
RADIO SCIENCE Journal of Research NBS/USNC-URSI 
Vol. 68D, No.9, September 1964 

Modified Gaussian Distributions for Slightly 
N onlinear Variables 

M. s. Longuet-Higgins 

National Institute of O ceanography, Wormley, Surrey, England 

(R eceived December 27, 1963) 

Many random variables are almost linear, in the sense that they can be represented 
approximately as the sun'l of independ ent components in random phase. Sueh variables 
(for example, the surface elevation in a r andom sea) may have a gaussian distribution in thl' 
first approximation . Howev er in higher approximations the phases of the different com
ponents become correlated, due to nonlinear inte ractions. The purpose of this paper is to 
show theoretically what is the effect of such nonlinearities on the basic gaus ian diRtribution. 

The modifi ed distribution is derived both for a single variable an d for two or more 
related variables (such as the components of slope of a rand om surfaee) . The results are 
applied in the first place to sca waves, and are compared with ob ervations. However the 
analysis is applicable quite generally to any such non li near variables . 

Two further problems are solved for weakly non linear vari ables: the mean num ber of 
zeros per uni t time of a stationary random function nl) and the distribution of the maximum 
values of nl) . These solutions are essentially generali zat ions of the well-known results of 
Rice for gaus ian variables. 

1. Introduction 

Many random variables occmring in phy ical problems may be con idcrcd as the sum of 
a large number of independent components; thus we write 

N 

.\= :;8 ai~t 
i=l 

(1) 

where the a t are constants and the ~t are independent random variables symme tically dis
tributed about 0 with variance V i, say. Under certain conditions as N~ro and each Vi~O, 
the distribution of .I tends to a gaussian distribution with variance ~ Vj. 

In particular it is possible to consider some stationary stochastic processes as the limit of 
a sum such a (1), the ~ t being components corresponding to particular frequencies IT i or wave 
numbers k i ; there may exist a continuous function E(rJ) , the spectral den sity of .I, such that in 
any small interval (rJ,rJ + dIT) the sum of the variances V j is given by 

Such a representation (equivalent to a stochastic integral) has been widely used in the 
theory of noise in electrical circuits [Rice, 1944 and 1945], in the theory of random sea surfaces, 
microseisms, turbulence, and other physical phenomena [Longuet-Higgins, 1960]. The repre
sentation gives most satisfactory results when the variable .I satisfies a linear differential 
equation and can be shown physically to be the resultant of large number of independent 
contributions. 

In some instances, however, the assumption of linearity is only approximately justified, 
and the -variable in question may actually satisfy a nonlinear differential equation whose non
linear terms are small but not completely negligible. Such is the case with variables .I associ
ated with sea waves. The distribution p(1;) is then nearly gaussian, but not exactly so. The 
question we wish to discuss is: what is the effect of the nonlinearities on p(.l), and how can they 
be calculated in terms of the differential equation satisfied by .\? 
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In a recent paper [Longuet-Higgins, 1963], the representation (1) was generalized in the 
following way. Consider the variable 

(2) 

where the a i , a iil a ijk , etc., are constants and the ~ i as before are independent random 
variables with variance Vi' (The repetition of any subscript will be taken to imply summa
tion.) If the ai are given , then by substitution in the differential equation for r it may be 
possible to determine by successive approximation the values of a iil a ijk , etc. Assuming that 
these are bounded, then as N ----7 oo the contributions to r from successive terms in the series 
can be expected to be of decreasing order of magnitude . 

To calculate per) from (2) it is assumed that per) is uniquely determined by the sequence 
of its cumulants, which can be found from (2) to any order required. 

This generalization 1 of the representation (1) leads to a distribution per) which is a generali
zation of the gaussian distribution ; in fact it is the gaussian distribution multiplied by a sequence 
of H ermite polynomials, of increasing degree but decreasing order of magnitude. The series 
may be only valid asymptotically, and nonuniformly with r. Nevertheless when applied to 
sea waves the second approximation has been shown in [Longuet-Higgins, 1963J to give 
r easonably good agreement with observation. 

In the present paper what we propose to do is to state without detailed proof the general 
results of Longuet-Higgins [1963], and then to apply the results to the solution of two related 
problems: to determine (a) the mean number of zero-crossings of r per unit time and (b) the 
distribution of the values of r at a maximum. 

