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Many random variables are almost linear, in the sense that they can be represented
approximately as the sum of independent components in random phase. Such variables
(for example, the surface elevation in a random sea) may have a gaussian distribution in the
first approximation. However in higher approximations the phases of the different com-
ponents become correlated, due to nonlinear interactions. The purpose of this paper is to
show theoretically what is the effect of such nonlinearities on the basic gaussian distribution.

The modified distribution is derived both for a single variable and for two or more
related variables (such as the components of slope of a random surface). The results are
applied in the first place to sea waves, and are compared with observations. However the
analysis is applicable quite generally to any such nonlinear variables.

Two further problems are solved for weakly nonlinear variables: the mean number of
zeros per unit time of a stationary random funection ¢ (¢) and the distribution of the maximum
values of {(f). These solutions are essentially generalizations of the well-known results of
Rice for gaussian variables.

1. Introduction

Many random variables occurring in physical problems may be considered as the sum of
a large number of independent components; thus we write

N
f;Z_{ ait (1)

where the a; are constants and the &, are independent random variables symmetically dis-
tributed about 0 with variance V;, say. Under certain conditions as N->« and each V,—0,
the distribution of ¢ tends to a gaussian distribution with variance >3 V..

In particular it is possible to consider some stationary stochastic processes as the limit of
a sum such as (1), the &; being components corresponding to particular frequencies o; or wave
numbers k;; there may exist a continuous function /£(o), the spectral density of ¢, such that in
any small interval (¢,0-+do) the sum of the variances V; is given by

lim ( S™y, ):E(a)da~[—0((la)2.
Noe \ ¢ Zoiotdo

Such a representation (equivalent to a stochastic integral) has been widely used in the
theory of noise in electrical circuits [Rice, 1944 and 1945], in the theory of random sea surfaces,
microseisms, turbulence, and other physical phenomena [Longuet-Higgins, 1960]. The repre-
sentation gives most satisfactory results when the variable ¢ satisfies a linear differential
equation and can be shown physically to be the resultant of large number of independent
contributions.

In some instances, however, the assumption of linearity is only approximately justified,
and the variable in question may actually satisfy a nonlinear differential equation whose non-
linear terms are small but not completely negligible. Such is the case with variables ¢ associ-
ated with sea waves. The distribution p({) is then nearly gaussian, but not exactly so. The
question we wish to discuss is: what is the effect of the nonlinearities on p({), and how can they
be calculated in terms of the differential equation satisfied by ¢?
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In a recent paper [Longuet-Higgins, 1963], the representation (1) was generalized in the
following way. Consider the variable

g_:aigi+aijgi£j+aijk£i£j£k+ e (2)

where the «; «;j, i etc., are constants and the &, as before are independent random
variables with variance V. (The repetition of any subscript will be taken to imply summa-
tion.) If the a; are given, then by substitution in the differential equation for { it may be
possible to determine by successive approximation the values of a;j, a;;, ete. Assuming that
these are bounded, then as N— the contributions to { from successive terms in the series
can be expected to be of decreasing order of magnitude.

To calculate p(¢) from (2) it is assumed that p(¢) is uniquely determined by the sequence
of its cumulants, which can be found from (2) to any order required.

This generalization® of the representation (1) leads to a distribution p(¢) which is a generali-
zation of the gaussian distribution;in fact it is the gaussian distribution multiplied by a sequence
of Hermite polynomials, of increasing degree but decreasing order of magnitude. The series
may be only valid asymptotically, and nonuniformly with ¢. Nevertheless when applied to
sea waves the second approximation has been shown in [Longuet-Higgins, 1963] to give
reasonably good agreement with observation.

In the present paper what we propose to do is to state without detailed proof the general
results of Longuet-Higgins [1963], and then to apply the results to the solution of two related
problems: to determine (a) the mean number of zero-crossings of ¢ per unit time and (b) the
distribution of the values of ¢ at a maximum.

2. Distribution of a Single Variable

We may start by writing down the moments of p(¢). Thus taking mean values in (2)
one has

E: ai§i+aijé?;+ aijkfigj5k+ .

