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Th is paper is presented in t\\·o distin ct parts. 
Part 1 begins by giving a number of examples of random surfaces and summarizing the 

var ious applica t ions of random surface t heory, including appli cations to 
(a) electromagnetic scatterin g frol11 such surfaces, 
(b) th e information content of photographs, maps, et c. interpreted as random surfaces. 

and implicati ons for bandwidth compression. 
This part of the paper will a lso summarize the major results whi ch ha ve p reviously been 

obtained, a nd wi ll outline t he approac hes used to obtain these r esults . Finally, some int er
esti ng addit iona l problems in this fi eld a re st at ed. 

P ar t 2 of th e paper is devoted to n ew res ult s on the p roperties of random spherical 
smfaces, and the application t o electromagnetic scattering from such surfaces. These result s 
prima rily concer n t he st at istics of t he number of specula r points per unit surface area . 

The detailed elaboration of the mathematical approaches to obta ining the ma jor res ult s 
of random surface theo ry. and eve n the exhibitin g of the m ajor formulas, \yould be very CO I11-
p lex a nd spa ce consum ing. T llcrefore, insofar as previously obtai ned result s a re con cern ed, 
\l'e \l'ill m erely give outl in es and examples, \\'ith references to the appropria te litera ture fo r 
the details . 1:luch detailed mathemat ics [IS appears in this paper is reserved for the nell' 
r('su lts presented in part 2. 

For convenience, t hc tll'O pa rts have separate n umberin g for equations and references. 

Part I- Outline of Random Surface Theory and 
Applications 

1. Introduction 

1.1. Definition and Examples 

A ran cLom surfacc is a random proccss {j(.r,y) } depending (usually) on t \l-O real p anuueLel's 
x and y . Although we ltu\'e used the notation (x.y), these do not necess,\l'ily r epresent 
r ec Lilillear Car tesian coordi na tes. 

F or example, one of the param et.ers may repl'eSCIl t. tim e: y = t. In this case, we m ay be 
dealing w.ith a random functi on o( one spatial pnml1l eter ,,-hich is also a r andom function of 
t ime. H oweyer , the mathematical techniqu es are those applicable to riU1dom surfaces. 

Also, the parameters, e\'en j( th e~T r epresent spa tial coordinates, may represent coordina tes 
other than Car tesian. F or exa mple, \\"e Illay lU1\'e x= O, y = ¢ , where 0, ¢ ar e spherical angular 
COOl'dina tes" 

Occasionally, we may be dealing with a r andom function or two spa tial coordinates ,,-hich 
is also a random function of time, in which case the random surfa ce in ques tion must be repre
sented as a stochastic process {.f(x, y ,t)} depending 0 11 three real parameters. 

Examples of random surfaces are: 
(a) T ile surface of th e ocean or oth er body of ,,'at er (in ""hich,t r epresents le,-el with r espect 

to a mean le\'el) , 
(b) a topographic 111 ftP (j repl'esents altitude) , 
(c) an a tmospheric pressure chart (j represents atmosph eric pressure), 
(d) a ph otogra ph or (ele\' ision pi cture (f represents brightn ess) , 

I A porti on of the work reported on in Ih is pnpcr WfiS supporte u by tho Kation rt l A eroml uLics and Space Ad min istration un der Contract 
NASA 400. 
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(e) an antenna pattern in two spherical angular coordinates, and 
(f) a rough spherical surface, such as that of the moon or other planet considered as a 

whole. 
All of the above, but in particular, (a), (c), and (d) , may depend not only OIl two spaLi,tl 

coordinates but on time as well. 
As previously stated, random functions of two parameters, one of which represenLs a 

spatial coordinate and the other time (as in a moving waveform) can also be considered to be 
random surfaces from the point of view of statistical treatment. 

1.2. Applications 

The most extensive treatment of random surfaces remains that of the series of papers of 
Longuet-Higgins [1952; 1956; 1957 a, b, c). Much of this was motivated by applications to Lhe 
surface of the sea. 

