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Th e Rayleigh d istribu tion is the distribution of thc sum of a large num ber of coplanar 
(or t im c) vectors \\'ith random. amplitudes alld Ull ifO rlllly distributed phases. As s uch, it is 
the lim iti ng case of distributions a~soci at('d II ith 111 0re gl'IlPral vpctor surn s t hat arise in 
practical problems. S uch cases arC' til(' folloll' ing: (a) 'I'll(' p hasC' distribu tions of the vec tor 
tC'rms are not uni fo rm , e.g., in the case of scatt l' ring fro m rough surface'S; (b) One or more 
vector tcrms predominaLP, their nwan sq uare va lue' not I>l'illg neglig;ble compared to th e 
m ean square valup of Uw SU Ill , c.g., in tJle ea~e of sigl als propagat ed in eil i (,'. ll1<'teor-scatter, 
and atmosplwrie noise; (0) Th e numiJer of \'('ctO I' t('rn ' j~ small, ('.g., in radar ret ur ns from 
several clo",(' targets; (d) '1'110 Jlumi)('r of vector le l'm o is ilsl'H randolll , e.g., in at mosp her ic 
t u rbuh'nce, mekor-scatter and atm ~ pl'(' .. ic noise'. The ('('suI ting distributio ns for t hese 
cases and their deviations from the R ayleigh distr ibution will be co nsidered. 

1. Introduction 

In m any pl'Oblems arising in radio waye p ropaga
Lion LllC rosl il Lant field is rormed by Lhe s tlper
posi Lion or in terference of a number o[ clelllcntcl ry 
waves: 

J/ 

Ee iO = L:: Ejei~j, 
j= J 

(1) 

where t he TE j and Lhe <P j fw d el'en n rnay be rfl,ndom , 
and t he dis tributions of tllCindi I'idu <li Lerms of th e 
slim need n ot be id entical. One is t hen faced wi t h 
the problem or determi !ling the distribuLion of IE 
(and so metimes of 8) if the distribu t ions of t he Ej, 
the <P j and n are known. It will b e assumed that 
t he terms of t he sum (1) are mutually independent. 
The slim (1) may also be regarded as the sum of 
coplanar vectors. 

In its most elemenlttry form , when n is a large 
constant, tbe E ; are all ('qllal to Lhe Same constant , 
and the <P j are all uniforl ll ly cii stri buLed fro m 0 to 
271' , Lbe problem was sol wd by Rayleig-h [1896] flnd 
leads to Lbe well-known Rayleigh distribution 

?E 
p (E) = ~sJ e-E 2 1s, (2) 

where s=<11;2)=nEJ and the brad ets < ) denote t he 
luean value; or 

1 On leave of absence from th e Institute of Badio Engineering and Electron ics. 
Czechoslovak Academy of ScicJlccs, Praf,!; lIc. 

Tho presen t paper considers (1) under more 
ge ll eral co ncli Lions. J n prin ciple the problem can 
a l ways be sol ved by resol "ing (1) into i ts roctangular 
cO lllponen Ls ( i.o ., r eal and imaginary parts) x and y , 

X= E.I cos 8= 1.:'Ej cos <PJ='±XJj 
j= li j= l 

y= E sin 8= ... 

(4) 

findill g Lh o joint probability donsiLy vV(x, V), and 
l'eLmnsformin g to polar coo rd inates t hroug h 

p_(E) = E 12
". W eE cos 8, E sin 8)d8 

po(8) = 100 EW(E cos 8, E sin 8) dE. (5) 

The various cases that may arise are con veniently 
classified according to whether or not Lhe su ms (4) 
satis fy t he Central Limit Theorem , i. e. , whether or 
no t x and yare normally distributed as n-?oo . 
Each of these two cases again includes several 
further possibilities. 

L et D(x) denote t he variance of x; t hen t he di sLri
bution of x will tend to a normal distribution as 
n-? oo provided t hat the Xj a re mutuall y indepe ndent 
and that 
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lim D (x;) = 0 for a ll j 
11--) 00 D (x) , 

(6) 
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with a similar s tatement for y. (This statement 
usually suffices for engineering purposes; for a more 
rigorous enunciation of the Central Limit Theorem 
and Lindebol'g conditions d. Gnedenko and Kol
mogoro \' [1954].) Condition (6) essentially means 
that nono of the terms Xj must predominate in the 
resulting sum x. Howeyer, if the X j are themselves 
normally distributed, t hen x will, of course, be also 
normally distributed even if (6) does not hold. 