The mean values of all odd-order terms vanish, while in the terms of even order only those
remain in which each ¢, is paired with a similar ¢,. Thus

- 7

§‘—a“Vi+3a,-ij]-Vﬂ j+ ...
it being assumed that the o«’s are symmetric in their suffices. Terms involving ¢4, ¢ 9, ete.
are assumed to become negligible in the limit as N—w. Similarly since

= (ai$i+afj$i£j+ o bt angEt L)
we have on taking mean values

?:aiaivi—l—<2aija]'i—|_aiiajj)ViVj+6aiaiijiVj+ c e

and so on for higher moments. Now some of the terms in the last expression can be factorized,
e.g.,
i ViV;= (V) CNG)

while others, e.g., a0,V ;V;, cannot. We call terms which cannot be factorized “‘irreducible”.
For simplicity the following notation is introduced. a;;...; is denoted simply by A,
where ¢ is the number of suffices 7, 7, . . . [; and the sum of all irreducible terms in the product

1 A less direct approach is suggested by Wiener [1958]. It should benoted that in the present paper the individual & are not assumed neces-
sarily to be gaussian.
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(4.6 . &p) (A(,g]1 RN S I (A_@l .
is denoted by (4,4, ... A,). Then we have
-E;LTJ‘_/ (1'117)
=33 [(4,4,)+(4,)(4)]

p.q

ete. However, much simpler than the moments of p(¢) are the cumulants «,, defined by

| pests—exp [ 3y i0+52 02+ . | )

We have

Kl:EjL::; (4,)

K, :}_2_ (E) =3, (4,4,)

b4a

and in general it can be shown that [Longuet-Higgins, 1963]

= > (4,4,...4,) 4)

9l oo €]

where p, ¢, . . . s run through all values from 1 to « independently. Thus if we retain terms
up to the third order in the V', we have

K= (Ay) + (49 4 (4y)

K= (A3) + (49 + (43) +2(A:45) +2(4:145) +2(4:4,)
Ky=(A3) +3(A24,)+3 (A2 A,) +6(4:4:45)

K= (4) +-4(A145) +6(A1.45)

®)

We see that K, and K, are both of order V in general, but when n>2 the lowest nonvanishing
term in «, 1s O(V"=1) . If we define the coefficients

N= K,/ K3
\N=K,/K3 (6)
and generally
N=K,/K3” @)
we see that A, is of order V271 in general.
The density p(¢) is now found by inverting the expression (3):
P(?):% f_mw exp ,:—1[% (it)+%{!—% (tt)*+ .. :I e~ dt:
Writing

- K !
] ®)
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we find [Longuet-Higgins, 1963] that

472 1 1 1
PO= s [ g hit (g Mk M) ] ©

where 7,(f) denotes the Hermite polynomial of degree n:

_ n(n—1) f*? n(n—1)(»B—2)(n—3) fi*
/EL=if i 5 + 51 or T (10)
This is the required distribution. In the first approximation \g, A, . . . are neglected and the

distribution is gaussian with mean K; and variance K,. In the next approximation a term
oI5 is included, where I, is the cubic polynomial (f*—3f). In the third approximation the
quartic polynomial 77, and the sextic polynomial /; are both involved. Higher approxima-
tions can be written down at will.

Equation (9) will be recognized as essentially similar to Edgeworth’s form of the
Gram-Charlier distribution [Edgeworth, 1906].

3. Application to a Stochastic Variable

Suppose now that the variable { is a stationary random function of the space coordinate
x and the time ¢, satisfying a nonlinear partial differential equation (or boundary condition)
in x and £. How is the distribution p(¢) related to the spectral density of {?