In particular, many of the properties studied are of interest for studying the electromag
netic (radar or optical) scattering properties of the sea. For example, the statistics of speculnr 
points and their motion are properties affecting the intensity and spectrum of scattered energy 
in a gi ,' en direction. 

Clearly, this application to electromagnetic scattering properties is not restricted to the 
surface of the sea, but may be relevant to scattering from any object which can reasonably be 
represented as a random surface. Part 2 of this paper deals with the statistics of specuhr 
points on a random spherical surface, and was motivated by problems of reflection of radar 
wa,'es from the moon. 

Another major application of random surf,tce theory is to the information content of 
various examples of random surfaces (in particular, photographs and teleyisiotl pictures but 
also including, possibly, topogntphic maps, pressure char ts, antenna patterns, etc.). 

By informa,tion content is mea,nt how ma,ny bits of information are required to describe 
such a surfa,ce to some gi\' en degree of accuracy. This afl'ects the storage r equirement for 
storing large amounts of data of this type, as well as the bandwidth requirements for transmit
ting such data through a communication cluwnel. The work of Swerling (1962) on contours of 
random surfaces was motivated by these considerations. 

If the statistics of the random surface are completely specified, t he information content 
can be determined according to the standard formulas of information theory [Swerling, 1962). 
H owever, bounds on the information content nwy be more easily obtaina,ble by studying 
certain statistical properties of contours, such as expected length per unit area, expected number 
of separate closed contour pieces, and expected "roughness" of contours. 

The above discussion is by no means exhaustive and is in fact only a sketchy outline of 
the possible applications of random surface theory and of the particular properties of random 
surfaces which are of interest in these applications. For example, extensive study has been 
made of the statistics of the number and velocity of maxima and minima of moving waveforms, 
the yeloci ty of the crossings of any given level, the annihilation and creation of specular points, 
etc. [Longuet-Higgins, 1952; 1956; 1957 a, b , c). 

2. Analytical Techniques for Random Surfaces 

The statistical properties of random surfaces which hav e been most extensively stud ied 
involve surface properties which can be described ill terms of the differential geometry of t he 
surface- that is, in terms of t he values taken on by the function / and its partial derivatives of 
various orders. 

These properties involve t be probability that the fun ction/ and its partial derivatives take 
on certain values or that the line integrals, alollg contours, take on certain functions of t he 
partial derivatives. 

For example, an extreme point of a random surface is characterized by /x= O, /y=O. A 
contour is characterized by / = zo. In a moving waveformj(x, t), the velocity of a point at a 
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constant levelj= ZI is the value ofjtfj x subject toj=zl' Specular points can be defined as points 
at which the gradient has a definite value. Such examples can be multiplied indefinitely. 

Thus, the approach to deriving the desired statistics of these surface properties consists 
first in describing the phenomenon in question in terms of the values ofj and its partial deriva. 
tives, and then taking the appropriate statistical average. This will be illustrated by several 
specific examples below. 

The results depend on the joint probability density function (pelf) of j and its partial 
derivatives. It is worth noting that most of the results which have been obtained involve the 
joint pelf of the function and its partials evaluated at the same point. However, as will be 
pointed out, many interesting statistical properties involve the joint pdj of the function and its 
partials evaluated at two or more different points; these properties have not been extensively 
treated. 

As a first example, consider the statistical properties of the length of contours in a planar 
surface. Following Swerling [1962], let the intersection of the surface z=j(x, y) with a plane 
Z=Zo be called a zo-contour. Let Vj denote the gradient, that is the vector having components 
j x, j y. 

Define 

Fa(u, v) =~ if i u.- v i ':::;~ 

= 0 jf i u-vi>~· 
2 

Then , the total length Ln(zo) of the zo-contom in a region Ii of the (x, y)-plane is 

(1) 

(2) 

Equation (2) gives an expression for L n(zo) apart from any statistical considerations. It 
is worth noting that this expression depends on the fact that we are dealing with planar sur
faces rath er than, say, spherical surfaces in this example. From this expression one can derive 
the desir ed statistical properties of Ln( zo) in terms of thoseofj. 