2 . Distribution of a Single Variable 

W e may start by writing down the moments of p(S). Thus taking mean values In (2) 
one has 

r= ai~i+ aij~i~j+ aijk~ i~jh+ .... 

The mean values of all odd-order terms vanish, while in the terms of e\'en order only those 
remain in which each r i is paired with a similar S;. Thus 

it being assumed that the a's are symmetric in their suffices. T erms involving 'f ~ , ~ 1, etc. 
are assumed to become negligible in the limit as N ----7 oo . Similarly since 

we have on taking mean values 

and so on for higher moments. Now some of the terms in the last expression can be factorized , 
e.g., 

a ii a jjV iV j= (a liV ; ) ( a j jVj ) 

while others, e.g., a i jCX iiV i V " cannot . We call terms which cannot be factorized " irreducible" . 
For simplicity the followin g notation is introduced. a i; '" I is denoted simply by A" 

where r is the number of suffices i , j , ... l; and the sum of all irreducible terms in the product 

1 A less direct approach is suggested by Wiener [1958J. It should be noted tbat in the present paper tbe indiv;dual ti are not assumcd n eces
sarily to be gaussian. 
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is denoted by (ApAQ ... A s). Then we haye 

!;2= ~ [(A"A Q) + (Ap) (AQ)] 
poq 

etc. However, much simpler than the moments of p (!;) are the cumulants Ku , defined by 

Joo () i/ sd - • [ K' ( 0 )+K2 (0 )2+ ] 
_ 00 p !; e !; - exp l! t t 2! t t . " . (3) 

We have 

K 2= !;2_(f)2= ~ (Al,AQ) 
p, q 

and in general it can be shown that [Longuet-Higgins, 1963] 

Ku = ~ (ApAq ... A s) (4) 
p , q, '" s 

where p, q, . 0 0 s run through all values from 1 to 00 independently. Thus if we retain terms 
up t.o the third order in the V i we have 

KI = (A2) + (A4) + (Ad) 

K 2= (Ai) + (AD + (A~) + 2(A1A3) +2 (AjAs) +2 (A2A4) 

K 3= (AD +3(A~A2)+3(A~A4) +6 (A1A2A3) 

K 4= (AD +4 (A1A3) +6(A~A~) 

(5) 

vVe see that 1<.1 and K 2 are both of order V in general, but when n?: 2 the lowest nonvanishing 
term in Ku is O(Vn- l). If we define the coefficients 

(6) 

and generally 

(7) 

we see that An is of order V n/2-1 in general. 
The density pm is now found by inverting the expression (3): 

( ) _ 1 J oo . [ K' ( 0 ) +K2 (. )2+ ] ":'ttid' p !; - 27r - 00 exp 1T tt 2f t t •.. e t. 

Writing 

!;-K, 
K l / 2 = / 

2 

(8) 
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we find [Longuet-Higgins, 1963] that 

(9) 

where H n(j) denotes the Hermite polynomial of degree n: 

H = jn n(n-l) fn-2+n(n-l) (n- 2) (n-3) !r-4_ 
n I! 2 2! 22 (1 0) 

This is the required distribution. In the first approximation "3, "4, ... are neglected and the 
distribution is gaussian with mean Kl and variance K 2 • In the next approximation a term 
"il3 is included, where H3 is the cubic polynomial (j3-3f). In the third approximation the 
quartic polynomial H4 and the sextic polynomial H6 are both involved. Higher approxima
tions can be writ.ten down at will. 

Equation (9) will be recognized as essentially similar to Edgeworth's form of the 
Gram-Charlier distribution [Edgeworth, 1906]. 