Let the equation satisfied by ¢ be represented symbolically by

LE)+O+C@)+ ... =0 (11)

where L, , O, ete., represent operators that are linear, quadratic, cubic, ete., in {. To solve
(11) for small perturbations we naturally substitute

(=W + SO+ SO L, (12)
where ¢ is a small parameter. Writing (11) in the form

L) =—Q®)—0C®)— . . . (13)
and equating coeflicients of ¢, ¢, ¢, . . . on the two sides of the equation we have successively

L(;®)=0 (14)

L(s®)=—Q(®) (15)

L(E®)=—Q(®, ¢®)—CED) (16)

ete., where Q(¢®, ¢®) denotes an expression that is bilinear in @ and ¢®. If there are wave-
like solutions to (14) then we can write

e
g-(l):Z @y COS (kn * X—Gnt+0n) (17)

n=1
where @, and 6, are amplitude and phase constants and k, and ¢, are wave numbers and fre-

quencies respectively. Generally (14) implies a relation between k,, and ¢,. Thusin the case
of gravity waves on water we have

ai=g|k|.
Now (17) can be written
N’ . .
(w=>"{a, cos b, cos (k, Xx—a,t)+a, sin 0, sin (k,x—a,t)}.
n=1
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If now we suppose that a, cos 6,, a, sin 6, are normally and independently distributed then

we have
21\’(’

g‘(l)iizlangn
n=
where
£ =y COS\0,, a,= cos (k, - Xx—a,t)
. . n=1, N’.
Enin=0y, SIN 0, ayi,= sin (K, - X—a,t)

Thus @ is expressed in the same form as in (1).

To find ¢® we now substitute for (@ in (15). Since the terms on the right are quadratic
they can in general be expressed as a series of sum or difference wave numbers, i.e., harmonic
terms in { (k,-k,)z— (c,40,)t}. Hence we can in general find expressions for {. On writing
the solutions again as products of the original harmonics constituents we find

g‘(Z) :Z Qn, mEnkm-

n, m

Thus ¢©+¢® has the form of (2), as far as the second-order terms. The evaluation of ¢,
ete., proceeds similarly.

The application to gravity waves on water is given in Longuet-Higgins [1963]. 1t is
convenient to use the assumption of homogeneity so that we can consider the waves at the
special point z=0 and time t=0. That is, we may take

(1, i=1,2,...N’
ai:{
[0 i=N'+1,...2N

Then for gravity waves it is found that

’k: (B;+B§—ktk]+ (ki_%_k])\/k_'lk_-])y i;jzl) s e ‘7\7,

— (B;—Bit—kky), i,j=N'+1,...N

where
_ (\/E“ W’/]?j)z(ki‘kf‘lfkikj),
(Ve VE) — k=K

B (Vhki+ k) (- K—kik,)
T (ki Vi)~ ki +k|

Bj;

The diagonal terms a;; are simply given by

( k, i=1,...N’,
Qi
—ks, 1=N'H,...N.

So we find, for example, that, to the second order of approximation

N’ N
i=1 i=N'41

as was to be expected; while

N’
Ey=aaV =2 Vi= f E(k)dk (19)
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and

Kq:6 a,-a,—aijViVj

‘\77
=6 S_, ai]-ViV]«
T

b=

—s f f f f Kk, k) E k) E (k) dkdl’ (20)

where K is a function of k and k’.

In the special case when the waves travel all in the same direction the above expressions
become very simple, and it turns out that

Kk, k')=min (k, k).

Hence introducing the frequency spectrum /(o) of ¢ we have

K, f F(o)do 1)

Ky—6 f f min (k, k') F (o) F (") dodo’

19 fw { f A 1«‘(0){10} F(o')do’ (22)
Jo Jo g

since k=d"/g.
Returning to the general case, when the waves are not unidirectional, it can be shown
that the expression on the right of (22), which we denote by 7, is related to K; by the inequalities

044 /<K;<1.01 L.

Combined with (21) this gives us bounds for the skewness coefficient A\;=K,;/K3/? in terms
of the frequency spectrum F(o) and irrespective of the directional properties of the spectrum.

These results have been compared with the observations of Kinsman [1960; Longuet-
Higgins, 1963]. It is found that the inequality on the skewness is satisfied in most cases of
observed wave spectra.

