ns) ]
a8 (A —N3)8(Na—Ny)
[1+8(N—N) +45(N)d(No) ] }

if By—0, By—o where 0<u;, p<<ew, 0SS uy,
0 < pz. In formula (19)

) 2
k1=[f (0, V)([V] ’
0
o f ) f Bl By
0
1
5 o)==
(@) { :

(19)

ap=(0)
2=0.

My thanks are due to J. Tukey for suggesting a
neater way of writing the asymptotic covariance
estimate that led to formula (19).
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