3 . Application to a Stochastic Variable 

Suppose now that the variable t is a stationary random function of the space coordinate 
x and the time t, satisfying a nonlinear partial differential equation (or boundary condition) 
in x and t. How is the distribution pCt) related to the spectral density of n 

Let the equation satisfied by t be represented symbolically by 

L(t) + Q(t) + C(t) + ... = 0 (11) 

where L, Q, C, etc., represent operators that are linear, quadratic, cubic, etc., in t. To solve 
(11) for small perturbations we naturally substitute 

t = €r (l) + €2t(2)+ €3r(3) + 
where € is a small parameter. Writing (11) in the form 

. .. , (12) 

L(t)=-Q(t) -C(t)- . (13) 

and equating coefficients of €, €2, €3, • •• on the two sides of the equation we have successively 

L (t(I))=O (14) 

L(t (2) ) = - Q (r(l) (15) 

L (t(3))=_ Q(t (l), r (2)-C(t CI) (16) 

etc., where Q(t(l), t(2)) denotes an expression that is bilinear in .\(1) and t (2) . If there al'l~ wave
like solutions to (14) then we can write 

N' 
t(l) =~an cos (k n ,x-<Tnt + lln) (1 7) 

n=l 

where an and lin are amplitude and phase constants and kn and <Tn are wave numbers and fre
quencies respectively. Generally (14) implies a relation between kn and <Tn' Thus in the case 
of gravity waves on water we have 

Now (17) can be written 

N' 
t(l) =~ {an cos lin cos (k n · X- <Tnt )+an sin lin sin (k nx-<Tnt)} . 

n=l 
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If now we suppose that an cos On, an sin On are normally and independently distributed then 
we have 

where 
~n=an cos On, 

~N+n=an sin On, 

2N' 
t(l) = ~ an~n 

n=1 

Thus t (l ) is expressed in the same form as in (1). 
To find t (2) we now substitute for t t l ) in (15) . Since the terms on the right are quadratic 

they can in general be expressed as a series of sum or difference wave numbers, i.e., harmonic 
terms in { (k n±k m) x- (CT n±CT m) t }. Hence we can in general find expressions for t (2) . On writing 
the solutions again as products of the original harmonics constituen ts we find 

t (2 ) = ~ an. m~n~m . 
'I1 ,m 

Thus t t l ) + t (2) has the form of (2), as far as the second-order terms. The evaluation of t (3) , 

etc., proceeds similarly. 
The application to gravity waves on water is given in Longuet-Higgins [1963]. It is 

convenient to use the assumption of homogeneity so that we can consider the waves at the 
special point x= o and time t= O. That is, we may take 

( 1 
ai= ~ , 

L 0, 

Then for gravity waves it is found that 

i = 1,2, .. . N' L. 
'- N' + l 9.N' r ~- , .. . ~ .J 

i,j= l, ... N' 

i,j=N' + l , ... N 

o 
where 

B i - ( ·/k.- ./fC;)2(k i · k j+ leile j), 
J ( le i _ . .,Ile j)2_ Jk i- k jJ 

B t= ({iC; -+: ..,IJc;)2(k i· k j-leile j). 
( ..,fki+ ..,Ile j)2- Jk i+ k jJ 

The diagonal terms ai i are simply given by 

( 

aii= ~ lei, 
i= l , ... N', 

L -lei, i= N'H, . .. N. 

So we find, for example, that, to the second order of approximation 

as was to be expected; while 
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anti 

N' 
= 6 ::8 a ;jVYj 

i,j= l 

= 6 ffIf K (k, k' )E(k)E(k' )dkdk' 

where Kis a function of k and k'. 

(20) 

In the special case when the waves travel all in the same direction the above expressions 
become very simple, and it turns out that 

K (k, k' ) = min (k , k' ). 

H ence introducing the frequency spectrum F(u) of \ we have 

K 2= f F(u)clu (21) 

K 3= 6 If min (k, k')F (u) F(u')dudu' 

= 12Sooo {So"' ~ F (u)du } F (u' )du' (22) 

sin ce k = u2/g. 
Returning to the general case, when the waves are not unidirectional, it can be shown 

that the expression on the righ t of (22), which we denote by 1, is related to K 3 by the inequalities 

Combined with (21) this gives u s bounds for the skewness coefficient A3 =K3/K~/2, in terms 
of the frequency spectrum F(u) and irrespective of the directional properties of the spectrum. 

These results have been compared with the observations of Kinsman [1960; Longuet
Higgins, 1963]. It is found that the inequality on the skewness is satisfied in most cases of 
observed wave spectra. 