Some observed distributions of wave height have been compared by Kinsman with
a Gram-Charlier distribution based on the measured coefficients of skewness and kurtosis.
As shown in figure 1, these are a better fit to the observations than the simple uncorrected
gaussian distribution. Kinsman’s suggested distribution differs from the form of the Gram-
Charlier distribution found in section 2 of this paper, since it does not include a term in H,.
Nevertheless the difference resulting from the terms in /, and Hj is so small in his measure-
ments that the correction is essentially given by the second term ;. Hence his figure can
be used effectively as an assessment of the present theory.

If one attempts to carry the formal calculation of the moments to third and higher
approximations in the application to water waves, the calculation breaks down. This is
because of the occurrence of resonant interactions at the third approximation [Phillips, 1960;
Hasselmann, 1962; and Benney, 1962], which render some of the third-order terms a;;; in the
series (2) slowly dependent on the time . Thus the present method of calculation is consistent
only as far as the second approximation in water waves.

In general, however, there seems no reason why the process should not be carried further
and the higher-order terms in (2) be evaluated.

1054



0.50—

045—+ FIGURE A IIT 2.05

FREQUENCY DISTRIBUTION
OF WATER LEVEL

0404 RECORD OIT

ME AN 4 N Sl o MG hatlien
WIND SPEED AT 1,22 m 388 mA 045 ma

WIND DIRECTION AT152m 277 °T (o °T .\ T Gaussian

OR35S ‘E‘?Rﬂ?é;ipi;g&*é ‘27905? m o Measured Frequency Distribution
WATER TEMPERATURE 27.55 5 b
\ Skewness 0.175 Kurtosis 0.050
\
0.30+

Gaussian X%:38.999 (p<0.00I)

Gram—Charlier X?:7.466 (p=0.590
0.25+

0.20 1

T

QRIS

0.10+

QIO ST

| — i L
0.00 1 i T T 1 1 f l 1 f t T 1 f —
.35 -30 -25 -20 -15 -0 -05 m 05 10 15 20 25 30 35

Units of o

Freure 1. From Kinsman 1960. Comparison of an observed distribulion of wave height in sea waves with the
normal distribution (broken line) and with a Gram-Charlier distribution (solid line).

4. The Joint Distribution of Two Variables

The method of section 2 can be extended to the determination of the joint distribution
of any number of variables of the type

fzazfi+aijfi5j+aijk$i£jfk+ e 77:ﬁz‘fi+5i]’$i$f+5ij/\-5ifjfk+ ceee (23)

where the o’s and #’s are known constants and the £; are random variables defined as before.
For simplicity we state the results for two variables {, 5.

Let us denote by A, and B, the terms «y; ., and B;; ., where p and ¢ are the
numbers of suffices 4, j...70 and 4, 7...m; and let (A4,B,...) denote the irreducible part
of the mean product

(Ap&l&l G oo gll) (Bq£i2£j2 . e EmQ) o o e

Then it can be shown [Longuet-Higgins, 1963] that the cumulants K, in the joint distribution
of ¢ and n are given by
= 2 (Ay, ... A, By, . ..By) (24)
Ple..Pmie..qn
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the summation extending over all positive integral values of the p; and ¢;. In particular we
have K,,=K,, the camulant of p({), as found in section 2, and as far as the terms in V? we
have

K= (A:By) +[(A,Bs) + (4:B5) + (A3 By) | +[ (A1 Bs) + (A2 By) + . . . +(45By)],

Kn=[(A2B2) +2(A,4,B) 1+[ (42 By +2(A,4, By) +2(A, 45 By) + (A2 By) +2 (4,4, By) +-2(A: 4, BY)),
Ku=[2(A2B,By) + (A2B2) +4(A, A, B, By) + (A2B%) +2(A, 4, B?) ),

Ky =[(AiB;+3(A3A4,B;) +3(A,43By) ]

The joint distribution of ¢, 4 is now given by

2 2 / 72 = 2 1
pis, m— IR BT IOy 4 b (et v s Fls b hs )+ - | (29

where
,7§‘—K10’ ,7"]'K01
f— I{'z/o2 f o K10/22
K (26)

An= ( n pP=Nn

02

and ,,,(f, f’; p) 1s a two-dimensional analog of the Hermite polynomial, viz.

