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This paper is presented in two distinet parts.

Part 1 begins by giving a number of examples of random surfaces and summarizing the
various applications of random surface theory, including applications to

(a) electromagnetic scattering from such surfaces,

(b) the information content of photographs, maps, ete. interpreted as random surfaces,

and implications for bandwidth compression.

This part of the paper will also summarize the major results which have previously been
obtained, and will outline the approaches used to obtain these results. Finally, some inter-
esting additional problems in this field are stated.

Part 2 of the paper is devoted to new results on the properties of random spherical
surfaces, and the application to electromagnetic scattering from such surfaces. These results
primarily concern the statistics of the number of specular points per unit surface area.

The detailed elaboration of the mathematical approaches to obtaining the major results
of random surface theory, and even the exhibiting of the major formulas, would be very com-
plex and space consuming. Therefore, insofar as previously obtained results are concerned,
we will merely give outlines and examples, with references to the appropriate literature for
the details. Such detailed mathematics as appears in this paper is reserved for the new
results presented in part 2.

For convenience, the two parts have separate numbering for equations and references.

Part 1—Outline of Random Surface Theory and
Applications

1. Introduction
1.1. Definition and Fxamples

A random surface is a random process { f(z,5)} depending (usually) on two real parameters
x and y. Although we have used the notation (z,7), these do not necessarily represent
rectilinear Cartesian coordinates.

For example, one of the parameters may represent time: y=t¢. In this case, we may be
dealing with a random function of one spatial parameter which is also a random function of
time. However, the mathematical techniques are those applicable to random surfaces.

Also, the parameters, even if they represent spatial coordinates, may represent coordinates
other than Cartesian. For example, we may have z=0, y=¢, where 6, ¢ are spherical angular
coordinates.

Occasionally, we may be dealing with a random function of two spatial coordinates which
is also a random function of time, in which case the random surface in question must be repre-
sented as a stochastic process { f(z,,t)} depending on three real parameters.

Examples of random surfaces are:

(a) The surface of the ocean or other body of water (in which f represents level with respect

to a mean level),

(b) a topographic map (f represents altitude),

(¢) an atmospheric pressure chart (frepresents atmospberic pressure),

(d) a photograph or television picture (frepresents brightness),

1 A portion of the work reported on in this paper was supported by the National Aeronautics and Space Administration under Contract
NASA 490.
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(e) an antenna pattern in two spherical angular coordinates, and
(f) a rough spherical surface, such as that of the moon or other planet considered as a
whole.

All of the above, but in particular, (a), (¢), and (d), may depend not only on two spatial
coordinates but on time as well.

As previously stated, random functions of two parameters, one of which represents a
spatial coordinate and the other time (as in a moving waveform) can also be considered to be
random surfaces from the point of view of statistical treatment.

1.2. Applications

The most extensive treatment of random surfaces remains that of the series of papers of
Longuet-Higgins [1952; 1956; 1957 a, b, ¢].  Much of this was motivated by applications to the
surface of the sea.

In particular, many of the properties studied are of interest for studying the electromag-
netic (radar or optical) scattering properties of the sea. For example, the statistics of specular
points and their motion are properties affecting the intensity and spectrum of scattered energy
in a given direction.

Clearly, this application to electromagnetic scattering properties is not restricted to the
surface of the sea, but may be relevant to scattering from any object which can reasonably be
represented as a random surface. Part 2 of this paper deals with the statistics of specular
points on a random spherical surface, and was motivated by problems of reflection of radar
waves from the moon.

Another major application of random surface theory is to the information content of
various examples of random surfaces (in particular, photographs and television pictures but
also including, possibly, topographic maps, pressure charts, antenna patterns, ete.).

By information content is meant how many bits of information are required to describe
such a surface to some given degree of accuracy. This affects the storage requirement for
storing large amounts of data of this type, as well as the bandwidth requirements for transmit-
ting such data through a communication channel. The work of Swerling [1962] on contours of
random surfaces was motivated by these considerations.

If the statistics of the random surface are completely specified, the information content
can be determined according to the standard formulas of information theory [Swerling, 1962].
However, bounds on the information content may be more easily obtainable by studying
certain statistical properties of contours, such as expected length per unit area, expected number
of separate closed contour pieces, and expected “roughness’ of contours.

