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The Rayleigh distribution is the distribution of the sum of a large number of coplanar
(or time) vectors with random amplitudes and uniformly distributed phases. As such, it is
the limiting case of distributions associated with more general vector sums that arise in
practical problems. Such cases are the following: (a) The phase distributions of the vector
terms are not uniform, e.g., in the case of scattering from rough surfaces; (b) One or more
vector terms predominate, their mean square value not being negligible compared to the
mean square value of the sum, e.g., in the case of signals propagated in cities, meteor-scatter,

and atmospheric noise; (¢) The number of veetor terms is small, e.g
several close targets; (d) The number of vector terms is itself random, e.g

turbulence, meteor-scatter and atmospherie
cases and their deviations from the Rayleigh

1. Introduction

In many problems arising in radio wave propaga-
tion the resultant field is formed by the super-
position or interference of a number of elementary
waves:
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where the /7; and the ¢; and even n may be random,
and the distributions of the individual terms of the
sum need not be identical.  One 1s then faced with
the problem of determining the distribution of /2
(and sometimes of 0) if the distributions of the /7,
the ¢; and n are known. It will be assumed that
the terms of the sum (1) are mutually independent.
The sum (1) may also be regarded as the sum of
coplanar vectors.

In its most elementary form, when n is a large
constant, the /7, are all equal to the same constant,
and the ¢, are all uniformly distributed from 0 to
2w, the problem was solved by Rayleigh [1896] and
leads to the well-known Rayleigh distribution
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where s={(/1?) =nl; and the brackets ( ) denote the
mean value; or

1 On leave of absence from the Institute of Radio Engineering and Electronics,
Czechoslovak Academy of Sciences, Prague.
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I'he resulting distributions for these
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distribution will be considered.
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The present paper considers (1) under more
general conditions. In principle the problem can
always be solved by resolving (1) into its rectangular
components (i.e., real and imaginary parts) z and y,

T | "n
z=FE cos 0=> F; cos ¢;=>z;

=1 j=1 (4)
y=K sin 0= . ..

finding the joint probability density W(x, y), and
retransforming to polar coordinates through

V() =E | W (E cos 8, E sin 6)d6
7 0 :

po6) — f " EW (E cos 6, E sin 6)dE. 5)
0

The various cases that may arise are conveniently
classified according to whether or not the sums (4)
satisfy the Central Limit Theorem, i.e., whether or
not x and y are normally distributed as n—>w.
Kach of these two cases again includes several
further possibilities.

Let D(x) denote the variance of x; then the distri-
bution of z will tend to a normal distribution as
n—> provided that the z; are mutually independent
and that

lim ) =0 for all 7,

6)
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with a similar statement for g. (This statement
usually suffices for engineering purposes; for a more
rigorous enunciation of the Central Limit Theorem
and Lindeberg conditions cf. Gnedenko and Kol-
mMogorov [1054]) Condition (6) essentially means
that none of the terms 2, must predominate in the
resulting sum z. However, if the x; are themselves
normally distributed, then = will, of course, be also
normally distributed even if (6) does not hold.

In most (but not all) applications the ¢; are
distributed uniformly between 0 and 27 or in an
equivalent manner; i.e., the phase distribution
wy (¢) 1s such that

Z we (p-+2km) = *+€(¢) §
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A vector with such a Uniformly Distributed Phase
will be called a UDP vector. The sum of UDP vec-
tors is obviously itself a UDP vector. If the terms
in (1) are UDP vectors, then

(=3 Bpe'# 32 By
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Substituting (9) in (8) we find the important

relation

<E2>:§”1 (E)? (10)

valid for UDP vectors regardless of the value of n
or the distributions of the /7, (possibly all different).

2. Rayleigh Distribution

If the terms in (1) are UDP vectors, then from (4)

(@)=()=0 (11)
D(a)=D(y)=o- f I3 cost o Byde, s (E3).
0
(12)
Then using (10), condition (6) becomes
lim —<L{—'~ 0 for all 7. (13)
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If (13) is satisfied and n is large, # and 3 can be
approximated by a normal distribution with mean
value zero and the same variance. The integration
(5) then leads to the Rayleigh distribution (2) with

S*Z (E3). (14)

Thus a Rayleigh vector is a UDP vector whose z
and 7 components are distributed normally with
()=(y)=0 and D(z)=D(y)=s/2. From this it fol-
lows that the sum of any number of Rayleigh vectors
is itself a Rayleigch vector.

A Rayleigh distribution will thus be found when-
ever the resultant field is composed of a large number
of UDP vectors and (13) is satisfied.