In most (but not all) applications the <P j are 
dis tributed uniformly between 0 and 2'7T' or in an 
equivalent manner; i.e. , the phase distribution 
W ", (<p ) is such that 

A vector with suoh a Uniformly Distributed Phase 
will be called a UDP vector. The sum of UDP vec
tors is obviously itself a UDP vector. If the terms 
in (1) are UDP Yectors, then 

But for j~k, 

(9) 

Substitu ting (9) in (8) we find the importan t 
relation 

(10) 

valid for UDP vectors regardless of the value of n 
or the distributions of the E j (possibly all different). 

2. Rayleigh Distribution 

If the terms in (1) are UD P Yectol's, then from (4) 

(X) = (y)= O (11) 

Then using (10) , condi tion (6) becomes 

(13) 

If (13) is satisfied and n is large, x and y can be 
approximated by a normal distribution with mean 
value zero and the same variance. The integration 
(5) then leads to the R ayleigh distribution (2) with 

(14) 

Thus a Rayleigh vector is a UDP \'ec tol' whose x 
and y components are di s tributed normally with 
(x)=(y)=O and D (x) = D (y) = s/2. From this it fol
lows that the sum of any number of Raylei gh vectors 
is itself a Rayleigh vectol'. 

A R ayleigh dis tribution will thus be found when
ever the resul tant field is composed of a large number 
of UDP yectors and (13) is satisfied. 

3. Nonuniform Phase Distributions 

In a number of applications the phases <P j in (1) 
are not distributed uniformly as in (7), but fiuctuate 
about some priyileged yalue. This will occur in 
scattering from Tough sW'faces (e.g., rough layers 
in the atmosphere) 1'01' small roughness or small 
grazing angles. Since the terms in (1 ) are now not 
UDP Yectors, (11) and (12) will not hold. How
e\-er, if (6) holds, x and y will still be normally dis
tributed. If the phase distributions are symmetrical 
abou t zero, tben (y)= O. By the usual rules of 
probability theory one then :finds the quantities 

and the integration (5) yields 

where 1m is the modi:rred Bessel function of order 
m and Eo = l , E",= 2 for m~O. Details of the pro
cedure and Clll'Yes of (15) will be found in [Beckmann, 
1962a] . 

The general dis tribution (15) simpli fies in certain 
special cases. Ifa = O, but sl ~ s, theD (15) l'educes to 

a distribution derived directly by Hoyt [1947]. 

On the other hand, if SI= sl= 4 s, but a~ O, then 

(15) reduces to the N akagami-Rice distribution 

peE) = 2~ exp [ _ a
2

: E] 10 (2~E), (17) 

a distribution derived by Rice [1944 and 1945] 2 

and further analyzed, e.g., by Norton et al. [1955], 
and Zuhrt [1957]. The distribution (17) is obtained 
when a constaDt yector (E 1=a, <Pl = O) is added to a 

Z '-rhe distri bution w as origina11 y derived h y N akagami in 1940. A summary 
and b ibliography or t he ",-ark on this and related top ics by :-Jakagam; and other 
J apanese scientists w ill be found in [~akaga,m i , 1960]. 
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R ayleigh nctor , for the x a nd y co mponents of th e 
sum will t hen obviously be distribu ted normally 
wi t h (x)= a, (y)= O, D (x) = D (Y) = 8/2 (wher e 8 is 
t he mean square valu e of th e R ayleigh vector) 
just as assumed in deri ving (17). lL should be noted 
that (J 7) will equ ally well h old for E [ exp (ict>l) a 
UDP yector with constant a mpli tude E[ = a; t his 
may be shown by measurin g the p hases from ct>l as 
a reference phase : the distribu tions of ct>; = ct> j- ct>l 
will for j ~ 11'em ain un iform ,),s before, whereas ct>; = 0, 
thus r educing to t he same co ndi tions under whicb 
(1 7) was deri,~e d . 

The Rayleig h distribu tion, as m ay easily be 
verified , is the limiting dis tribu tion of (15) , and of 
i ts special cases (16) and (1 7), for a= O; 8[ = S2 = S/2. 

If the Cen tral Limit Theorem may be applied to 
(4), so th at x and y will be distribu ted n ormally, 
then in the m os t gen er al case (corresponding to 
asynlln et ricnl p hilse dis tribu tions) we hal'e foul' 
p arametcrs: 

(18) 

The in teg ration (5) t hen leads to 

for one (or m ore) j. If more than one of such waves 
ar e presen t , we m ay sum them by s tandard methods 
(conITolutions, char acteristic functions) and r egard 
t hi s p ar ti,)'l sum as on.e wave. Since assump tion (21 ) 
will hold for all other j , t he rema ining terms will add 
up to a R ayleigh ITector, so tha t the problem reduces 
to :finding the distri bu tion of t he sum of a UDP 
Yectol' witb random ampliLude El and a Rayleigh 
yector. 