The above discussion is by no means exhaustive and is in fact only a sketchy outline of
the possible applications of random surface theory and of the particular properties of random
surfaces which are of interest in these applications. For example, extensive study has been
made of the statistics of the number and velocity of maxima and minima of moving waveforms,
the velocity of the crossings of any given level, the annihilation and creation of specular points,
ete. [Longuet-Higgins, 1952; 1956; 1957 a, b, c].

2. Analytical Techniques for Random Surfaces

The statistical properties of random surfaces which have been most extensively studied
involve surface properties which can be described in terms of the differential geometry of the
surface—that is, in terms of the values taken on by the function f and its partial derivatives of
various orders.

These properties involve the probability that the function f and its partial derivatives take
on certain values or that the line integrals, along contours, take on certain funections of the
partial derivatives.

For example, an extreme point of a random surface is characterized by f,=0, f,=0. A
contour is characterized by f=z, In a moving waveform f(z, ), the velocity of a point at a
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constant level f=z, is the value of f,/f, subject to f=z;. Specular points can be defined as points
at which the gradient has a definite value. Such examples can be multiplied indefinitely.

Thus, the approach to deriving the desired statistics of these surface properties consists
first in describing the phenomenon in question in terms of the values of f and its partial deriva~
tives, and then taking the appropriate statistical average. This will be illustrated by several
specific examples below.

The results depend on the joint probability density function (pdf) of f and its partial
derivatives. It is worth noting that most of the results which have been obtained involve the
joint pdf of the function and its partials evaluated at the same point. However, as will be
pointed out, many interesting statistical properties involve the joint pdf of the function and its
partials evaluated at two or more different points; these properties have not been extensively
treated.

As a first example, consider the statistical properties of the length of contoursin a planar
surface. Following Swerling [1962], let the intersection of the surface z=f(z, y) with a plane
z=2z, be called a z-contour. Let ¥V fdenote the gradient, that is the vector having components
S fo-

Define

Fy(u, v) :(—11 if |u—o| gg

=0 if |u—27[>(,—)i- 1)
Then, the total length Lz(z,) of the z-contour in a region 2 of the (x, y)-plane is
La(a)=lim f VH|Fa(F, 20)dudy. ©)
—0J R

Equation (2) gives an expression for Lg(z,) apart from any statistical considerations. It
is worth noting that this expression depends on the fact that we are dealing with planar sur-
faces rather than, say, spherical surfaces in this example. From this expression one can derive
the desired statistical properties of Lz(z,) in terms of those of f.

For example, denoting expected values by F( ), we have
E[Lz(2)]= f f ETBEW (20, 1, usle, ¥)durdundady, 3)
JR.

where W (uy, u,, us|z, y) is the joint pdf of f, f,, and f,, all evaluated at (z, ). In (3), the inner
integral is extended over —o <lu;, up< . If {f(x, y)} is stationary, W is independent of
z, i/; the expected length per unit area is obtained by dropping the integral over £.

A second example involves events taking place at isolated points rather than along a whole
contour, namely, the expected number of horizontal tangents to a z-contour. Such a tangent
occurs when f=z, f,=0.

The number of points within 2 where f=z,, f,=0 is
Tale))=lim [ | feform fifalfu Uy O FulF, 20)dody, @
and the expected number in R is
BUTa(e0)= [ [ el W, 0, s, sl 9) dusdusdody, 5)

where W (uy, w1, Uy, us|z, y) is the joint pdf of f, f,, f,, and f,, at the point z, 7.
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A third example involves line integrals of the curvature of a contour. Let a z,-contour
be expressed in parametric form z(s), (s). The line integral along the contour of (6’(s))*is
a measure of the roughness of the contour, where 6(s) is the angle of a tangent to a contour.

Then [Swerling, 1962],

El:f[ﬂ’ (s)]zds:l:fR f(u?—{—ug)'5/2(u§u5——2u1u2u4—[—u§u3)2

XW(ZOJ Uy, Uz, Uz, Uy, u5|x, y) dul oo dusdxdy) (6)
where
W g, uy, us, 3 us, 'U'5Ix:?/) is the joint pdf of f, 1z, fu, fez, for, a0d fy at ,y.