For example, denoting expected values by E( ), we have 

(3) 

where W(uo, U I , u2 ix, y) is the joint pdjofj,jx, andjy, all evaluated at (x, V). In (3), the inner 
integral is extended over -00 < UI, U2 < 00. If {j(x, y) } is stationary, W is independent of 
x, y; the expected length per unit area is obtained by dropping the integral over R. 

A second example involves events taking place at isolated points rather than along a whole 
contour, namely, the expected number of horizontal tangents to a zo-contour. Such a tangent 
occms when j = Zo, jx= O. 

The number of points within R vvherej=zo,jx= O is 

(4) 

and the expected number in R is 

(5) 

where W (uo, UI, U2, u3 ix, y) is the joint pdj ofj,jx,jy, andjxx at the point x, y. 
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A third example involves line integrals of the curvature of a contour. Let a zo-contour 
be expressed in parametric form xes), yes). The line integral along the contour of (e'(s»2 is 
a measure of the roughness of the contour, where e(s) is the angle of a tangent to a contour. 

Then [Swerling, 1962], 

E [Jre' (s) Fd8 J= fR f (1li+'U~)-5 /2(1li1l5-2ul'U'2U4+'U~'U3)2 
X W (zo, 1l1, 1l2, 1l3, 1l4, u5ix, y)dul ... d1l5dxdy, (6) 

where 
W(1lo, 1l1' U2, U,3 U4, u5ix,y) is the joint pdj of j,jx,jy,jxx,jXY' andjyy at x,y. 

The integral on the left side of (6) is the line integral along the zo-contour within R. 
Expression (6) arises from the fact that e' (8) can be expressed in terms of the partials of 

j as follows: 

(7) 

These examples are sufficient to illustrate the procedure: first express the surface property 
in terms of the appropriate conditions on the function j and its partials; then, find a nonsta
tis tical e:~.'-pression for the number of points at which the property holds, the length of the 
contour, or whatever may be the precise quantity for which one wishes to derive statistics; 
this eA'-pression can then be used to derive the statistical properties of this quantity, such as 
its expected value. 

For gaussian random surfaces, the expressions in terms of the joint pdf's, W can often be 
explicitly evaluated. The probability distributions for gaussian surfaces can be specified by 
specifying the function 

(8) 

(If the process is stationary, the dependence on x, y disappears.) 
Further, all of the joint pdf's, W can be explicitly written down in terms of the function 

<p and its partial derivations with respect to ~ and TI , evaluated at ~= O, TI = O. 

The reader is referred to the literature (references, Part 1) for the resulting expressions. 

3. Additional Problems 

A number of additional problems of interest remain to be treated in the field of random 
surfaces. 

One such problem is that of extending the results to nonplanar random surfaces, such as 
spherical surfaces. Part 2 of this paper gives new results on this precise problem . 

As previously noted, the specific form taken by the expressions depends on the differential 
geometry of the surface in question. 

A second problem involves deriving the higher order moments rather than just expected 
values. This problem can easily be attacked in principle by utilizing the exact (nonstatistical) 
expressions for the quantities in question e-g., (2) and (4). 

As an illustration, suppose it is desired to derive the second moment of LR(zo), the length 
of a zo-contour in R. From (2), 

[LR(ZO)]2= lim r r iV'j (x,y)iiVj(x',y') iFd[f(x, y),zolFd,[j(x',y'), zoldxdydx'dy' (9) 
d, d'--)O .J R .J R 

Then, E[LR (zo» )2 can be obtained directly from (9). The resulting expression involves the 
joint probability function of j(x, y), j x(x, y) , j y(x, y ), j(x', y' ), j x(x' , y' ), f y(x', y'), for all pairs 
of points (x, y ) and (x', y'). It is very difficult to evaluate explicitly even for stationary 
gaussian surfaces. 
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Similarly, higher moments may be derived by expressing the powers of LR(zo) as multiple 
integrals and taking expected values. 