Some observed distributions of ""ave height have been compared by Kinsman with 
a Gram-Charlier distribution based on the measured coefficients of skewness and kurtosis. 
As shown in figure 1, these are a better fit to the observations than the simple uncorrected 
gaussian distribution. Kinsman 's suggested distribution differs from the form of the Gram
Charlier distribution found in section 2 of this paper, since it does not include a term in !-I6' 
Nevertheless the difference resulting from the terms in !-I4 and !-I6 is so small in his measure
ments that the correction is essentially given by the second term A3H 3. Hence his figure can 
be used effectively as an assessment of the present theory. 

If one attempts to carry the formal calculation of the moments to third and higher 
approximations in the application to water waves, the calculation breaks down. This is 
because of the occurrence of resonant interactions at the third approximation [Phillips, 1960; 
Hasselmann, 1962 ; and Benney, 1962], which render some of the third-order terms aij k in the 
series (2) slowly dependent on the time t. Thus the present method of calculation is consistent 
only as far as the second approximation in water waves. 

In general, however, there seems no reason why the process should not be carried further 
and the higher-order terms in (2) be evaluated. 
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FIG U RE 1. F rom Kinsman 1960. Comparison oj an observed distribution oj wave height in sea waves with the 
normal distl'ibution (bl'oken line) and with a Gram- Charlier distribution (s olid line). 

4. The Joint Distribution of Two Variables 

The method of section 2 can be extended to the determination of the joint distribution 
of any number of variables of the type 

(23) 

where the a's and {3's are known constants and the ~ i are random variables defined as before. 
}1'or simplicity we state the results for two variables t, TJ. 

Let us denote by Ap and B q the terms a t} . . . land B i} ... m where p and q are the 
numbers of suffices i, j . .. land i, j . . . m; and let (ApB q ... ) denote the irreducible part 
of the mean product 

Then it can be shown [Longuet-Higgins, 1963] that the cumulants K mn in the join t distribution 
of t and TJ are given by 

K mn= ~ (ApI' .. ApmBql .. . B qn) (24) 
p , ... pmq, ... q" 
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the summation extending over all positive integral values of the Pi and qj. In particular we 
have J{rnO= J{m, the cumulant of p(!:), as found in section 2, and as far as the terms in V 3 we 
have 

J{ll= (AIB I) + [ (AIB 3) + (A2B2) + (A3BI) ]+ [ (AIB5) + (A2B 4) + ... +(A 5B I)], 

J{21=[ (AiB 2) +2 (AIA2BI) ]+[ (AiB 4) + 2 (AIA2B3) +2 (AIA3B 2) + (AW2) + 2 (AIA4BI) + 2 (A2A3Bi) ], 

J{22= [2 (AiBIB3) + (AiBD + 4 (AIA 2B IB2) + (A~BD + 2 (AIA3B i) ], 

J{31= [ (AfB3 + 3 (AiA2B 2) + 3 (A1AW1) ]. 

The joint distribution of !:, 7J is now given by 

exp [-HP-2pff' + j'2) /(1_ p2] [ 1 ] 
p (!:,7J) = 27r(J{20J{02-J{f,) ~ 1+6 CA30H 30+3A21 H21 + 3t\jzHI2+ A03H 03)+' .. 

where 

l' = 7J- J{01 1 
J{1,Ji 

P= All I 
) 

and H mn(j,1'; p) is a two-dimensional analog of the Hermite polynomial, viz. 

(25) 

(26) 

om+" 
H mn exp [-HP-2pjj' + j'2) / (1_p2)] = (_1)m+n oj"'oj'" exp [-HP-2pjj' + j'2) /Cl_p2)] 

In particular 
[-{ '" = 1 

HlO= (f- pj' ) /(1- p2) 

HOI = (f'-pj) /(1-p2) ~ 

H20 = (j_pj')2/(l- p2) - 1 I 

H!1 = (j- P1' ) (j' -pj) /( l - p2) +pJ 
H 02= (j' - pj) 2/(l- p2)- 1. 

(27) 

(28) 

The first approximation, in which Am" (m+n > 2) are neglected, is the familiar bivariate gaussian 
distribution, as we would expect. In the second approximation cubic polynomials in j , l' 
must be included, which introduce various types of skewness depending on the coefficients 
'11.30 , An, '11.12, and '11.03 , In higher approximations we encounter further terms in a bivariate 
Gram-Charlier series. 