The integral on the left side of (6) is the line integral along the zi-contour within R.
Expression (6) arises from the fact that 6’(s) can be expressed in terms of the partials of
1 as follows:

G (8) . {fxzfzm— 2{%%51!1—\*—‘7[5‘)(" } . )

These examples are sufficient to illustrate the procedure: first express the surface property
in terms of the appropriate conditions on the function f and its partials; then, find a nonsta-
tistical expression for the number of points at which the property holds, the length of the
contour, or whatever may be the precise quantity for which one wishes to derive statistics;
this expression can then be used to derive the statistical properties of this quantity, such as
its expected value.

For gaussian random surfaces, the expressions in terms of the joint pdf’s, W can often be
explicitly evaluated. The probability distributions for gaussian surfaces can be specified by
specifying the function

o(&nlz, y) =E[f(a+E y+n), f@y)] (8)

(If the process is stationary, the dependence on z, y disappears.)

Further, all of the joint pdf’s, W can be explicitly written down in terms of the function
¢ and its partial derivations with respect to £ and 7, evaluated at £=0, n=0.

The reader is referred to the literature (references, Part 1) for the resulting expressions.

3. Additional Problems

A number of additional problems of interest remain to be treated in the field of random
surfaces.

One such problem is that of extending the results to nonplanar random surfaces, such as
spherical surfaces. Part 2 of this paper gives new results on this precise problem.

As previously noted, the specific form taken by the expressions depends on the differential
geometry of the surface in question.

A second problem involves deriving the higher order moments rather than just expected
values. This problem can easily be attacked in principle by utilizing the exact (nonstatistical)
expressions for the quantities in question e-g., (2) and (4).

As an illustration, suppose it is desired to derive the second moment of Lz(z)), the length
of a zp-contour in 2.  Krom (2),

[L(z) = lim L L IV G| VG YD) Fd S, ), 20l B[ @, y)), 2oldadyda’dy” — (9)

Then, E[Lgz(z)]? can be obtained directly from (9). The resulting expression involves the
joint probability function of f(z, y), f.(z, v), f,(z,v), [, ¥, f.(x", y'), f,&, y’), for all pairs
of points (x, y) and (2/,’). It is very difficult to evaluate explicitly even for stationary
gaussian surfaces.
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Similarly, higher moments may be derived by expressing the powers of Lz(z,) as multiple
integrals and taking expected values.

The same remarks apply to other quantities for which the higher moments may be desired.

A third category of problems of significance is the further study of the contours regarded
as random processes. A connected piece of a contour can be expressed in the parametric form
x(s), y(s) where s=arc length. The derivatives z’(s), %’(s) are related; in fact, y’(s) is
determined up to sign by z’(s). The statistical properties of z’(s) or 9/(s) regarded as random
processes are of interest. Alternatively, one could study 6 (s), 6=angle of tangent to a contour,
regarded as a random process; 6 (s) is a function of 2’(s) and ' (s).

Swerling [1962] derives an expression for the expected value of the line integral along :
contour of [0/(s)]?. Similarly, expressions can be derived for the expected value of the line
integral of [z (s)]? or [y’ (s)]*>. It is pointed out by Swerling [1962] that these expected values
can be used to define quantities analogous to the second moment of the spectral density function
of 6(s) or 2’(s), assuming that such spectral density functions could be defined rigorously.

In exactly the same way, expected values of line integrals of the squares of higher derivatives
of 6 (s) or a’(s) can be obtained, since these higher derivatives can be expressed as functions
of the partial derivatives of f. These would be analogous to higher moments of the spectral
density function. However, they would be very difficult to evaluate explicitly.

Apart from explicit evaluations of the expected values of line integrals of this type, the
rigorous definition of concepts corresponding to spectral density function for the contours,
regarded as random processes, is a problem of interest.

4. References (Part 1)

Longuet-Higgins, M. S. (1952), On the statistical distribution of the heights of sea-waves, J. Marine Res. 9,
245-266.

Longuet-Higgins, M. S. (1956), Statistical properties of a moving wave-form, Proc. Cambridge Phil. Soc. 52,
234-245.

Longuet-Higgins, M. S. (1957a), Statistical properties of an isotropic random surface, Phil. Trans. Roy. Soc.
London A250, 157-174.

Longuet-Higgins, M. S. (1957b), The statistical analysis of a random moving surface, Phil. Trans. Roy. Soc.
London A249, 321-387.