The same remarks apply to other quantities for which the higher moments may be desired. 
A third category of problems of significance is the further study of the contours regarded 

as random processes. A connected piece of a contour can be expressed in the parametric form 
xes), yes) where s=arc length. The derivatives x'es), y'(s) are related; in fact, y'(s) is 
determined up to sign by x'es). The statistical properties of x'es) or y'( s) regarded as random 
processes are of interest. Alternatively, one could study (j (s), 0= angle of tangent to a contour, 
regarded as a random process; 0 (s) is a function of x'es) and y'(s). 

Swerling [1962] derives an expression for the expected value of the line integral along a 
contour of [O' (s))2. Similarly, expressions can be derived for the expected value of the line 
integral of [x"(s)F or [y" (s)J2. It is pointed out by Swerling [1962] that these expected values 
can be used to define quantities analogous to the second moment of the spectral density function 
of O(s) or x' (s), assuming that such spectral density functions could be defined rigorously. 

In exactly the same way, expected values of line in tegrals of the squares of higher deri vatives 
of 0 (s) or x' (s) can be obtained, since these higher derivatives can be expressed as functions 
of the partial derivatives of j. These would be analogous to higher moments of the spectral 
density function. However, they would be very difficult to evaluate explicitly. 

Apart from explicit evaluations of the expected values of line integrals of this type, the 
rigorous definition of concepts corresponding to spectral density function for the contours, 
regarded as random processes, is a problem of interest. 

4. References (Part 1) 

Longuet-Higgins, M. S. (1952), On the statistical distribution of t he heights of sca-waves, J . Marine R es. 9, 
245- 266. 

Longuet-Higgins, M. S. (1956), Statistical properties of a moving wave-form, Proc. Cambridge P hil. Soc. 52, 
234- 245. 

Longuet-Higgins, M. S. (1957a), Statistical properties of an isotropic randolU surface, Ph il. Trans. Roy. Soc. 
London A250, 157- 174. 

Longuet-Higgins, M. S. (1957b), The stati s tical analysis of a random moving s urface, Phil. Trans. Roy. Soc. 
London A249, 321- 387. 

Longuet-Higgins, M. S. (1957c), On the velocities of t he maxima in a moving wave-form, Proc. Cambridge 
P hil. Soc. 53, 230- 233. 

Swerling, P. (1962), Statistical properties of the contours of random surfaces, IRE Trans. Inform. Theory 
IT- S, 315- 321. 

Part 2-Distribution of Specular Points on a Rough 
Spherical Surface 

1. Introduction 

The problem of describing the scattering of high frequency electromagnetic or acoustic 
waves by a statistically rough spherical surface is the primary physical motivation for the 
analysis presented in this article. The theory of scattering from rough surfaces can be traced 
back to the work of Rayleigh [1929}, who was interested in the reflection of sound from statis
tically rough planes. In comparatively recent times a great deal of attention has been paid 
to the theoretical treatment of similar phenomena involving electromagnetic waves as well 
as acoustical waves, and the subject has been developed to the point where it is now regarded 
as one of the more important aspects of applied scattering theory. 

While many investigators have contributed directly to this subject, both theoretically 
and experimentally, the present article represents an attempt to follow a line of research 
begun by M. S. Longuet-Higgins [1952; 1956; 1957 a, b, cl on a more general class of problems. 
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That work, which has been extended further by P . Swerling [1962],2 involves the statistical 
description of random surfaces and the resulting geometrical effects. 

Among the questions considered by Longuet-Higgins is the description of those surface 
properties which affect the reflection of coherent unpolarized light according to the theory 
of geometrical optics. He has discussed, for example, the distribution of specular points and 
twinlding effects of a moving sea in relation to certain moments of the surface power spectral 
density [Longuet-Higgins, 1957a]. Although both stationary and moving surfaces were con
sidered, the investigations were confined to those cases in which the mean surface is a plane. 