In the paper [Longuet-Higgins, 1963] this distribution was applied to the joint distribution 
of the two components of slope of a random surface. In the present paper we shall apply it to 
two different problems: the mean number of zeros per unit time of a nonlinear random function 
r(t); and the distribution of the maximum values of !:(t). 

5 . Mean Number Of Zeros Per Unit Time 

We now consider the problem of determining the average number of zero-crossings (or 
of maxima and minima, which are zeros of the derivative) per unit time in a wave record. 
We assume that the process is stationary to all orders. 

A general formula for the number of crossings of a level!: per unit time t is due to Kac 
[1943]. 
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where per, S t) denotes the joint distribution of S ftnd its time-derivatil' e S /. Now for this 
distribution we ha\'e 

and 

for any stationary process S, so that P= All= O and from (25) 

(30) 

where 

N ow since e-lf,2I1'1 is an even function of 1', the integral of this function multiplied by HnU' ) 
'will yanish whenel'er n is odd. Moreover, when n is even and great.er than 0 

.L"", e-tf ,2 Ij ' IH,J1')dj'= 2 I-"'", l' (-1)" d~;~" (e-W2)clj' 

= 2Hn - 2(0) 

on integration by parts. So on substitution in (29) we find 

(31) 

Thus the number of zeros per unit time, considered as a function of S, has a skewness A30 similar 
to that of p(l;), but a mean value 

different from the mean of I;-
If we take j = O in (31) then the third-order terms vanish and we have, to fourth order 

(32) 

6. Distribution of Heights of Maxima 

The distribution P (Smax) of the heights of the maxima of S is given quite generally by 

(33) 

where pes, S t, S tt) denotes the joint distribution of S and its first two derivatives with respect 
to t [Rice, 1944- 1945 ; Cartwright and Longuet-Higgins, 1956]. Now if K ijk denotes the (i,j, k)th 
joint cumulant of S, S I, S tt, it is clear that K lOO, Kow, Kool all vanish, as do Kno and K oll • Hence 
we have (as in sec. 3) 
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Writing now 
t= sjK '4o, 

t' =s' jK iJo, 

ttl =s" jK '(jJ2, 
we have 

3 1 )i Jff e-iUS+j'S,+jUSU'X exp [-! (S2+ S' 2+ S"2+2 pss") 
(27r) (K 2ooK o20Ko02) 2 

+~ {A300(is)3+3A21O(is) 2(is') + 0 0 o} + 0 0 oJ dsds'ds" 

(2~) 'i2 I I I e-i(js+J's'+f"s")-Us'+S"+s"'+2pss") x Cis) 'Cis')" (is")'" dsds'ds" 

the terms in s' are separable from the terms in sand s" and hence as in sections 2 and 5 th e 
above expression equals 

1 H (f j" 0 p) H (j ') e -Hf"+(j'-2pff"+f"')/Cl -p')] 
( 1 - p2)~ r,r" 0 , , r' . • 

Hence we find 

e -Hf"+(j2- 2pff"+ f"2) /Cl - p2)] 

(27r) 'i2 (K 2ooKo20K o02) ~ (1- p2) ~ 

X[1+~ { A30oH3oU,j"; p)Ho(f ' )+3A21OH20(f,j"; p)H1 U) + · 0 o}+ .. .J (34) 

Tofindp(.ImaX> from (33) we set.\t= O- j', multiply by I.lttl and integrate with respect to .Itt 
from -00 to 00 Writing 

in the resulting in tegral we have 

where 

H lO= x+ py 

H 01= px+y 

H 2o= (x+ py)2- 1 

HlJ = (x+ py) (px+ y) - P 

H 02= (px+ y)2- 1 
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and generally 
iy,,+n 