Longuet-Higgins, M. S. (1957¢), On the velocities of the maxima in a moving wave-form, Proc. Cambridge
Phil. Soe. 53, 230-233.

Swerling, P. (1962), Statistical properties of the contours of random surfaces, IRE Trans. Inform. Theory
IT-8, 315-321.

Part 2—Distribution of Specular Points on a Rough
Spherical Surface

1. Introduction

The problem of describing the scattering of high frequency electromagnetic or acoustic
waves by a statistically rough spherical surface is the primary physical motivation for the
analysis presented in this article. The theory of scattering from rough surfaces can be traced
back to the work of Rayleigh [1929], who was interested in the reflection of sound from statis-
tically rough planes. In comparatively recent times a great deal of attention has been paid
to the theoretical treatment of similar phenomena involving electromagnetic waves as well
as acoustical waves, and the subject has been developed to the point where it is now regarded
as one of the more important aspects of applied scattering theory.

While many investigators have contributed directly to this subject, both theoretically
and experimentally, the present article represents an attempt to follow a line of research
begun by M. S. Longuet-Higgins [1952; 1956; 1957 a, b, ¢] on a more general class of problems.
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That work, which has been extended further by P. Swerling [1962],> involves the statistical
description of random surfaces and the resulting geometrical effects.

Among the questions considered by Longuet-Higgins is the description of those surface
properties which affect the reflection of coherent unpolarized light according to the theory
of geometrical optics. He has discussed, for example, the distribution of specular points and
twinkling effects of a moving sea in relation to certain moments of the surface power spectral
density [Longuet-Higgins, 1957a]. Although both stationary and moving surfaces were con-
sidered, the investigations were confined to those cases in which the mean surface is a plane.

The present article will be concerned with the distribution of specular points for geo-
metrical optics scattering by a statistically perturbed sphere. The problem will be restricted
to the case of a source located at a distance which is large compared to the radius of the sphere.
The procedure followed in the analysis is essentially that of Longuet-Higgins and Swerling.

An important example of the possible physical significance of the problem treated here
is in the interpretation of radar scattering data resulting from earth based radar soundings
of the moon. A complete statistical description of the specular return would also require
a consideration of the distribution of Gaussian curvature over the lunar surface and, because
of the coherent nature of the signals used, an analysis of the distribution of the path differ-
ences associated with the various specular point contributions. However, even the present
investigation, restricted as it is to the relation between the fundamental properties of the
perturbed spherical surface geometry and the distribution of specular points alone, should
provide a certain amount of insight into the nature of the scattering and help to clarifysome
unresolved questions which have been raised concerning the lunar scattering datainterpreta-
tion. In particular, the theory developed here may help eventually to supply the relevant
connection between the probable lunar surface geometry and the theory of Senior and Siegel
[1960], in which it has been estimated that between 25 and 30 specular points exist near the
moon’s leading edge.

2. Surface Angular Correlation Function

Since the mean surface of the scattering object is a sphere it will be convenient to use
standard spherical coordinates 7, 6, ¢ to describe the detailed surface geometry. Thus, if k
is a fixed unit vector in the direction of the polar angle 6=0, the angle ¢ will be measured from
a fixed radius in the plane through the origin of the coordinate system and perpendicular to k.
The angle 6 is formed by a radius vector r and a radial line in the direction of k.

We shall assume that the given closed scattering surface is a random sample from a popu-
lation of surfaces for which the mean surface is a fixed sphere of radius p, having its center
at the origin of the coordinate system.

The population of surfaces can be represented by a stochastic variable of the form

r(6,0)=h(6,¢) +», )

where A (6, ¢) is a random quantity having the mean value zero.

It will be convenient for obvious geometrical reasons to regard h(f, ¢) as represented by
an expansion in spherical harmonies

h(6, o) :i‘, A, Py (cosb) +i i (A sin mo+ B, cos me) Py (cos 6). 2)
n=0

n=1lm=1

It will be assumed that the coefficients A4,,, and B, are independent random variables having
Zero means:

E(Apn) = E(By,) =0 for all m,n;

2 Cf, part 1,
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E(A,,Apin) =E(BynBym) =0 for all m,n, m”, n" except m=m"and n=n’;
E(A,.B ) =0 for all m,n, m’,n';

in the above relations Ay, and B, are to be identified with 4, and B,. These assumptions are
analogous to those which have been made in connection with the planar rough surface scattering
problem (cf. [Rayleigh, 1929; Longuet-Higgins, 1952, 1956, 1957a; Swerling, 1962; Rice, 1951]),
wherein a similar formalism based on a Fourier series representation of the perturbations is
ordinarily used. In the present case the polar singularity of spherical coordinate representations
dictates the use of the more appropriate spherical harmonics.