3. Nonuniform Phase Distributions

In a number of applications the phases ¢; in (1)
are not distributed uniformly as in (7), but fluctuate
about some privileged value. This will occur in
scattering from rough surfaces (e.¢., rough layers
in the atmosphere) for small roughness or small
erazing angles. Since the terms in (1) are now not
UDP vectors, (11) and (12) will not hold. How-
ever, if (6) holds, z and 3 will still be normally dis-
tributed. If the phase distributions are symmetrical
about zero, then (y)=0. By the usual rules of
probability theory one then finds the quantities

a=(x), $=D(x), s;=D(y)

and the integration (5) yields

o _sitss w,]
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m=0
where 7,, 1s the modified Bessel function of order
m and e,=1, €,=2 for m>0. Details of the pro-
cedure and curves of (15) will be found in [Beckmann,
1962a].
The general distribution (15) simplifies in certain
special cases.  If =0, but s, #s, then (15) reduces to

81718, ) $2—S81 o
r :' Lo ( 4528 ) >’ (16)

4518
a distribution derived directly by Hoyt [1947].

but a#0,

p(E)=

p(BE)= —{lf,t exp [—
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On the other hand, if .s-[:.v._,fl then

‘) 7
(15) reduces to the Nakagami-Rice

p(E) :2? exp l:— an_i:hn

distribution

2aE>
8 b

a distribution derived by Rice [1944 and 1945] 2

and further analyzed, e.e., by Norton et al. [1955],
and Zuhrt [1957]. The distribution (17) is obtained
when a constant vector (£,=a, ¢,=0) is added to a

(17)

2 The distribution was originally derived by Nakagami in 1940. A summary
and bibliography of the work on this and related topics by Nakagami and other
Japanese scientists will be found in [Nakagami, 1960].
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Rayleigh vector, for the z and 3 components of the
sum will then obviously be distributed normally

with (®)=a, (y)=0, D(x)=D(y)=s/2 (where s is
the mean square value of the Rayleigh vector)

just as assumed in deriving (17). 1t should be noted
that (17) will equally well hold for /7, exp (i¢;) a
UDP vector with constant amplitude £,=a; this
may be shown by measuring the phases from ¢, as
a reference plmso the distributions of d;=d;— by
will for 751 remain uniform as before, whereas $,=0,
thus reducing to the same conditions under which
(17) was derived.

The Rayleigh distribution, as may easily be
verified, is the limiting distribution of (15), and of
its special cases (16) and (17), for a=0; s;=s,=5/2.

If the Central Limit Theorem may be applied to
(4), so that # and % will be distributed normally,
then in the most general case (corresponding to
asymmetrical phase distributions) we have four
parameters:

(@=a; (Y=B; D(x)=5,; D(y)=s,

The integration (5) then leads to

(18)

T =
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The distribution (19) was found by Nakagami
[1960]; it is the most general distribution for the case
when the Central Lamit Theorem is applicable to
(4); for =0 and hence =0, it reduces to (15).
The Rayleigh distribution is again obtained from
(19) for a=p=0; s;=s,=5/2.

If the Central Limit Theorem is not applicable to
(4), this may be for one of the following reasons: (a)
condition (6) is not satisfied (this will be considered
in secs. 4 and 5); (b) the number of terms n in (1) is
not large (sec. 6) or random (sec. 7).

4. Dominant Terms

For UDP vectors, which we shall henceforth as-
sume, (6) reduces to (13). If the number of inter-
fering waves 7 is large, but finite, we may replace
(13) by

<E§><<i (E? for any j (21)
j=1

Now if one (or more) of the interfering waves is
powerful, so that its power is not negligible when
compared to the total power, (21) will be violated

731-855—64——2

for one (or more) 7. If more than one of such waves
are present, we may sum them by standard methods
(convolutions, characteristic functions) and regard
this partial sum as one wave. Since assumption (21)
will hold for all other 7, the remaining terms will add
up to a Rayleigh vector, so that the problem reduces
to finding the distribution of the sum of a UDP
vector with random amplitude £, and a Rayleigh
vector.