1-1 e- i (x'+ 2pxv+v'l = (- l )"'+n --- e-:<x'+2pxy+v'l (36) 
tn,n ox"'oyn 

To evaluate the integrals we use the following r esults. Straightforward integration by parts 
gnTes 

r oo 1/1-1 e-HX'+ 2PW+V'ldy= (H _) _ e-l.t' 
' r • m, n m., n 2 u- o 

•. 0 

whenever n'2 2. To deal with t he cases n = l , 0, we note that 

So by rep eated application of the operator -(o~ - p OOy): 

and in gen er al 

H 10 - PHOl = x(l - p2) = GI 

II2o - 2pHl1 + p2 IIo2= x2(1 - p2)2_ (1- p2) = G2 

II30-3pH21 + 3 p2 H l2 - p3 IIo3=x3(1- p2)3_3x (1- p2)2 = G3 

say. Thus in gener al , 

=[G) PUn-l,o-G) p2[[,,_2, 1+ ' " + (_ l) "- lpnIJo,n _l] y=O 

(37) 

+ G"F(x; p) (38) 

where 

F (x ; p)= r oo e-}(x'+2pxv+v'l dy=e-!x'(1-p'l r oo e- I,z' dz . 
LO J. 

Similarly, when m = O, 

= n p [ {(n~1)pH"_2, o_(n-;1) p2H n _ 3,l+ . .. } y=o e-W+Gn_lF (x; p)] 

+[ - G)p2H n - 2,o+C) p3H n_3,!- .. ·1-0 e-!X' + Gn[e-!X' -pxF (x; p) ] 

=[1 G) p2H n _ 2,o-2 C) p3H n _ 3,l+ ... + GnJ e-!x' 
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Using formulas (7.5) to (7.8) we find altogether 

p(f )=[l{o2o(l{2ool{oo2- l{iol)1 /21x [ e_!X2 - pxF(x ' p) 
max (27r) 3 12l{200l{002 ' 

+~ A300{ ((1- p2)3 X3_ (3-9 p2+5 p4)X) e-~x2 - (p(J - p2)3X4-6(1_ p2)2X2+3 p(1- p2))F (x; p)} 

+~ A20d p(2- p2)xe-tX2 + ((1_p2)2X2- (1- p2))F(x; p) } 

where 

The cumulants can be expressed in terms of the spectrum in the following way. If 

f=ait+aij~ i~j+aijk~i~j ~k+ .. . 

f t=iJit+iJij ~i~j+aijk~i~j~k+ .. . 

f tt='Yi~i+'Yij~i~j+ 'Y ijk~i~j~k+ .. . 
} 

then we may take 

a i=(1, 1, .. . 1; 0, 0, ... 0) 1 
iJi=(O, O, . .. 0 ;- <T] ,-<T2, • . • - <TN) " 

'Y1 =(<Ti, <T~, • .• <T7vj 0, 0, ... 0) ..J 

Also if 

• a] ,N 0· . ° 

• OIN.N ° . ·0 

o· . ° 

·0 
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then 
o· ·0 

o· ·0 

o· ·0 

o· ·0 

and 

where 

and in D the suffices of ajj are each increased or decreased by N . The nonvanishing cumulants 
can now be expressed as follows: 

Also 

and 

K 200 -':- (Ai) = ajaiV j = fEdo-= mo 

K020~ (B D = (3;{3 j V j = jo.2Edo-=m2 

K002~ (aD = 'YlYiV;= fo-~Edo-=m4 

K300 : 3(A~A2)=6aiajaijVYj=6 f f a(o-, o-' )EE' do-do-' 

K030 : 3(BiB2)=6{3tf3j(3ijV;Vj= 0 

K oo3 : 3 (0~02) = 6'Y j'Yj'Y i jv ;Vj =6 f f o-V2 { - (0-2+ 0-'2) a (0-, 0-') + 20-0-' a*(o-, 0-') } EE'do-do- i 
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One can if necessary retain the next term in K 200 , K 020 , K 002 , and K 1Ol ; thus 

with similar expressions for K 020 and K 002 ' (N ote that KIOI = - K 020 to all orders). 
In the first approximation (7.9) gives 

m2(mOm4-m~)t [-~X2_ F(" )] 
(2 )3/2 e px x, p 

7r mOm4 

where 

This is the distribution obtained by Rice [1944-1945] and studied by Cartwright and Longuet
Higgins [1956]. 

The remaining terms in (7.9) represent the corrections to this distribution, which are 
order Vl /2. 
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