We can define the correlation function relative to A(6, ¢) for every pair of surface
points, determined by the angular coordinates 6, ¢, and 6’, ¢’, as

n

EM(®, Oh(6] ') =3 E(A2)P,(cos )P, (cos ")+ >3 SN(E(AZ,) sin mesin mg’
n=0

n=1 m=1
+ E(B;,,) cos me cos me' )Pl (cos 0) Pl (cos 07).  (3)

With one additional assumption it will follow that the distribution of (6, ¢) is isotropic;
that is, the correlation function £ (h(8, )h(6’, ¢’)) is a function only of the angle v between the
points (8, ¢) and (8] ¢’). The angle v satisfies the relation

cosy=cos 0 cos 0" 4sin 0sin 8’ cos (o—¢’). 4)

Because of the uniqueness of the spherical harmonic expansion, the required additional assump-
tion is

2\ 2\ (n_ml 7 6
E<A7mz)*E(an)—2 (n—}—m)' Il ny (5)

the W, defined by (5) are coefficients in the expansion

EMh6, )h(6; ¢") => WoP,(cosy) =K(cosy)=K(w),  (u=cos7). (6)

n=0

The fact that the relations (5) must hold when the distribution of (6, ¢) is isotropic follows from
an application of the addition theorem for spherical harmonics to (6) and a comparison of the
coefficients with those of like terms in (3).2

The coefficients W, may be referred to collectively as the spherical spectral power density
by analogy with the planar rough surface problem. In particular we have from (6) and the
definition of v an analogous relation for the mean square surface devistion, which we shall refer
to as the zeroth moment AM:

E (10, )= Wa=M,. (7)

3. Distribution of Specular Points

As usual we shall assume that A(6, ¢) is a gaussian distributed random variable. The
probability distribution of 4(6, ¢) is then determined completely by the quantity M, defined in
(7). Moreover, the joint probability distributions of (6, ¢) and its derivatives with respect to
6 and ¢ of various orders are determined in terms of moments of the power spectral density
function K (u) defined by (6) (cf. [Swerling, 1962]). Probability distributions for geometrical
properties of the surface can thus be calculated by the methods described in Swerling’s paper.*

3 The authors are grateful to the referee for pointing out that (6) also implics our other assumptions concerning the correlations of the A mn
and Bmn.
4 These methods are outlined in part I of this paper.
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The particular example of the procedure to be considered here is the derivation of the dis-
tribution of specular points for the scattering of waves by the surface when the source is located
at a large distance compared to the radius p of the mean sphere. In this connection it will also
be assumed that p is large compared to the wavelength, so that the dominant scattering mecha-
nism is geometrical optics, and also that p? is large compared to the mean square first and second
derivatives of h(8, ¢) with respect to 6. This latter requirement implies that the surface is quasi-
smooth in some sense.

We assume that the distant source is located in the direction of the unit polar vector k-
Then since the vectors ry and r, are tangent to the surface the quantities

t=k-r1y,
n=K-r,
should be practically zero at a specular point. We then have
£=hy cos 0— (p+h) sin 6,
n=h, cos 0, (%)
and at a specular point

£=1=0. 9)

 We wish to calculate the probability distribution of the event (9).
First we observe that

g<p: n6.

Then following Longuet-Higgins, we consider the joint probability density of the quantities
£ 1, &, &, n,, which we designate by

P(gy ub ‘59) EW 77&0)

This leads at once to the result
Ple=n—0)=dtde [ [ [P0,0, 8, &, n0)ltme—&2\dsuttdn, (10)

for the probability of the occurrence of a specular point in an angular region of measure dfde.

Now since P(& », &, £, n,) is a multivariate gaussian distribution it will depend on the
correlation matrix associated with the five variables, & 7, &, £,, n,. The elements of this matrix
are cross correlations of the variables with 6=6"and ¢ =¢’. Some of the elements in the
matrix vanish.