The present article will be concerned with the distribution of specular points for geo
metrical optics scattering by a statistically perturbed sphere. The problem will be restricted 
to the case of a source located at a distance which is large compared to the radius of the sphere. 
The procedure followed in the analysis is essentially that of Longuet-Higgins and Swerling. 

An important eXDmple of the possible physical significance of the problem treated here 
is in the interpretation of radar scattering data resulting from earth based radar soundings 
of the moon. A complete statistical description of the specular return would also require 
a co nsideration of the distribution of Gaussian curvature over the lunar surface and, because 
of the coherent nature of the signals used , an analysis of the distribution of the path differ
ences associated with the various specular point contributions. However, even the present 
investigation, restricted as it is to the relation between the fundamental properties of the 
perturbed spherical surface geometry and the distribution of specular points alone, ,should 
provide a certain amount of insight into the nature of the scattering and help to clarify some 
umesolved questions which have been raised concerning the lunar scattering datainterpreta
tion. In particular, the theory developed here may help eventually to supply the relevant 
cOlmection between the probable lunar surface geometry and the theory of Senior and Siegel 
[1960], in which it has been estimated that between 25 and 30 specular points exist neal" the 
moon's leading edge. 

2 . Surface Angular Correlation Function 

Since the mean surface of the scattering object is a sphere it will be convenient to use 
standard spherical coordinates r', (J , cf> to describe the detailed surface geometry. Thus, if k 
is a fixed unit vector in the direction of the polar angle e=o, the angle cf> will be measured from 
a fixed radius in the plane through the origin of the coordinate system and perpendicular to k. 
The angle e is formed by a radius vector r and a radial line in the direction of k. 

We shall assume that the given closed scattering surface is a random sample from a popu
lation of surfaces for which the mean surface is a fixed sphere of radius p, having its center 
at the origin of the coordinate system. 

The population of surfaces can be represented by a stochastic variable of the form 

where h((J, cp) is a random quantity having the mean value zero. 
It will be convenient for obvious geometrical reasons to regard h((J , cp) as represented by 

an expansion in spherical harmonics 

co co n 
h ((J, cp) = 2: A nP n(Cos (J) + 2: 2: (A mn sin mcp+ B mn cos mcp)pr;:(cos (J) . (2) 

n=O n = 1 m = 1 

It will be assumed that the coefficients A mn and B mn are independent random variables having 
zero means: 

, Of. p art 1. 
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E(AmnAmlnl) = E(BmnB mlnl) = 0 for all m, n, m', n' except m= m' and n= n'; 

E(AmnB mlnl) = 0 for all m, n, m', n'; 

in the above relations Aon and B on are to be identified with A n and B n. These assumptions are 
analogous to those which have been made in connection with the planar rough surface scattering 
problem (cf. [Rayleigh, 1929; Longuet-Higgins, 1952, 1956, 1957a; Swerling, 1962; Rice, 1951]), 
wherein a similar formalism based on a Fourier series representation of the perturbations is 
ordinarily used. In the present case the polar singularity of spherical coordinate representations 
dictates the use of the more appropriate spherical harmonics. 

We can define the correlation function relative to h(e, <p) for eyery pair of surface 
poin ts, determined by the angular coordinates e, <p, and e' , <p' , as 

co 00 11 

E(h (O, <p)h (0; <p') ) = L, E(A;')P n(cos e)Pn(cos e' )+:6 .6 (E(A;;,,,,) sin m<p Sill Inep' 
n=O n=1 m=1 

+ E(B;",) cos mep cos m<p')P;~ (cos e)p ,:::(cos e' ) . (: j) 