This problem ma,y be sollred directly from first 
principles by (4) to (5) or m or e quickly by random
izing a= E[ in (17) a nd using Lh e theore m of total 
probabili ty: if th e densi ty of a is w(a), then (17) 
gilres t he densi ty p(E la), so t ltat Li tO r equired total 
prob abili ty densi ty is 

2E !c '" ( a2+ E 2) ( 2aE) peE) = - w(a) exp - --. - 10 - da. 
SO . 1"l"" S 8 

(22) 

It m ay be ve ri fied from (22) t hat p eE ) will 
approach ,l R ayleigh dis tribu b on for (a2)< <s, as wn,s 
to be expected . The co mpleme nt of the di stri
buLion fUll cLion of (22) is 

P (E> R )= fR'" p (E )dE= i '" w(a)j (R , a)da (23) 

cos [2m (arc tan ~)] (19) where the order of in. tegration J1<"lS been reversed with 

where 

(20) 

The distribu t ion (19) was found by N ak aga,mi 
[1960]; i t is the 1110sL general distribution for the case 
when the Central Limi t Theorem is applicable to 
(4); for {3 = 0 a nd hence R = O, i t reduces to (15). 
The R ayleigh distribu tion is again obtained from 
(19) for a= {3 = O; s[=s2=s/2. 

If the Ce ntral Limit Theorem is no t applicable to 
(4), this may b e for one of the following r easons: (a) 
condi tion (6) is not satisfied (this will be consider ed 
in sees. 4 a nd 5) ; (b) the number of terms n in (1) is 
not large (sec. 6) or random (sec. 7). 

4. Dominant Terms 

F or UDP vectors, which we shall henceforth as
sume, (6) reduces to (1 3). If the number of inter
fering wayes n is large, but finite , we may r eplace 
(13) by 

n 

(E ;) < <~ (E ;) for any j . (21 ) 
j~ l 

Now if one (or more) of the in terferin g waves is 
powerful , so t hat its p ower is n ot n egligible when 
co mp ared to the to tal p ower , (2 1) will be viola ted 

2 r'" [ a2+ E 2] ( 2aE) , j(R , a) = s JR E exp - - s- 10 -8- dE. 

(24) 

No w if H is large (Ii > >s/a) , the Bessel fu nction 
in (24) m ay be replaced by i ts asymp totic expression : 
a saddle-p oin t integrat ion then leads to 

1 [ (R - a) ] j(R , a) = 2 l -erf -is . (25) 

Now (25) cha nges i tsn)'lue from < 0.01 to > 0.99 
near the p oin t a= R wi thin a n in ter val !J. a= 2.3{S H, 
t ending to zero below and to uni ty ab ove tha t 
interval ; for R > > -Js we m ay t herefore well approx
ima te (25) by 

{
o for a< R 

j(R , a) ~ 
1 for a> R. 

(26) 

Subs tituting this v alue in (23) we find 

(for R > > {S) . 

(27) 

H ence for R > > -Js the dis tribu tion of a r andom 
vector plus a R ayleigh vector will approach tha t of 
the random vector alone. This effect m ay be 
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observed in several cases in radio wave propagation. 
One of these IS the field strength of VHF and UHF 
in cities and other built-up areas, where the total 
signal may be due to a direct wave (attenuated at 
random as it is transmitted through walls and other 
buildin g materials) onto which large numbers of 
re(lected waves are superimposed. The resultin o' 

ampli tude (which is constant in time, but randor~ 
when measured at different places) is t hen dis
tributed as in (22). A survey conducted at various 
parts of the city of Prague showed that in most 
areas w(a), the distribution of the attenuated 
direct wave, is lognormal ; the same r esult need not 
necessarily hold for cities differing in character from 
the above (brick or concrete houses fiye to six 
stories high, streets relatively naIT~w and not 
forming a regular pattern). By analyzing the 
resulting distribution the propagation mechan ism 
may thus be investigated (separation of reflections 
and attenu ation). 