This problem may be solved directly from first
principles by (4) to (5) or more quickly by random-
izing a=1, in (17) and using the theorem of total
])1()1)(11)1ht\ 11 1I1(‘ (l(‘ll\ll\' of ais w(a), then (17)
so that the required total

® oy 7 o] T8
- f w(e) exp <— . ) I <_a1‘~> de
JO E 02 $

It may be verified from (22) that p(£) will
approach a Rayleigh distribution for (o)< <Cs, as was
to be expected. The complement of the distri-
bution function of (22) is

pmbal)lhty donslt) is

2E
Z’(E)fT

P(E>R)= f: p(E)dE— L " w(@f(R, da (23)

where the order of integration has been reversed with

sl :IIO (’“r> JIE,

(24)

SR, a)—— [ F(\\pl:—»—

Now if 2 is large (12> ">s/a), the Bessel function
in (24) may be replaced by its asymptotic expression:
a saddle-point integration then leads to

l:l—(‘lf >] 25)

Now (25) changes its value from <Z0.01 to >0.99
near the point a= /2 within an interval Aa=2.3+/s/?,
tending to zero below and to unity above that
interval; for 2>">+/s we may therefore well approx-
imate (25) by

JR, a

0 for a< R

AR, @)~ (26)

1 for a >R.

Substituting this value in (23) we find

(for R>>>/s).
27

P(E>R) ~ f : w(a)da=P(a>R)

Hence for R>>+/s the distribution of a random
vector plus a Rayleigh vector will approach that of
the random vector alone. This effect may be
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observed in several cases in radio wave propagation.
One of these is the field strength of VHF and UHF
in cities and other built-up areas, where the total
signal may be due to a direct wave (attenuated at
random as it is transmitted through walls and other
building materials) onto which large numbers of
reflected waves are superimposed. The resulting
amplitude (which is constant in time, but random
when measured at different places) is then dis-
tributed as in (22). A survey conducted at various
parts of the city of Prague showed that in most
areas w(«), the distribution of the attenuated
direct wave, is lognormal; the same result need not
necessarily hold for cities dlﬂenng in character from
the above (brick or concrete houses, five to six
stories high, streets relatively narrow and not
forming a regular pattern). By analyzing the
resulting distribution the propagation mechanism
may thus be investigated (separation of reflections
and attenuation).

5. Converging Variances

In at least two cases met in propagation theory,
meteoric forward-scatter and noise due to atmos-
pherics, the signals arrive at random intervals of
time with a random amplitude which then decays
exponentially. The signals are mutually independ-
ent and their phase makes them UDP vectors.
Since an exponentially decaying signal never vanishes
completely, there is an infinity of residual signals
present at any time; but since the power at any time
1s finite, the infinite series of signals must converge
and the denominator of (13) will not tend to infinity
with » (this can also be shown mathematically).
Hence (13) will not be satisfied for any 7, the Central
Limit Theorem cannot be used, and the resulting
amplitude distribution cannot be a pure Rayleigh
distribution.

To solve the problem rigorously one therefore
has to return to first principles, e.g., by finding 2
and y in (4) through their characteristic functions

v v) — = 1 o h 10 E ; cO
3 Dy, = I=I Zvr)’f (]¢f0 dEw(I;) e Fi e8¢

o ©
:If
j=1Jo

where /7, is the amplitude of the jth decaying signal,
which dopomlx on two random qu(mlme\ the time
t; elapsed since the signal attained its peak value,
and that peak value 7

E,=E,e~'ila (29)

w(E)J,E)dE, (28)

with @ the time constant of decay. Since the number
of signals per unit tmw is Poisson-distributed (about
an average N), ¢, has an exponential distribution

Wy (tl) =Ne M (30)

and the distribution of ¢, is given by a j-fold convolu-
tion of (30), which le: Wds to

930

Z\Tjt]_l ot

wy(t) =Ty ™ (1)

The probability density of B=exp (—t,/a) is then
found from (31) by a simple transformation:

Nia’(In B;)?~

Gepipae  (<B<=). ()

w;(Bj)=
If the density of £, is AN(£7,), then the distribution

of I, is found from (30) as that of a product of two
random variables:

e f “ENB,E)W,(B,)B,. (33)
1

Substituting (33) in (28) will in general lead to
great computational difficulties; which may be
overcome by the following approximation.

From (33) we find

()= f " B (E,)dE, (34)
and ‘
<Ef>:]_z:; (E?). (35)

This series will converge and hence violate (13);
however, if the series converges quickly (Na<Z<1),
then (91) will still hold for g#1; if this term is
excluded, the rest of the series may thus be approxi-
mated by a Rayleigh vector. Physically this means
that if the time constant of decay is sufficiently
short for the signal to decay to a low value before
the next signal arrives (average interval is 1/N),
then the total signal at any time will be dominated
by the last signal (or possibly the last few signals),
whilst the remnants of all previous signals will
combine to form a low-power Rayleigh vector.

Thus under these circumstances this case may
be reduced approximately to the one in section 4;
the required distribution is thus given by (22) with
u () =w(f) given by (33) and .s*<l’ %) —(£?) found
from (34) and (35).