The correlations can be calculated (ef. [Swerling, 1962]) from (8) and (6). For example,
we have

E(gn):}]im{ L(he(0, o)y (67, ') cos 0 cos 0" — E(h(8, o), (67, ¢)) sin 0 cos 0" }
'—50

o'—e

=Hm{[K"" (&) poe+K (1)1pr] 08 6 c0s 8’ — K’ (u)per sin 6 cos 8" }
0'—0
o'

=0
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The matrix, reordered, can be written

(E#), E(&g), E(&n,), 0, 0 q
E(tg),  E@&), E(&m,), 0, 0
E(tng),  El&me),  E(ng), 0, 0
0, 0, 0, E@*),  Eg,)

.0, 0, 0, E®g)  EE) J

It follows that P(&, n, &, &, 1,) 1s a product of two simpler distributions:
P&, 0, &, &, 9,)=P(&, &, n,)P(n, £,). (11)

Each of these is a multivariate gaussian distribution, itself. Then (10) takes the form
Pe=n=0)=ditdo [ (" [ exp {— (@t 2btm,teni e ome—Eldsnid,,  (12)

where the factor A and the exponential coefficients a, b, ¢, d, are functions of 6 and ¢ which
can be obtained from the correlation matrix.
To evaluate the integral in (12) we must break the region of integration up into regions
in which (&mn,— Ei) has a fixed sign. We have then,
f f f exp { — (aa?*+2bxy—+cy*+dz?) }aoy—2°|dzdxdy
34[‘ f f (z2—ay) exp { —(ax’+-2bxy+cy’+dz=?) }dzdxdy
JO J -0 JO
“ ? Vau 9 2 2 2
+8 (zy—2z?) exp { — (az®+2bxy+-cy’*+dz?) } dzdxdy. (13)
JO JO JO

The first integral on the right in (13) offers no problem and can be evaluated explicitly.
We have, in fact,

fm fw fw 2% exp {— (ax®++2bxy+cy*+dz?) Ydzdrdy= (w|d)? (ac— b?) —*/8, (14)
JO J—» JO

and
[ [ oy esp (— -t 2bay-+ey-+d=n) dsdedy=— ) (x/(ac—b) B, (15)
The second integral on the right of (13) can be obtained by differentiating the integral
I(a, b, ¢, d)= Lm J;m L\Ty exp {— (ax*4-2bxy+-cy*+dz?) Ydzdxdy (16)

with respect to b and d. The integral on the right in (16) can be put into a formally simpler
form. Tor this purpose, it is convenient to define

F(s)—=d-} exf (ds)— f " exp (—de?)dz. a7
0
We now change variables in (16), defining
p=a,
u=2xy, (18)
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and obtain

I;%ﬁw J;wF(V@/_Z) vt exp {—[av-+bu-tcu?/(4v)]}dvdu

=% f " F(yuf2) Ky(u~ac) exp (—bu)du. (19)
0 ;
In (19) the funetion K, is a Macdonald function, which results from the identity

f‘” 771 exp (—ar—B/7)dr=2K,(2~/af), a >0, 8>0.
0

We are interested in

ol ol

Ilz’a—b and Igza—d'

If we collect the preceding results from (12) through (19) we obtain
P(t=n=0)=Adbde{ 5(x/d)*(ac—b*) ~*—b[r/(ac— b?) }d~}/2+81,—41, }. (20)

The parameters, a, b, ¢, d are functions of §. They can be expressed in terms of the
correlation matrix elements.
Let
E(#), E(&), E(gn,)

AIZ E(EE"); E(‘Eg)y E(EM«:)
E(tn,),  E(&me),  E(n3)

and
E®?), E(nt,)

E®g,),  E&)

A= . (21)

Then
A= (2m) 3ATIAG

Ei(EY, E(&n,)
Elgn,),  Ep)
E®@#), E(ggy)
E(n,),  Elkm,)
E@#), E ()
E(E),  E®E)

-

D)

1

2

1

1
c:_

2 AT,

d=5 E()as'. 22)
Let

M=—3"W,

n=0

M=3" {n(n+1)/2}W,

n=0

Mzzé [ (n—1)n(n-+1) (n+2)/8 W, (23)
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Then we have
E(8)=M; cos® 0+ (p*+M,) sin? 0,

E (&) =3(p*+M,—M,) sin 26,
E(&n,) =— (M,/2) sin 26 cos 20,
E(n®)=(M,/4) sin? 20,
E(ng,) = (M,/2) sin 26 cos 20,
E (&)= 3My—M+-M,+ 0% cos® §+4M;,
E(%m,) = (M,/A+M;) sin? 26,
E (&) =M+ (M,/4—M,) sin® 26,
E(12)=%(M,+M,) sin® 26.