5. Converging Variances 

In at least two cases me t in propagation t heory, 
meteoric fo rward-scatter and noise due to atmos
pherics, t he signals arrive at random intervals of 
time with a random aJl1pli tud e which then decays 
exponentially: The signals are mutually indepen'd
eDt and thelr p hase makes them UDP ,"ectors. 
Sin ce an exponentially decaying signal never vanishes 
completely, there is an infini ty of residual signals 
present at any time; but sin ce the power at any time 
is finite , the in:6.nite series of signals must converge 
a~d the de~ominator of (13) will not tend to in:6.ni ty 
wIth n (thIS can also be shown mathematically). 
H.en~e (13) Will not b p satisfied for any j, the C'entrnl 
LImit Theorem cannot be used, and t he res11ltin o' 

ampli tude distribution cannot be a pure Rayleio'h 
distribution. b 

T o solve the problem rigorously one therefore 
has to .return to :first principles, e.g., b y findin g x 
an d y 111 (4) through their characteristic function s 

X (v) = X (v) = II -- Gl-l. GlE.w(E ) i, E · cos '" . ro 1 £Z" i ro 
x y . (2 ) j 'f' J . J j e J 

)=1 7r • 0 0 

(28) 

wh~re E j is the ampli tude of the jth decayi ng s ignal, 
wInch depe ~lds on Lwo random quan t ities: th e Li me 
t j elapsed slll ce the signal aLLained its peak ulluE' , 
and that peak,oalue E p: 

(29) 

wit~ a the Li me COllsttUlI of decay. Si nce the number 
of SIgnals per uniL Li me is Poisson-dis tributed (about 
an average N ), tl ha,s an exponentiftl distribution 

(30) 

apd the di stribu~ion of t j is gi ,~en by aj-fold cOllyolu
tlOn of (30), whICh leads Lo 
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_ Njt~- l -Nt . 

wj(t j)- (j_l)! e J o (31) 

The probability density of B = exp (- tJia) is then 
found from (3 1) by a simple transformation: 

N jaj (ln B j) j-l 

(j- 1) !Bi N +1 
(32) 

If the density of E p is }.. (Ep) , then the distribution 
of E j is found from (30) as t hat of a product of two 
random variables: 

Substituting (33) in (28) will in general lead to 
great computational difficulties, which may be 
o,rercome by the following approximation. 

From (33) we find 

(34) 

and 
'" (E 2) = ~ (E ;) . (35) 

j= l 

This se~'~es will ?onverge and hence viola te (13); 
however , 1£ t!le se.nes converge~ quic~dy (Na< < 1), 
t hen (21) WIll stIll hold for J ~ 1; If t his tertn is 
excluded, the rest of t he series Illay Lhu s be approxi
mate~ by a Rayleigh vector. Physically this m eans 
thaL I~ t he time constant of decay is sufficiently 
short for t he SIgnal to decay to a low value before 
the next signal. arrives (average inter','al is l iN), 
then the total slgnal at any time will be dominated 
by. the last signal (or possibly the last few signals), 
wJllls t the remnants of all previous sio'ncLls will 
combi ne to fOrln a low-power Ravleio'h ve~tor. 

'1'1 d . b lUS un er th e~e circumstances this case may 
be reduced approXImately to the one in section 4' 
the required d!stribution is thus given by (22) with 
w(a)= w(Et) gll'en by (33) aLld s=(EZ)-(E D found 
from (34) cwd (3 5) . 

The di~Lribution }..(E,,) is given by the physical 
nature of the problem. For atm ospherics, }.. (E p) 
lllay ? e sh?wn to be lognormal [Beckmann, 1964]; 
111 Spl te of the several approximations in \~ol ved 
tbe agreement of t he d istribu tion as deri ved abov~ 
and Lhe Ill eclsur ed distribution is ve ry good as shown 
by flg:lre 1 . An analysis of the di sLribution permi ts 
~he efleet or propagation conditions to be separated 
from Llmt or ligllLni ng acti viLy in the total random 
atmospheric noise. 

6. Small Number of Independent 
Components 

. If t he number n of independent interfering waves 
IS small (e.g., the total rftdar signal returned from a 
small number of independent targets in the same 
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FIG URE 1.- Ampliltbde-pTobabi li ty distTibu tion oj atmos pheric 
radio noise . 