The distribution X(/,) is given by the physical
nature of the problem. For atmospherics, \(/7,)
may be shown to be lognormal [Beckmann, 1964];
in spite of the several approximations involved,
the agreement of the distribution as derived above
and the measured distribution is very good as shown
by figure 1. An analysis of the distribution permits
the effect of propagation conditions to be separated
from that of lightning activity in the total random
atmospheric noise.

6. Small Number of Independent
Components

If the number 7 of independent interfering waves
is small (e.g., the total radar signal returned from a
small number of independent targets in the same
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Frcure 1.—Amplitude-probability distribution of atmospheric
radio noise.

Circles: values measured by Crichlow et al. [1960], on 13.3 ke/s at Boulder,
Colo., October 6, 1958. Full Curve: distribution computed as in (33) through
(35) for ¢=1.67, 'Ne=0.01. Broken curve interpolated. (Cf., Beckmann [1964].)

area), the Central Limit Theorem cannot be applied
and little can be said about the distributions of
and y in (4) beyond the statement that they have
to be determined from the w,;(/;) by convolutions
or characteristic functions. However, we may ask
the opposite question: how large must n be in (1)
for the Rayleigh distribution to be a good approxima-
tion for p(£) in engineering practice? The answer
will obviously depend on the distributions w;(f;),
which we here assume all identical and equal to
w(k;). In that case one may derive the formula
[Watson, 1944; Levin, 1960]

p(E)—FE f ( f w(E]«)JO(qu)dEj> el o () .
0 JO
(36)
Expanding J,(£;u) in a series and integrating
term by term, rearranging in ascending powers of
(1/n) and using the 2d and 4th initial moments of

w(k), i.e.,
ma— ()= [ " Ejo(,)dE,;
0

= () = f (E)IE, (37)
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we {ind an expression which on integration over I
yields [Levin, 1960, pp. 1841871,

P(Faa> )= [ra (i) 2 ]

(38)

For n-—>w this leaves a pure Rayleigh distribution;
for finite n, the Rayleigh distribution will be a 000d
szproxinmtmn if the second term in the square
bracket will be small compared with unity; i.e., the
required criterion is

I :
n>> 7 (62| (39)
where B=m,/mj=(E})[{E3)*.

7. Random Number of Terms

In most cases met in wave propagation through
random media the number of interfering waves n 1s
not constant; the number of scatterers such as
turbulence cells in the atmosphere changes from
moment to moment; the number of effective reflec-
tors in cities or irregular terrain changes from loca-
tion to location, ete.  Thus n itself will be random;
if its distribution (discrete for integers only) is
P(n), then the distribution of z and y in (4) will be

(@)= Z‘,P(n) Z E; cos ¢;. (40)

n=0

Now if P(n) assumes appreciable values only for
large n, the terms of the n-sum will be normal, hence
2 will be normal and £ will be Rayleigh- distributed.
A more detailed investigation [Beckmann, 1962b]
shows that the distribution of £ will closely approach
a Rayleigh distribution as the condition

(n?)
e (41)

is more nearly satisfied; it 1s also shown Lhat for
a given distribution ]’(7)) the deviation of P(FK)
from a Rayleigh distribution will always be greater
for large £ than for small 7.

As a rule n is Poisson-distributed about its mean
value (n), i.e.,

P(n):%b o), 42)

From (42) we find (n®)={(n)+(n)?*; hence

) _
)

which will approach unity as required by (41) for
(ny>>1. Thus if P(n) is given by (42), a large
mean value is sufficient to make the Rayleigh dis-
tribution a good approximation for p(£). It should

o (43)



be noted that for large (n), (42) is equivalent to a
normal distribution with =(n) [Levin, 1960].
For a general distribution P(n), however, a large
mean value (n) is not sufficient to guarantee
that p(£) in (1) and (4) will tend to the Rayleigh
distribution, but the criterion (41) must be satisfied.

8. Distribution of the Resulting Phase

The distribution of 8 in (1) is found from the second
relation in (5). Kor a sum of UDP vectors, the
resulting phase will of course again be uniformly
distributed over an interval of length 27; for non-
uniform phase distributions of the vector terms we
introduce the quantities

T p 2 s,
A N > Y o S
VS1+8s V81182

p= (44)

and then obtain from (5)

K820+

— - [ ,G2 v 1
P00 =5 &7 cos? aF ez gy L T EVre® (L+erf 6)]

(45)

where ?

1+ K?
2(K? cos? 0+4-sin” 0)

G=BK cos 6\/ (46)
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