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Antenna arrays of very high resolution can be designed without using a large number
of elements if they are spaced properly. However, there exists no general theory which
would yield a solution to this problem because of its analytical difficulty. In this paper a
probabilistic approach is made despite the problem itself being not probabilistic originally.
This approach is tantamount to the study of all outcomes for many possible element positions
(under a certain rule) by invoking the well-known powerful law of large numbers in prob-
ability. )

From this investigation it is found that the sidelobe level is closely related to the number
of elements, and to a much lesser degree to the aperture dimension. As a result extremely
high resolution could be achieved with very few elements. On the other hand, for a given
number of elements higher and higher resolution could be obtained by spreading these ele-
ments over a larger and larger aperture whereas the sidelobe level would remain substan-

tially the same and the directive gain constant.
Four sample arrays with 100 to 1000 elements have been designed by the Monte Carlo

method.
predicted from the theory.
markably closely.

Statistical properties of the computed patterns agree almost exactly with those
Their sidelobe levels also agree with the theoretical values re-

For practical interest it is shown that an array can be actually designed to produce a
beamwidth of about 1 minute of arc by using only 100 isotropic elements over an aperture
of 4% 103 wavelengths, the sidelobe level being —8.4 dB and the directive gain 20 dB over

that of a single element.
utes of are with sidelobe level of —18 dB.
appreciably.

1. Introduction

Recent advances in space exploration have shown
a great need for antennas with high resolution, high
gain, and low sidelobe level. Steerable reflector an-
tennas of large size are generally considered to be
prohibitive in cost, whereas fixed reflector antennas
have a limited range of scanning capability. Hence,
attention has turned to large phased arrays. Ar-
rays with uniformly spaced elements have been
studied in great detail in the past. It is well known
that since the pattern functions of these arrays are
periodic in the reduced angular variable of observa-
tion, to produce a single beam in the visible range
the required number of elements, being in direct
proportion to the aperture dimension, is very large.
(For example a linear array with an aperture of
55 10° wavelengths to produce a beamwidth of 1
min of arc would require 10* elements.)

Arrays with incommensurable element spacings
usually have aperiodic pattern functions. As a
result, the number of elements required is not di-
rectly determined by the aperture dimension. This
fact has been discovered by a number of antenna
workers [King, Packard, and Thomas, 1960; Swen-
son and Lo, 1961; Andreason, 1962; Maffett; 1962;
Ishimaru, 1962; Yen, and Chow 1963]. Some of

For the sample array of 1000 elements, the beamwidth is 0.5 min-
It is also possible to reduce this beamwidth

these works are devoted to uncovering the properties
of nonuniformly spaced arrays by studying a few
particular examples with a computer, whereas others
are intended for estimating the pattern functions of
those arrays whose element positions are determined
by certain functions with the aid of seme mathe-
matical tables. At present there is no general theory
available for this class of arrays.

This paper is a sequel to a previous one [Lo,
1964] where a probabilistic approach is proposed, in
spite of the fact that this problem itself is not prob-
abilistic originally.! More specifically, arrays with

1 It appears that such an approach has not been well understood by some an-
tenna workers who are not familiar with the modern probability theory. '1'(»{1;_1y,
probability is rezarded as a branch of measure theory by which the 1_;r}uhub111[y
has been made rigorous, without relying on vague physical intuiiion. For
example, independence can be defined on the properties of measure. In fact,
the normal law of large numbers has been suggested by Markov and rlc'nrpusly
proven by Tevy without using the physical notion of randomness. 1t sx;np]y
states the asymptotical behavior of a quantity under a quite general condition.
All of these can be found in a stimulating monograph entitled, “Statiﬁ}(‘al
Independence in Frobability, Analysis and Number Theory,” by M. Kac.
He states that the deterministic and probabilistic points of view are not as irrec-
oncilable as they may appear at first sight. He has inzeniously demonstrated
what probability can do about many deterministic problems such as those in
number theory, algebraic equations, continuous fractions, etc. In recent years
the application to number theory is found particularly impressive as seen from
I. P. Kubiljus, “Probability Methods in Number Theory’ [19: ] and Ju. V.
Linnik, “The Dispersion Method in Binary Additive Problems” |}%’1]. In
the opening paragraph of the preface in Linnik’s book, he asserts that ‘. . .such
an approach (probabilistic) permits the solution of several binary additive prob-
Jems which are inaccessible to the known methods . . .”’. This clearly states
the motivation of the probabilistic approach to the antenna problem discussed
in this paver.
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elements placed at random are considered and their
probabilistic properties are studied. The purpose
1s to determine the condition under which the
number of elements could be reduced. It is found
that this number 1s mainly determined by the desired
sidelobe level. In this paper the application of
this theory will be emphasized. For example, a
beamwidth of 1.2 min of arc could be achieved with
only 100 uniformly excited elements over an aperture
of 410 * wavelengths; the sidelobe level would be
—8 dB and the gain 20 dB over that of a single
element. 'This somewhat surprising result as well
as a few others can be predicted from the theory
and are subsequently verified by the Monte Carlo
experiments in this paper.