With one additional assumption it will follow that the distribution of h(e, ep) is isotropic; 
that is, the correlation function E(h(O, ep)h(e' , ep')) is a function only of the angle 'Y between the 
points (e, <p) and (e; <p'). The angle 'Y satisfies the relation 

cos 'Y = cos e cos e' + sin e sin 0' cos (ep-<p'). (4) 

Because of the uniqueness of the spherical harmonic expansion, the required additional assump
tion is 

(5) 

the W n defined by (5) are coefficients in the expansion 

'" E(h(O, ep)h(e; 4>' )) = :6 WnP n(Cos 'Y) = K (cos 'Y) = K (p.) , (p. = cos 'Y ) . (6) 
n=O 

The fact that the relations (5) must hold when the distribution of h(e, <p) is isotropicfollows from 
an application of the addition theorem for spherical harmonic to (6) and a compariso n of th e 
co effici en ts with th ose of like terms in (3) .3 

The coefficients Wn may be referred to collectively as the spherical spectral power density 
by analogy with the planar rough surface problem. In particular we have from (6) and the 
definition of'Y an analogous relation for the mean square surface devistion , which we shall refer 
to as the zeroth moment Mo: 

E(h2(e, 'P)) =~Wn=Mo. (7) 
n=O 

3. Distribution of Specular Points 

As usual we shall assume that h(e, 'P) is a gaussian distributed random variable. The 
probability distribution of h(e, <p) is then determined completely by the quantity M o defined in 
(7). Moreover, the joint probability distributions of h(e, ep) and its derivatives with respect to 
e and <p of various orders are determined in terms of moments of the power spectral density 
function K (p.) defined by (6) (cf. [Sweriing, 1962]). Probability distributions for geometrical 
properties of the surface can thus be calculated by the methods described in Swerling's paper.4 

3 The authors are grateful to tbe referee for pointing out th at (6) also impli es our other assumptions concerning tho correlations of the Am. 
and Bm n . 

• These methods arc outlined in part I of this paper . 
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The particular example of the procedure to be considered here is the derivation of the dis
tribution of specular points for the scattering of waves by the surface when the source is located 
at a large distance compared to the radius p of the mean sphere. In this connection it will also 
be assumed that p is large compared to the wavelength, so that the dominant scattering mecha
nism is geometrical optics, and also that p2 is large compared to the mean square first and second 
derivatives of h(O, <p) with respect to o. This latter requirement implies that the surface is qnasi
smooth in some sense. 

liVe assume that the distant source is located in the direction of the unit polar vee Lor k · 
Then since the vectors ro and r l' are tangent to the surface the quantities 

~= k·ro, 

should be practically zero at a specular point. We then have 

~= ho cos 0- (p+h) sin 0, 

and at a specular point 

We wish to calculate the probability distribution of the event (9). 
First we observe that 

(8) 

(9) 

Then followin g Longuet-Higgins, we consider the joint probability density of the quantities 
~, 7/, ~o, ~I" 7/ 1" which we designate by 

This leads at once to the result 

(10) 

for the probability of the occurrence of a specular point in an angular region of measure dOcl<p. 

Now since P(~, 7/, ~o, ~I" 7/1') is a multivariate gaussian distribution it will depend on the 
correlation matrix associated with the five variables, ~, 7/ , ~o, ~I" 7/ 1" The elements of this matrix 
are cross correlations of the variables with O= O'and <p = <p'. Some of the elements in the 
matrix vanish . 