Hun exp =307 =201 17/ (=)= (1" S0 oxp [—=3(P 201"/ /(1=

(27)
In particular
18] =11 D
Hyy=(f—rf")/(1—p?)
Hy=(f"— 1—p?
(f'—rf)/(1—p% | ©9)

Hy= (f—Pf,)2/(1—P2)—1
Hy=(f—ef") (f'—pf)/A—p")+p
Hy=(f'— pf)*/(1— p?) —1. ]

The first approximation, in which \,,,, (m+n_>2) are neglected, is the familiar bivariate gaussian
distribution, as we would expect. In the second approximation cubic polynomials in f, f/
must be included, which introduce various types of skewness depending on the coefficients
Nso, Ao, A1z, and Agg.  In higher approximations we encounter further termsin a bivariate
Gram-Charlier series.

In the paper [Longuet-Higgins, 1963] this distribution was applied to the joint distribution
of the two components of slope of a random surface. In the present paper we shall apply it to
two different problems: the mean number of zeros per unit time of a nonlinear random function
¢(t); and the distribution of the maximum values of { ().

5. Mean Number Of Zeros Per Unit Time

We now consider the problem of determining the average number of zero-crossings (or
of maxima and minima, which are zeros of the derivative) per unit time in a wave record.
We assume that the process is stationary to all orders.

A general formula for the number of crossings of a level ¢ per unit time ¢ is due to Kac
[1943].
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NO= [ p colsis, (20)

where p(¢, ¢,) denotes the joint distribution of ¢ and its time-derivative ¢,. Now for this
distribution we have
Kyo=¢ =0

Km:E:O
and

Ku:a‘—z_z'f_t bt 2 (§2)—

for any stationary process ¢, so that p=»X\;=0 and from (25)

12 +12)

— €3 l ’ ‘
P60 =5 s 1+6{>\30H3(f)Ho(f)+...}+...:] (30)

where
Y g‘ y 2 g‘t
Y (Ko0)¥ I'= (Ko:z)

. | . 7 - ‘ o oo - e
Now since ¢ ¥ f’| is an even function of f/, the integral of this function multiplied by #7,(f")
will vanish whenever n is odd. Moreover, when 7 is even and greater than 0

“ Lfr ’ N0 ” ’ it —172\ 707
[ ey =2 g g0 @
:21:]12—2<0)
on integration by parts. So on substitution in (29) we find
_yp?
7 3 :
NGO =gy [ 1+ DaP =30 +8naf)+. . ] @)

Thus the number of zeros per unit time, considered as a function of ¢, has a skewness Ay similar
to that of p(¢), but a mean value

1 ;
5 )\IQKB/OZ: KIZ/[{U?

N

different from the mean of ¢.
If we take /=0 in (31) then the third-order terms vanish and we have, to fourth order

o 1
NOV = egei | 15 wHLO +6aH0) —haTh(0) )|

1 11 1.7
~r(RaK) l:l +g )\40—1 )\22_§Z )\04] (32)
6. Distribution of Heights of Maxima

The distribution p({ma,) of the heights of the maxima of ¢ is given quite generally by

0
P(fmax):f (¢, 0, g‘tt)“‘ltidg‘tl (33)
where p(¢, ¢4, ¢4) denotes the joint distribution of ¢ and its first two derivatives with respect
to ¢ [Rice, 1944-1945; Cartwright and Longuet-Higgins, 1956]. Nowif K ,;; denotes the (7,7, k)th
joint cumulant of ¢, ¢, ¢4, it is clear that Ko, Ko, Koo all vanish, as do Ko and Ky;;. Hence
we have (as in sec. 3)
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. 1 = ;
(&, §oy $ua) :%7‘_)3 [ffeXp [_@(§t+§‘tt,+§‘llt,/) ) (K apot* 4 Kozot"*

i3
+K002t//2+2K101tt/’)+%‘ (K300t3+3K210t2t,+ .. )+ o ] dtdt’dt’”’.
Writing now
t=s/K350, (=Ko f,
=g / 020, f-t:K(I)/%of,, }
t""=s"" |Koba, Su=Kso "', J
we have