The major part of the theory has been established
and reported elsewhere [LLo, 1962b]. However, for
completeness only a few main results will be first
summarized here. Then some experimental results
and a few statistics of antenna characteristics will be
discussed and compared with the theoretical pre-
dictions. This will also illustrate how the theory
is applied.

It is perhaps of interest to point out that this
problem is related to Weyl’s sum in number theory
[Vinogradov, 1954] and to the random series studied
by Steinhaus [1929]. There is also a similarity
between this problem and waves scattered by ran-
domly distributed simple objects, except that i this
case the contributions from all elements are coherent
in a certain direction in space and also the outcome
of the random events could be controlled to a
certain extent. Indeed in this approach the design
of an array is reduced to playing a game of chance,
which could be so designed that the odds would be
overwhelmingly in favor of success.

2. Statement of the Problem

For simplicity a linear array with uniformly
excited elements will be considered. Let the number
of elements be N and also let the array with a
normalized aperture [—1,1] lie along the X axis
of a Cartesian coordinate system. Denote X, for
the position of the nth element and assume the set
of random variables {X,} be independent with a

common probability density function g(x). Then
the normalized pattern function is given by
Plu)—L 3 exp iuX (
U)=-— exp 1uUX, 1
)= 2 ex )

where u=aw(sin ©—sin a) =reduced variable of the
angle of observation,

O=observation angle measured from the
normal to the array axis, namely to
N-axis,

a=main beam angle also measured from the
above normal,

a=actual aperture dimension in wavelengths.

Mathematically speaking, (1) is a mapping of a
random vector defined in an N-dimensional cube
—1<X,<1 into a scalar function P(u). By giving
g(x) it is required to determine some probabilistic
properties of the function (). Those of practical
interest are the beamwidth, antenna response at
each observation angle, sidelobe level in the visible
region, and directive gain.

3. Disiribution of Radiation Characteristics
at Each Observation Angle

Let the real and imaginary parts of P(u) be
P(u) and Ps(u), respectively. Then by the central
limit theorem the joint distribution of F,(u) and
Py(u) 1s asymptotically normal. Again for sim-
plicity assume ¢(z) even; then the joint density
function at each u is given by (with u deleted):

Py Py=g— ep— S 24H] )

2w 109 o5

where

1
‘p(u):E{Pl(u)}:f g(x) exp iuzdx

-1
—characteristic function of X

E{Py(w)} =0

()= [+ e(20) | = ()

) =5 [1—(2u)].

Hence for any u the probability for the antenna
response being less than 7 is

Pr{{P@)|<ri= ff J(P,P:)dPdPy (3)

This is a generalized noncentral chi-square distri-
bution with two degrees of freedom. Tables of
percentiles of » for various values of parameters
have been compiled by DiDonato and Jarnagin
[1960]. When 7 is large as compared with o, and
0y, an asymptotic expansion can be found (see
appendix A). The approximation due to Patnaik
[1949] may also be found useful. In his method
a generalized noncentral chi-square distribution of
any degree of freedom is approximated by a central
one with different degrees of freedom, depending
on the noncentral parameter. The latter can be
read off from an imcomplete gamma function
tabulated by Pearson [1934]. For details see
appendix B.