We assume that p? is large compared to M,, M,;, M, and that 0 is not near /2.

Ay~ M, p? sin? 260 cos? 0] M, cos? -+ M, sin® 0— (M,+2M,) sin? 6 cos 20} /4,
A= (M, M, sin* 26)/16,
a~{ M, cos® 0+ p sin? 0) (M, +M,) — M3 cos® 20} D=1 (2M,p* cos® 0) 1,
b~—{ (M, cos? 0+ p* sin? 0) (M,+4M,) + p* M, cos 20} D~ (2M,p* cos? 6) 71,
c~1/(2D sin? 6),

where
D=M, cos? 0+ M, sin? §— (M,+2M,) sin® 6 cos 20,

d=2/(M, sin? 26).
From these results and (21) we find for the limiting case

p—>, 6—0, psin 0=0(1)

that
ac=0(1), b=0(1), d— .

Then
I,=0(d%), [,=0(d™}),

and we have

P(e=n=0)~—Adbde{b[r/(ac—b*) |}/ (2d*) +-41},

since the other terms are of higher order. Moreover, from (16) we have

, OH
Il'\"<7r/d)7 aab /2}
where
Hsz fm exp {— (ax’+2bxy+-cy?) }dady
0 0
—(a)~} ﬁ § f T exp (—[a+2b(ae) ey dedy.

Let t=(ac)?, a="0b(ac) 3.
Then

= ﬁ) : L e S kT

= E_](l——az)'—% tan™? [(1_04) /(1 'Jf‘a> ]%y

731-855—64——10 1045

(24)

Then

(25)

(26)

27)



where the integral can be evaluated, for example, by the use of polar coordinates.
We now have

I~ (1/2) (r/d)* {[b/(ac—b**] tan~* [ (Vac—b) /(vac+b) [ — (1/2) (ac—b?) 7'}, (29)
and therefore
P(¢=7=0)~—(167) %A, %A, *(2/d)*% (ac—b>) ~% { b

-+4b tan™! [(\/&E—b)/(\/&_é—l—b)]%—,‘z(ac—b“’)%}dﬁa’gp. (30)
We have for 6~0:

Ay~M M 5p* sin? 6,

Ay~M; M, sin* 0,

a~{ (p* sin’® 0) (M, +M) +M, M, } | (2M, M,p?),

b~—(2M;)"!

e~ (2M, sin? 6) 71,

d~ (2M, sin? §)

ac~{ p? sin? O0(M,~+My) M, M, } /(4 M M3p? sin? 9),

ac—Db2~ (p? sin2 0-+M,) /(4 MM, p? sin? ). (31)

It may be observed from (31) and (30) that as 6 approaches zero P(§=n=0) becomes
infinite. However, if we ask for the distribution P,,., of specular points per unit area instead,

we shall have
Porea=P(E=1=0)/(p? sin 6dfdy) (32)

which approaches a finite constant when 6 approaches zero.

4. Conclusions

The distribution of specular points per unit area in the polar region, where 6 is nearly
zero (although the surface distance pf may be of finite order), is given through expressions
(30), (31), and (32) in terms of the surface spherical power spectral density moments A; and M,.
It may be observed by inspection that this distribution becomes indefinitely large if the moment
M, grows indefinitely, and it approaches zero if the moment M, grows indefinitely. Since M,
1s related to surface curvature while M, is related to surface slope these observations are in
accordance with geometrical intuition.

s
2
since the distribution will necessarily approach zero rapidly at those angles.

The case 6~ can be treated in a manner similar to the present one, but it is of less interest

The authors thank R. Heimiller for his help in several discussions and some concrete
suggestions which will have contributed materially to any success that this work may enjoy.
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