The correlation s can be calculated (cf. [Swerling, 1962]) from (8) and (6). For example, 
we have 

E(~7/) = lim { E(h 0(0, <p)hl" (0' , <p')) cos 0 cos 8' - E(h(O, <p) hI' , (0' , <p')) sin 0 cos 0' } 
O/~O 

q/-:;({' 

= lim { [[{" (,u) ,uo,u l" + [{' (,u) ,ul" 1 cos 0 cos 0' - [{' (,u) ,u", sin 0 cos 0' } 
0'-40 
cp'-:;cp 

=0 
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The matrix, reordered, can be written 

r E(e), EWe), E(~rJ'f')' 0, 

E(~~e) , E(W, E(~erJ'f') , 0, 

I E(~rJ'f')' E(~erJ'f') ' E(rJ !) , 0, 

lo' 0, 0, E(rJ2) , 

0, 0, 0, E(rJ~'f') 

It follows that P(~, rJ, ~e , ~'f" rJ'f') is a product of two simpler distributions: 

(11) 

Each of these is a multivariate gaussian distribution, itself. Then (10) takes the form 

where the factor A and the exponential coefficients a, b, c, d, are functions of e and cp which 
can be obtained from the correlation matrix. 

To evaluate the integral in (12) we must break the region of integration up into regions 
in which ( ~e rJ 'f'- ~:) has a fixed sign. We have then, 

.LOO", I -"'oo I -"'oo exp {-(ax2+ 2bxy+ cy2+dz2) }lxy- z2Idzdxdy 

= 4 r"' f '" r'" (Z2- xy) exp { -(ax2+ 2bxy+ cy2+dz2) }dzdxdy Jo -00 Jo 
+8 i '" i oo i m (XY_ Z2) exp { - (ax2+ 2bxy+ cy2+dz2) } dzdxdy. (13) 

The first integral on the right in (13) offers no problem and can be evaluated explicitly. 
We have , in fact , 

and 

The second integral on the right of (13) can be obtained by differentiating the integral 

(16) 

with respect to band d. The integral on the right in (16) can be put into a formally simpler 
form. For this purpose, it is convenient to define 

F(s)=d- t erf (dts) = is exp (-dz2)dz. (17) 

We now change variables in (16), defining 

u= 2xy, (18) 
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and obtain 
· 1 r oo r oo ~ 

[=4 Jo Jo F(,/u /2) V- I exp { - [av+ bu+ cu2/ (4v)]} clvclu 

1 r oo = "2 Jo F (-fUi2) K oCu.vac) exp (- bu)clu. (19) 

In (19) the function K o is a Macdonald function , which results from the identity 

We are interested in 

If we collect the preceding results from (12) through (19) we obtain 

The parameters, a, b, c, cl are function s of 8. They can be expressed in terms of the 
correlation matrix elements. 

Let 

and 

Then 

Let 

E (e) , 

£1 1= E(~~9), 

E(~rJ ",) , 

EWo), 

E(~~) , 

E(~orJ 'I') , 

I
E (rJ 2), 

£12= E(rJ~",) , 

1IE (e ) , 
a= "2 E(~rJ",), 

E(~rJ ",) 

E(~9rJ ",) 

E(rJ!) 

1IE (e) , 
b= - "2 E(~rJ",) , 

E(~~o) 1£1-1 
1 , 

E(~orJ",) 

1 lEW)' 
c= "2 E(~~o), 

E (~~o) 1£1 -1 
1 , 

E(~~) 

1 
d= "2 E(rJ2) £1:; '. 

oo 

Mo= :L,Wn 
n=O 

oo 

MI = L; {n(n+ l )/2 }W n 
n=O 

oo 

M2= 2: { (n--l)n(n+ l )(n+2) /8 }W n • 
n=O 
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Then we have 
E(e)=1J11 COS2 1:1+ (p2+1Uo) sin2 1:1, 

E(~~9)=Hp2+1Jlo-Ml) sin 21:1, 

E(~'YJ<p)= -(Md2) sin 21:1 cos 21:1, 

E('YJ2) = (Md4) sin2 21:1, 

E('YJ~<p)=(Md2) sin 21:1 cos 21:1, 

E(~~)=(3M2-MI+Mo+ p2) cos2 1:1+4M1, 

E(~9'YJ <p) = (M2/4+ M I) sin2 21:1, 

E(~~)=MI+(M2/4-1l!il) sin2 21:1, 

E('YJ~) =HM 2+ M) sin2 21:1. (24-) 