It is important to notice that since g(x) has a
finite support, ¢(w) is an integral transcendental
function of the exponential type with exponent <1.
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By Lebesque-Riemann theorem, o¢(u) approaches
zero as w approaches infinity on the real axis. In
fact if 7 is the order of zero of g(x) at x=-+1,
|o(u)|~|u|~'"7. Thus for almost all cases of prac-
tical interest, o,(u) =~ (u)=~1/2N and o¢(u) =0 as
u is outside of the main beam region. As a result
the distribution of |P(u)| for large u, becomes simply
chi-square and independent of .

4. Approximate Distribution of Sidelobe
Level

The sidelobe level is defined as the supremum of
the random pattern function |P(u)| for u in the
visible range U excluding the main beam region.
To this author’s knowledge, a rigorous method for
determining the distribution of this quantity is
unknown. By using the fact that P(u) is analytic
with a probability 1, the probability for |P(u)|<r
for all w in U execluding the main beam region, say
Uy, can be approximately estimated by [Lo, 1962b,
1964]

Pr{|P)|<r, ueUo} ~ (1—10" vzt (4)
where [2a] is the larger of the two integers nearest
to 2a. In the case of a symmetrical array to be
considered later (i.e., one with an element at —.X,
whenever there is an element at .X,), the above
probability measure becomes

PrilP(u)|<r, ueU,} = (erf (+N/2r))t

o—Nri2 1 [2a] .
s 1——— oee 5
vrN/2r < Nt >} ©)

where erf (z) lis the [error function of X and the
expansion applies for large y Nr.

It is interesting to see that (4) and (5) imply
that, for a given probability, N is closely related to
the sidelobe level » and to a much lesser degree to
the aperture dimension a. In fact for a given 7,
there exists a number N, called the critical number
of elements, below which the probability of achieving
the sidelobe level 7 decreases rapidly to zero and
above which the probability increases only slowly.
For symmetrical arrays this is shown in figure 1.
A close examination of this chart will show that for
a given N, say 2X10? the sidelobe level would be
—20dB for a=10* and —19.2dB for a=106°, both
with 80 percent probability. Since the beamwidth
is inversely proportional to a, it is clearly seen that
the beamwidth could be reduced by a factor of 10
by increasing @ by ten times without significantly
raising the sidelobe level. From this result it is
also of interest to note that for a given N, the side-
lobe level is almost fixed, independent of g(x), or a
particular set of element positions among many
others. The numerical results obtained by many
workers cited in section 1 already verified this
conclusion.

=<1
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Fraure 1.  The critical number of elements of a symmetrical
array as a function of the sidelobe level with 80 percent
probability.

N =total number of elements.

5. Distribution of Half-Power Beamwidth

The random variables u, defined by the two first
roots (one positive, the other negative) of the follow-
ing equation determine the half-power beamwidth
completely:

| P (uo) |=1/+2

Using the fact that P(u) is analytical with proba-
bility 1 and also the fact that o;(x) and o,(u) are
small for small %, the random variable u, can be
simply and closely approximated by
Py(w) —1/32
¢ (uy)
where %, is the corresponding first root of the equa-
tion o(u;)=1/y2, and ¢’(u) is the derivative of
e(u) [Lo, 1964]. The above equation implies that,
to the first order of approximation u, and P;(u,)
are linearly related. Since the distribution of
Pi(u,) is known, that of %, can be readily determined.
Without going into detail, it is easy to show that
for large @ and moderately large N, u, is approxi-
mately equal to %, with a probability nearly equal
to 1.

U= Uy —

(6)
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6. Distribution of the "'Distance’’ and Direc-
tive Gain Beiween the Random Pattern
Function P(u) and the Desired Pat-
tern o(u)

An antenna array may be regarded as a finite set
of samples taken from a continuous excitation g(x)
over the aperture [Lo, 1962a]. In this approach
the pattern function of the latter, namely ¢(u),
may be considered as a reference or desired pattern
since the technique for designing an antenna with
continuous excitation is well known. Thereiore, it
is of interest to investigate the difference between
P(u) and ¢(u).