Circles: values m easu red by C richlow ci HI. [19601. on 13.3 kc/s at Boulder , 
Colo., October 6, 1958. F ull C"rI'e : dist ri bu tio n corn pu ted as in (33) t lll"o llgh 
(35) fo r u ~1.67, Nc~ O . Ol. Broken curve ill te rpolat e(i. (Cf. Beckmann [1964J.) 

area), t he Central Limit 'J'heorem cannot be appli ed 
and li ttle can be said about t he distribu tions of x 
a nd y in (4) beyond the statement tha t they have 
to be determined from t he w;(E j ) by con volu t ions 
or ch aracteristic fun ctions. However , we :may ask 
the opposite ques tion: h ow large mus t n be in (1 ) 
for the Rayleigh distributi on to be a good approxima
tion for p eE) in engineering practice? The answer 
will ob\Tiously depend on the dis tribu tions wj(Ej) , 
whi ch we here assume all identical and equal to 
w(Ej ) . In that case one may derive the formula 
[Watson , 1944; Levin, 1960] 

peE) = E i OO (i '" w(Ej)J o(uEj)dEj)nuJo (Eu)du. 

(36) 

Expanding Jo (E ju) ill a series and integra ting 
term by term, rearranging in ascen ding powers of 
(1 ln) and using t he 2d and 4th initial moments of 
w(EJ, i.e. , 

m2=(E;)= Sa'" E ;w(E j)dEj ; 

m4=(E J)= i '" E'w(Ej) dEj (37) 

we find an ex pression which on integration over E 
yields (Levi n, 1960, pp . 184- 187]' 

P (E~1 S > R )=e-R2 [1+ 4~ (:i-2) R4+ .. .J. 
(38) 

For n ---'> oo t his lea\' es a pure R a.yleigh dis tribution; 
for fmite n, t he Rayleigh dist ribution .will be a good 
approximation if the seco nd ter.m JI1. t he . square 
bracket will be small compared WIth umLy ; I. e., the 
required cri terion is 

(39) 

where (3= m4Im~=(EJ)/(E;)2 . 

7. Random Number of Terms 

Tn most cases met in wal"e p ropagaLio n t hrough 
random med ia the number of interfering waves n is 
not cOll s tanL; t he number of scatterers such as 
turbulence cells in the a t mosphere changes from 
moment Lo mOll1 en t; t he IlU m bel' of effec ti I'e reflec
tO I'S in cities or irregular terrai n ch'1I1 ges from loca
t ion to 10caLion, e tc. Thus n itself will be random; 
if i ts dis tribu tion (discrete for inlegers only) is 
p en), t hen the distribuLion of x a lld ?J in (4) will be 

'" n 
px(x) = "L,P (n) "L, E j cos 4>j . (40) 

n~O j~ l 

N ow if p en ) assum es appreciabl e I'alues oll ly for 
laro'e n t lte term s of t he n-sum will be norm al, hence 
x ~ll be !lonnaJ and E will be Rayleigh-di st ribu ted. 
A more detail ed ill ves Li gaLio ll [Beckmanll , ]962b] 
shows t hat t he cl istriblltion of E will closely H.pproach 
a Rayleigh distribu tion as the cond i tion 

(41) 

lS more n early satis:Ci.ed; i t is also shown that for 
a o'iven distribution pen) t lte deviation of p eE) 
fro~ a Rayleigh dist ribution will always be greater 
for large E than for small E. 

As a rule n is Poisson-distribu ted ab ou t its mean 
value (n), i.e ., 

P (n) = (n;n e(-n) . 
n. 

(42) 

From (42) we find (n2)=(n)+(n)2; hence 

(n2) _ 1 
(n)2- (n) + 1 (43) 

which will approach uni ty as required by (41 ) for 
(n»> l. Thus if pen) is given by (42), .a lar~e 
mean value is sufficient to make the RayleIgh dIs
tribu tion a good approximation for p (E). It should 
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be noted that for large (n), (42) is equivalent to a 
normal distribution with D (n) = (n) [Levin, 1960]. 

For a general distribution P (n), however, a large 
m efl,n value (n) is not sufficient to guarantee 
t l~fl,t .peE) in (1) fl,nd (4) will tend to the R ayleigh 
dlstnbutlOn, but the en terion (4 1) must be sfl,tisfied. 

8. Distribution of the Resulting Phase 

The distribution of B in (1) is found from the second 
relation in (5). For a sum of UDP vectors the 
r~sul.tjng phase will. of course again be unifdrmly 
dlstnbuted over an mtervfl,l of leno-th 211"' for non
uniform phase distributions of the ~'ector' terms we 
introduce t he qUfl,ntities 

T a ,-

p= .JSI + S2; B = .JSt+sz; K=.y~ (44) 

and then obtain from (5) 

po(B) 
I-{e- tB2(l+K 2) 2 

2 (K Z <) B+ . 2 e) [J + G,hreG (1 + erf G)] 11" cos- SIn 

(45) 
where 3 

( 46) 
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