1 i N 1 gt rrgre 1 ! (&4 ’7
P(f, g‘z; flt):(271')3(K200K020K002)% fffg—l(fa+fs SR ’XeXp [_5 (82+S '+S‘ 2+2P88 )

{ N300 (28)3+3Na10(18) 2(28")+ . . .} 4+ .. :I dsds’ds"’

=

+
where p:Kml/(KmoKom)l/?. Now in

o o= iU HS 878" = L5288 2ps8”) X (i8) (i8') " (is' ") " dsds'ds ™
27r 72

the terms in s’ are separable from the terms in s and s’/ and hence as in sections 2 and 5 the
above expression equals

1 A 114 frr
14 PIr e (f} f, ,; P) Hrr (f,) e~ =20ff AP,

(I—e)"
Hence we find

( ) e—%[f’2+(/2—29ff”+/’”2)/(1—p2)]
PG € S = i (R oo Koo Kowe) (1 — %)

><[1+ Ovnan(f, 775 ) Ho(J ")+ 3N Han(J, 775 OV EL (N4 -} . ] (34)

To find p(fmax) from (33) we set {,=0=/’, multiply by |¢,,| and integrate with respect to ¢,
from —e to 0. Writing

—a—s
== (1_,,2)%@”?
in the resulting integral we have

p(g‘max) («:20 1— p2) : f ye L(@2H-2pry+10)
(2‘” & (KzooKooz)

1
Xl:l +6 { (NsooH 30+3Na10Ho1 + 3102 H 12+ NoosH os) — 3Nyao 10— 3Noar oy } -+ :I dy  (35)

where
Hy=xz+py 1
Hy=pz+y
Hyy=(z+py)*—1 >
H = (z+py) (pz+y)—p
Hy=(pz+y)'—1 )
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and generally
am+n
a2yt
SEOu ¢ 2 @+2oay+y?) (36)
To evaluate the integrals we use the following results. Straightforward integration by parts
gives

[{m n(j/—é(‘r2+2p.r1/+y?) - (_ 1 )m+n

[‘ ?/[[m, n€ —;(.1‘2+29.ry+_r/2>(/y: (IIVVI, n —2) y=06€" s (37)
0

whenever 7= 2. To deal with the cases n—=1,0, we note that

_<.a%_ P 5% ¢~ @ F2pzuty?) =z(1—p?) o 3@ 2pmt?)
. o)
So by repeated application of the operator —<a——p 5

Hyy—pHy=2(1—p%) =G,
Hyy—2pH +p*Hpy=2>(1—p")*— (1—p*) =G,

Hy—3pHo+-3p° Hio—p®* Hyy=2%(1 —0f)3—3% (1 _P2)2: Gy
and in general

Hoo—(1) ot - = (=), (21—} =6,

say. Thus in general,

. 1(x2 2 “ (a2 2
[‘ :l/[’I”, e 1 (@*+2pzy+v )(17’!/ = { ]]n,o@ 1(@*+-2pzy+y )(]?/
JO J O

)

- fm l:(?) pI]n—I,l_<;1> sz];z—2,2+ e +(—1)"71p”[ﬂ1,n+(;,1:|
J 0O V4

X ¢ H@ 2t dy

== [<,]l> p[[r1—1,0—<72b> p21171—2,1+ PR +(_])n_1pnI](),n—li| y=0

+ G F(z; p) (38)
where
Fla p)= [ emsetmrtn dy—g-wi=s f " gy, (39)
JO J P

Similarly, when m=0,

f Y, o 6= 30 20 Jy— f y[(ﬁ) pH o= () PHat . .+Gn]e—%<ﬂ+w+“> dy
0 JO

IIP[{(n:1> pHn—20_<n—21> szn—S,lJf ¢ o } 06_%12+Gn—1F(x; P)]
Y=

-l—l:—(g) p2H7L—2,O+<§> PP H 31— . . .]y_o e G,[e ' —pxF (2; p)]

:[1 </’;}> p2Hn—2,0-‘2 <73L> pSHn—3,1+ IR +Gn] e-%zz

+ oG, —2G,) F(x; p). (40)