In Hilbert space this difference can be expressed
by the “distance” between P(u) and ¢(u) which is
defined to be the norm [[P—¢|. Folowing :
theorem due to Karhunen [1947] and Loéve [1960],
P—¢ admits a spectral representation; then the
distribution of ||P—¢||? can be determined as given

by [Lo, 1962b, 1964]
l: b ] (7)

. ["—E(D)
"1“[ (D] ]

r{ D<y*}
where

D=||P—¢]|?*- J P(u)—o (n) |*du
JU

E{D)} ~2rdw—2||g||>/N

I

c?{D} =8n’d,,||g||>/N
S
1

®,(r) =the standardized normal distribution function.

dov=a/N, ||g

From the above it can be shown that the difference
between @, the directive gain of the reference
antenna pattern o(u), and G, that of the random
pattern P(u), is given by

(Go—6)dB <20 log (14 (du/|lg])) (8)

with a probability nearly equal to 1. For large
d,, (i.e., when elements are widely spaced) G becomes
proportional to N.

With reference to the results obtained in the
previous sections, the following interesting conclu-
sions can be drawn: For a given N, there exists a
sidelobe level which is likely to be achieved. This
level increases extremely slowly with the aperture
dimension @. Thus for given N and @ the beam-
width could be reduced by a factor of 10 or 100 by
merely increasing a to 10a or 100a. In so doing
the risk of obtaining a much higher sidelobe level
is very small. The gain, being proportional to N,
will remain unchanged. 'This conclusion has been
verified quantitatively by the Monte Carlo experi-
ments, as will be seen in section 8.

7. Stationarity and Ergodicity
Approximation

By referring to (1), as u=0, P(u) is deterministic
and equal to 1. For small » and large N, the var-
1ances are very small quantities and £ (u) is nearly
deterministic. Therefore, in general, the behavior
of P(u) requires attention only when u is outside
of the main beam region. Fortunately for large
u, P(u) behaves lil(e Gaussian noise with o7 = o3 =1/2N
and E{f(u)= Thus following Woodward
[1953] one may spedk of “optimum’ pattern in the
sense that it has a maximum entropy; i.e., statis-
tically speaking all sidelobes have equal level with
equal pl()bdblllth s.  Also for large u, P(u) becomes
stationary, since by a simple mathematical manipu-
lation its covariance function is found to be

K(u, o) = lo(u—0) — oW *®)] =3 ¢(u—1) (9)

for large w and », where * implies the complex con-
jugate and the last approximation is due to the
asymptotic behavior of ¢(u) as discussed in section
3. Since P(u) is asymptotically normal and its
spectral distribution function, in general, is contin-
uous, by Maruyama’s theorem [1949] P(u) is met-
rically transitive, hence ergodic for sufficiently large
N and w. It follows that the “time” average over
uis equal tothe “‘space’ average over w in probability
space. As a consequence, for large u, the statistical
behavior of a sample function P, (u) observed over
a long “‘time” interval U, can be approximately
determined from the probability distribution at a
fixed %, which is simply given by (2). In a few
examples studied it is found that the general behavior
of the sample function |[P,(u)| can be predicted
from this theory with high accuracy, as will be seen
in the next section.

8. Statistics of a Few Sample Arrays

Four symmetrical arrays with 100, 300, 600, and
1000 elements, respectively, have been deswned by
the Monte Carlo method, according to a scheme
implied in the theory. It is remarkable to find that
in just a single trial for each case the statistics of
rarious antenna properties showed a close agreement
between the theory and experiment.

The Monte Carlo Method is a random experiment
simulated by a computer, involving the following
essential steps.  First a set of random numbers with
uniform distribution must be generated. Various
methods are available. For example, a million
random digits published by the Rand Corporation
were generated by a chance-dependent electronic
device. Since von Neumann introduced the mid-
square method, the analytical approach becomes
more widely used today. 'The numbers so obtained
are generally referred to as the pseudorandom num-
bers since they are generated by a deterministic
method. In recent years with the aid of modern
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computers, pseudorandom numbers can be easily
cenerated by various congruential methods [Green-
berger, 1961]. Then from these numbers, samples
of a random variable of any distribution can be ob-
tained by the probability integral transformation.