We assume that p2 is large compared to M o, M), M 2 and that 1:1 is not near 7r/2. Then 

11 1", 1J,llp2 sin2 21:1 cos2 I:I {1U 2 cos2 I:I + M I sin2 1:1- (M2 + 21J11) sin2 1:1 cos 21:1 } /4, 

112= (MIM2 sin4 21:1)/16, 

a'" {MI cos2 l:I + p sin2 1:1) (All+M"2)-M~ cos2 21:1 }D - I(2MIP2 cos2 1:1)-1, 

b", - { (MI cos2 1:1 + p2 sin2 1:1) (1U2+ 4MI) + p21111 cos 21:1 }D - I(2MIP2 cos2 1:1)-\ 

c", 1/(2D sin2 1:1), (25) 
where 

D= M 2 cos2 1:I + 1l!il sin2 1:1 - (M 2+ 21J11) sin2 1:1 cos 21:1 , 

cl= 2/ (M2 sin2 21:1). 

From these results and (21 ) we fuld for the limiting case 

p-7 m, 1:1-70, p sin 1:1 = 0 (1) 
that 

Then 

and we have 

ac= O(l), b= O(l ), cl-7 m . 

12=0 (cl-~), / 1= 0 (cl-") , 

P (~= 'YJ = O) ",-Acll:lcl<p { b[ 7r / (ac- b2) ]~/(2dt) + 4I }, 

since the other terms are of higher order. Moreover, from (16) we have 

where 

Let 

Then 

731- 855--64----10 

H = So'" So'" exp {- (ax2+2bxy+ cy2) }clxcly 

= (ac)-1 So"'Jo '" exp {-[x2+2b(ac)-!xy+ y2]}clxdy. 

~=(ac)t, a= b(ac) -t. 

H = Cl So '" L'" exp {-(x2+ 2axy+ y2) }clxcly 

= ~-1(1-a2)-t tan- I [(l-a)/(H-a)]t , 
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where the integral can be evaluated, for example, by the use of polar coordinates. 
We now have 

and therefore 

P(t= 'Y} = O) ~ - (167r) - Z.1I - H.1z - H(2/d) H(ac-b 2) -% { 7rb 

+ 4b tan-1 [({aC- b) /({aC+ b)]H-2(ac-bZ)'A} dedl{J. (30) 

.1t",MtM 2 pZ sin2 0, 

.12",M1M 2 sin4 e, 

a~ { (p2 sin2 e) (M2+ M 1) + M1Mz} /(2M1]V[2PZ), 

b~- (2Mz)- 1 

c~(2M2 sin2 e) - I, 

d,....., (2M2 sin2 e)-l 

ac'" {p2 sinz e(M2+ M 1) + M t1\,f2 }/(4MtM~p2 sinz e), 

ac-b2~ (p2 sin2 e+ M 1)/ (4MtM 2p2 sin2 e). (31) 

It may be observed from (31) and (30) that as e approaches zero P(t= 'Y} = O) becomes 
infinite. However, if we ask for the distribution P area of specular points per unit area instead, 
we sh all have 

(32) 

which approaches a finite constant when e approaches zero. 

4 . Conclusions 

The distribution of specular points per unit area in the polar region, where e is nearly 
zero (although the surface distance pe may be of finite order) , is given through expressions 
(30), (31), and (32) in terms of the surface spherical power spectral density moments M1 and M 2• 

It may be observed by inspection that this distribution becomes indefinitely large if the moment 
M 2 grows indefinitely, and it approaches zero if the moment M t grows indefinitely. Since M2 
is related to surface curvature while M1 is related to surface slope these observations are in 
accordance wi th geome trical in tui tion. 

The case O"'~ can be treated in a manner similar to the present one, but it is of less interest 

since the distribution will necessarily approach zero rapidly at those angles. 

The authors thank R. Heimiller for his help in several discussions and some concrete 
suggestions which will have contributed materially to any success that this work may enjoy. 
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