D
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Using formulas (7.5) to (7.8) we find altogether

p(ﬂ‘ ): [ K 020 (K 200K 002— Ko1) HA
e (27")3/2K 200K 002

X[ﬁﬂ— pzF (x; p)
+% Naoo{ ((1—p%)*2* — (3—9p°+5p%) 1) 74— (p (1 — p) %' —6 (1— p?) "2*+-3p(1— %) F (z; ) }

+% N { p(2— p?)ze ¥ + (1—p) %> — (1—p9)) F (z; p) }

1 , 1 ’ 1 1 1
+§ )\102156_5’2‘1'6 )\oospwe_fzz—é‘ Nizof (1'—,02)3«"6_5124‘ (p—pz+0%2) F (; 0) }"5 Noat £ (x; P)] (41)

where
r= f — g‘max
A=) Kao(1—p)]"
KIOI

P (Ko Ko) "

The cumulants can be expressed in terms of the spectrum in the following way. If

g‘:ai‘fi'_%—aijgiéj+aijk£i£j£k+ .. 3
ft:ﬁifi‘l‘ﬁijfigj‘|‘aijk$i$j£k+ ce e }
?tzZ’YiEi‘i”’YijEiEj+71jkfifjfk+ cee J
then we may take
a;=(1,1,...1;0,0,...0) ]
B:=(,0,...0;—0,—0y,... —on) r
'ny(O'?,ag,. 0 -U.2Vj07 0,. o o O) J
Also if
fan ;N 0 0 A
avr e awn 00
(a,j):
0. - « .« 0 QNI NEL "ttt N4l eN
\0. o o o of) Qy ¢ttt oaNaN)
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then

O () (—a,ays1,v1toan) - - - (—oays vt oven )
0- - .- -0 (—oyagy ny1toan) - - (—onazy, ontoyawy)
(5:’7’):
(olall—‘ﬂlaN+1'N+1) G oo (UlalN_UNaN+1,2N) 0. «- « « 0
L(oNaN’l_o’la2N,N+1) 6 oo (UNaNN_UNa2N, 2N) 0 « o o o O )
and
C 0
(’Yij) =
0 D
where
(—20%a11+20%an 1 n1) = -+ » - [— (01 toX) o, v 2010 @, on]
C:

and in D the suffices of a;; are each increased or decreased by N. The nonvanishing cumulants
can now be expressed as follows:

Ko () =aaV i [Bdo=m,
K= (B}) =BV = fcﬁEda: My

Kope= (012) =vyiVi= I‘U4Ed0=m4

Kin = (AIOI) =ay,Vi=— fazEdaz — Mg
o
Also
K;0==3(434,) =6aia;aijViVj=6ffa (¢,0")EE’ dode’
Ky37==3(B3B;) =68:8,8:V:V;=0
Ky:==3(C1(,) =6’Yi’Yj’YijViVj=6ffazo'2 {—(c*+d"Hals,d’)+200" a*(c,0’) } EE dodos’
and
Kog=(A30) =207,V iV ;=2 ff {—(o*+d"Halo, d’)—200" (0, 0")} EEdods’
Ki0==(C1A2) =2v¢v;0:;,VV ;=2 fffrza'za(a, o' VEE' dods”
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K= (B2A,) :2BiﬁjaijViVj—_—2ffaza,2a*(a, o’ VEE dods’

Kipor—(B2C5) ZZBinyijViVj=2ffoa' {—(e*+d"?) a*(o,0’)+200" ale,d’)} EE dodo’.
One can if necessary retain the next term in Kygy, Kozo, Kooz, and Ky ; thus
Koo (A2) (A2 = sers V- 2asy00, Vo V= f Fdo-+2 f (la(o,0") P EE dodo’,

with similar expressions for Ky, and Kye. (Note that Ky = — K, to all orders).
In the first approximation (7.9) gives

ma(mom,—m3)*

B e

P )=

where
z=f/(1—p??, p=—ms/(momy)*

This is the distribution obtained by Rice [1944-1945] and studied by Cartwright and Longuet-
Higgins [1956].

The remaining terms in (7.9) represent the corrections to this distribution, which are
order V'/2,
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