In this paper, in order to show how simply one can
determine the element positions, 500 random num-
bers have been drawn directly from Owen’s table
[1962]. The poker test and the chi-square goodness-
of-fit tests for the frequencies of digits, pairs, and
distance between zeros of these numbers have been
given by Owen and are shown below:

Poker Frequeney of | Frequency of \ Distance be-
digits pairs ‘ tween zeros
Lo 6.9 ‘ <9, ‘ 17.0
\

ot cos® mx/2; then by probability
integral transformation the corresponding samples
for this density function can be obtained. The
distributions of these samples are shown in figure 2
along with the theoretical probability distribution
function. However, to avoid unnecessary complica
tions only positions of every fifth element are slmwn
with dots in this fieure.

The pattern functions |P(u)| for symmetrical
arrays of 100, 300, 600, and 1000 elements with their
positions determined respectively by the first 50,
150, 300, and 500 random numbers of Owen’s table
cited above have been computed by IBM Computer
7094. To assure that the largest sidelobe maximum
will be obtained the pattern function for each case is
computed at 410" equispaced points for u/x in a
range from 0 to 10* (corresponding to a=10*). For
/7 n the interval (0, 19), they are plotted in figure 3.

Again assume ¢(z)

06
05

04

SAMPLE PATTERN FUNCTION |P(u)|

DISTRIBUTION OF ELEMENT POSITIONS {x,}

10 -
SAMPLE DISTRIBUTI
ON~
9 -
8
“~——PROBABILITY DISTRIBUTION FUNCTION
.
L er
cj
5 -
4t
wE {x"} A SET OF RANDOM NUMBERS
DERIVED FROM "HANDBOOK OF
2 STATISTICAL TABLES" BY
7 DB OWENS (pp 535-536)

1 | 1 1 1 | | L 1 1

o 1 2 3 4 5 6 7 8 9 10
Xn
Ficure 2.  Distribution of element positions.
...... Sample distribution, ———— population distribution

It is seen that regardless of the number of elements
all have the same half-power beamwidth and nearly
identical main beam as expected from the theory in
section 5. As for the rest, a pattern plot becomes
not only impractical, but also of little importance.
Therefore a statistical study of #(u) has been made.

Since for a symmetrical array P,(u)=0, it follows
from (2) that for each u, P(u) has a normal distribu-
tion. On the other hand, in the last section it has
been established that for large u and N, P(u) is
approximately ergodic. Therefore, it 1s of great
interest to compare the distribution of actually com-

100 ELEMENTS
\—\

300 ELEMENTS / \
_600 ELEMENTS - ! \

1000 ELEMENTS /

FiGure 3.

Sample pattern functions of symmetrical arrays with N=100, 300, 600, and 1000 elements, respectively.
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puted values of P(u) (excluding those for small u’s)
with a normal curve. In the case of 10° elements
this is shown by a histogram in figure 4. 'The middle
points of each digitized step lie close to the normal
curve. Since actually [P(u)| is of more interest in
practice, a histogram of (£’/o)® is plotted along
with the x>-distribution density function in figure 5.
In this case the midpoints of all steps lie almost
exactly on the theoretical curve. Figure 6 shows the
sample distribution function and the x*-distri-
bution. It is seen that they agree very closely.
These results have verified the ergodicity approxi-
mation obtained earlier. In application the converse
is important; namely, from the theoretical curves one
can predict the frequency distribution of the antenna
responses over all angles with extremely high
accuracy.

Long “time” correlation functions of the above
sample pattern for « in various ranges, each averaged
over alength equal to 10°r, have also been computed.
When |u-v|/w<2, they agree closely with the co-
variance function given by (9). For |u-v| outside
this interval, the correlation function becomes
random-like. A typical curve averaged over % from
57X 10% to 67X 10° is shown in figure 7. It is believed
that the disagreement of this curve with (9) for
|u-»|/7>2 is due to the insufficient length of u used
for averaging. However the details in this portion of
the curve are of minor importance.

-4
_3 —
HISTOGRAM
NORMAL CURVE

_2 —
_l —
0 |

-4 =3 =2 =] o | 2 3 4

(P/70)

Ficure 4. Histogram of the mnormalized sample pattern

function Plo for N=1000 as compared with the theoretical
density junction, namely the normal curve.

0.9 H 2
FREQUENCY FUNCTION OF X° DISTRIBUTION

/" WITH ONE DEGREE OF FREEDOM

_— HISTOGRAM

Vg

O3 |—=

@B =

@) =

@3 =

P02

Frcure 5. Histogram of the square of the normalized pattern
Sfunction (P/a)? for N=1000 as compared with the theoretical
density function, namely the chi-square density function with
1 deg of freedom.

Finally figure 8 shows the most important feature
of these arrays, namely the sidelobe level, where the
theoretical curves are obtained from figure 1. Since
in this paper normalized aperture is used (see (1)), a
change in the actual aperture dimension corresponds
to a proportional change in %, and hence a corre-
sponding change in beamwidth. This is indicated by
the half-power beamwidth scale in minutes of arc in
the figure.

The agreement between the experimental and the
theoretically predicted results, though not as close
as other properties studied earlier, is considered quite
remarkable, particularly in view of a few methods
suggested by other authors [LLo, 1963]. In addition,
the present method is both extremely simple and
general. As stated earlier the chart in figure 1 is
more accurate for large N. This is also seen in this
figure.

From these results it is interesting to find that an
array can be designed to produce a beam of about 1
min of arc with only 100 isotropic elements over an
aperture on the order of 4> 10°A. The sidelobe
level would be —8.4 dB and directive gain would be
20 dB over a single element. In case of a conven-
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tional design with uniformly spaced, elements at
least 4 X 10° of them would be required.

Of course, the gain for the latter will be substan-
tially higher—roughly by a factor of 40 in power ratio
if they are uniformly excited. In that case it is well-
known that the sidelobe level will be —13 dB. On
the other hand if these 4 x 10° elements were spread
at random over a larger aperture, say 4 x 10°\, a
much narrower beam, about one-hundredth of that
of the uniformly spaced array, could be obtained
with practically no loss in gain. In addition, by
referring to figure 1, the sidelobe level would be con-
siderably lower, about —21 dB.

When N=300 and the aperture equals 5 x 10°\,
the half-power beamwidth will be about 1 min of are.
The sidelobe level as found from figure 8 is equal to
—13 dB, about the same as that of the uniformly
spaced counterpart, but the number of elements is
only 6 percent of the latter.

Figure 8 also shows that for 10* elements and an
aperture of 10*\, a beam of 0.5 min of arc can be
obtained with —18 dB sidelobe level.  Although the
computation was performed only for » up to 10*r,
it is expected that the sidelobe would remain at
substantially the same level for u increasing to
several times this range.

——

[FOONI= —_—
_—x
x/x

90 — 4

70 —

2
IGON = ———— X DISTRIBUTION FUNCTION
———-X—-— SAMPLE DISTRIBUTION
FUNCTION
.50
{

40
.30

.20 =

0 I Y Yy I I )
O I 2 3 4 5 6 7 8 9 101l 1213 1415

(P/0)°

Fiaure 6. Sample distribution function of (P/a) for N= 1000
as compared with the theoretical chi-square distribution.

CORRELATION FUNCTION AVERAGED OVER u

T

o |
35

Fraure 7. Correlation function of a sample pattern function
averaged over the interval 5 X 103<u <6 w X 10°.
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Fiaure 8. Sidelobe levels of four sample arrays with N= 100,
300, 600, and 1000 elements as a function of aperture di-
mensions in wavelengths or half-power beamwidths in minutes
of are.

9. Conclusion and Remarks

In this paper the probability theory is used to
obtain @ solution to a problem which, although not
probabilistic origitally, is mathematically intractable
otherwise. In this respect, the present approach
seems to be similar to the congruential technique
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used in generating pseudorandom numbers, but in a
reversed manner. This may become clearer if at-
tention is paid to the fact that the contribution from
each term (or element) of (1) is determined by its
phase angle X ,u (mod 27). In general, even though
{X,} may not be random, {X,u (mod 27)} appears
like random. Thus the results obtained in this paper
may also be applied to many nonuniformly spaced
arrays [Lo, 1963].

In essence, this investigation has shown that high
resolution can be achieved without the need of a great
number of elements unless very high gain is of pri-
mary importance. On the other hand, for a given
number of elements higher and higher resolution can
be obtained by spreading the elements at random
over a larger and larger aperture whereas the sidelobe
level would remain essentially the same and the
directive gain constant. This investigation has also
shown that almost all the properties of radiation
pattern function can be accurately predicted from
the theory without resorting to a high speed
computer.

These results are also applicable to arrays of
higher dimensions with little modification. In fact,
the advantage of using random spacings in these
arrays will be even greater.

High order solutions of the distribution function

{|P|<r}asshownin (3) have also been obtained by
following a method due to Edgeworth who expanded
a one-dimensional distribution function in te:ms of
Hermite-Chebyshev polynomials. However, for the
two-dimensional distribution, as in the present case,
the expansion becomes too complicated to be pre-
sented here. For interested readers, these solutions
and their effect on the results in (4) and (5) can be
found in Lo [1962b]. However, a rigorous solution
to the distribution of the supremum of a random
function as in (4) and (5) is still an outstanding
problem.

The author acknowledges the support of the Na-
tional Science Foundation in this investigation. He
also expresses his gratitude to Professor G. A.
Deschamps for many interesting discussions, and to
Dr. V. Gylys for programming some pattern
computations.

10. Appendix A

In this appendix an asymptotic expansion of the
generalized noncentral chi-square distribution of two
degrees of freedom given by (3) will be determined.
This expansion is applicable to the mainbeam region
where 7 > >¢, and ¢,. The method used here is to
replace the probability measure inside a cirele of
radius 7 as shown in (3) by that inside a square
region of side equal to 7 and some error terms. This
error, being the probability measure in the region
bounded between the circle and the square, is small
for large » and can be evaluated asymptotically.

Let 2=P,/o1, y=Ps/1, m=¢[/q1, s=a/a, then
(3) becomes

Priya®+P<r}= Sf f e

\ri—y?

exp [— (z—m)>—s*y*|dady

[ [ ]

exp [— (@—m)*—s*y?|dxdy.
The first double integral representing the proba-
bility mass in the square region, can be easily eval-
uated in terms of error fun(‘tmn, whereas the second
and third double integrals are the error. Now con-
sider the third one and separate the range =0 to
rinto y=0 to kr and kr to r, with 0<k<1; i.e

exp [— (@x—m)2—s%2|dady

Vri—y?

_ 28 [f 4 f ] f . exp [— (2— m)2—s%2]dady.

Let é=r—m, e'=x—r, y'=y/r. First expand the
integral into a Taylor series in ' and integrate term
by term with respect to x'; next expand (+/r*—y*—r)
imto a power series in ' and integrate again with
respect to . Then one finds that the above double
integral reduces to

exp—a{ I'(3/2) +5 F§5/9 +|:I‘(5/2)

. D

2ms?r 4
—{—2(;2 I‘(7/2):| S+0(s~ 4% +-0(+/skr exp—s2k2r 2)}

Similarly one obtains an asymptotic expansion
for the second double integral. By combining these
results one has

Pr{ya 2 x2+y2<m—— erf (s¥)[erf (r-+m)--erf (r—m))

1 ) ) 3
A+fmsr SRt { 4s* I+|:882+

+0(s~4=3) +-0(/skr exp—sk?) } .

15(26°—1)7 1
48st 7

For the special case when o,=0, (i.e., s=1) the
above expansion reduces to that given by Rice
[1945], who utilized the asymptotic expansion of
Bessel function in his derivation.

11. Appendix B

Following Patnaik [1949], a generalized noncentral
chi-square distribution can be approximately com-
puted by a central one with a different parameter
and different degrees of freedom. The latter then
can beread from Pearson’s Table [1934] of incomplete
camma function /Z(»,p). By following the same
notation as in (3):
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Pr{yPIPi<r }=1(, p)

where
2 2
/== 7)::.3'_1_1’
M2 K2

m=oi+ai+¢’,
me=2(c}+0342¢%?3).
For convenience I(»,p) is plotted against » for

various values of p in figure 9. At p=0, it is simply
the Rayleigh distribution.

=

O-rpw s 0o

99

—Nw S o

90

@

—N W s o

Ficure 9. Incomplete gamma function 1(v,p) against v with
P as parameter.
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