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Antenna arrays of very high resolution can be designed without using a large nu mber 
of clements if t h ey are spaced properly. However, there exi sts no general theory whi ch 
would y ield a solution to t his problem because of its analytical difficulty. In this paper a 
probabilistic a pproach is mad e despi te t he problem itself bei ng not probabilistic originally. 
This approach is tantamount to the stud y of all ou tcomes for man y possible element posit ions 
(under a certa in rule) by in volong t he well-known powerful law of large numbers in prob
ability. 

From t his in vestigation it is found t hat the sidelobe level is closely related to the number 
of clement~ , and to a mu ch lesser degree to the aperture dim ension. As a result extremely 
hi gh resolution could be achi eved with very fe w "Iements. On the other hand, for a given 
number of elements hi gher aml higher resolu tion could be obtained by spreading these ele
mcnts over a larger and larger apert.ure whereas the sidelobe level wou ld r cmain substan
ti ally th e same an d t he directive gain constant.. 

Four sample arrays with 100 to 1000 elcments llaye been designed by the Mon te Carlo 
meth od. Stat istical proper t ies of the computed pat tern s agrce almost cxact.ly with those 
predicted from the t h eory. Their sidelobe levels also agrce with the thcoretical valu es r c
mar kably closely. 

For practica l intcres t it is shown that an array can be actuall y design cd to produce a 
bcamwidth of about 1 minu te of arc by using only 100 isotropic elements ovcr an apertnre 
of 4X 103 wavelengths, the sidelobe level being - 8.4 dB and the directi ve gain 20 dB over 
that of a single elcment, For thc sample array of 1000 elements, the beamwirl t h is 0.5 min
utes of arc wi th sidelobe level of -18 dB. It is also possiblc to r educe t his beamwidt h 
appreciably. 

1. Introduction 

Recent advances ill space exploration have sbown 
a great n eed fo r anten nas wiLh high resolution , high 
gain, and low sidelobe level. Stem·able reflec tor an
tennas of large size are generally considered to be 
prohibitive ill cost, wh ereas fixed reflector antennas 
have a limited range of scanning capability. Hence, 
attention has turned to large phased arrays. Ar
rays with uniformly spaced elements h,we been 
studied in great detail in the past. It is well known 
that since the pattern functions of these armys are 
periodic in the reduced angular variable of observa
tion, to produce a single beam in the visible range 
t he required number of elements, being in direc t 
proportion to t he aperture dimension, is very large. 
(For example a lineal' army with an aperture of 
5X I0 3 wavelen gths to produce a beamwidth of 1 
min of arc would r equire 104 elements. ) 

Arrays with inco mm ensurable element spacings 
usually have aperiodic pattern fun ctions. As a 
r esul t, t he number of elements r equired is not di
rectly determined by the aperture dimension . This 
fact has been discovered by a number of antenna 
workers [King, Packard, and T homas, 1960; Swen
son and 1.,0, 1961 ; Andreason, 1962 ; Maffett; 1962 ; 
Ishimaru, 1962 ; Yen, and Chow 1963]. Some of 

t hese works are devoted to ullcoverillg tb e properties 
of non uniformly spaced al'l"flys by studying a Jew 
pal'ticuhr examples with a co mpu ter, wh ereas others 
are in tended for estimating the p,lLt e1"n functions of 
those arrays whose element positions ,1,1"0 determined 
by certain functions with tho aid of sO l1l e mathe
matical tables. At present t here is 110 gonoml th eory 
available for this class of armys. 

This paper is a sequel to a previous on e [Lo, 
1964] where a probabilistic approach is proposed , in 
spite of the facL that this problem itself is not prob
abilistic originally. l More specifically, arrays with 

1 It appears that surh an approach has not been 'well undrr~ tood by somc an 4 

tenna worker~ who arc not fa miliar with Lil p modern probability theor y. 'I'oclay I 
proba hili tv jg rOC::1rded as a branch of me~surc theory by whicil the probabil ity 
haR been "m ade - rigorous, w i t- iloll L r('lyi ng on vague pl lysir;-ll in tuition. l1'or 
example- , independence can bo de fin ed on L11f' properties of meas ure. In far t, 
t he norm a l law of la rge numbers has been C;;!lI!~('s t ('c1 by 1\ 1 arkav a nd rigo~ously 
proven by 1.evy \\ it!lOUt !l si n ~ the' pilYf; iC':1i notior! of ran domness . It S l~l~ply 
states the nc;;y mptotical behav ior of a Quanti ty L1llder :1 Qui te ,!cll C' ral con~ltl.on. 
All of LlH.'SC can bo found in 3 sLim ulati nv lllonoj.' raph rn h tled, "Rt~t l :-:;t! ('al 
Indcpclldrl1ce in rrohability, An alysis a n d N umher Theory, " by ~l. .Knc . 
I [0 ~ta tos that tho deterministic and proba hilistic pOint s of view are not as Irree· 
oneilable as they m ay a ppear at fi rst sight. 1 [e hm;; in ~f' niol1sly demon"trat~d 
what proba,bility call do ahont mnny cietf'fmini stic prohl clllS s twh fl S those In 
ntunber t heor y algebraic eq uHtion s, conti n uolls frac tions, etc. In recent year~ 
the applica tion 'to nllmber theor y i" fOWld pa rticularly imprpssive as sren. from 
I . P. Kuhil jlls, "Prohfl bility M ethods in J\lIJ11 her Theory'· [1959J and Ju . V. 
l ,innik, "The J lispersion Method in Hin ar y A ddi tiw Problems" IW61]. In 
the opcn[n ~ paragraph of thp. preface in Linnik's book , he asserts that ~ ': .. snch 
an approech (pcohahilistic) permits tlw sol u tion of several binary addItIve prob
lems Wh1011 a re in acccst: ib le to the known m f' thods ... " . Th is ('learly state~ 
the mot ivation of the probabilistic approach to the antenna problelll discnssed 
in this paper. 
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elements placed ftt random are considered and their 
probabilistic properties are studied. The purpose 
is to determine the condition under which the 
number 01' elements could be reduced. It is found 
that this number is mainly determined by the desired 
sidelobe level. In th is pftper the application of 
this theory will be em pbasized. For example, a 
beamwidth of 1.2 min of arc could be achieved with 
only] 00 uniformly excited elemen ts over an aperture 
of 4 X 10 3 wavelengths ; the sidelo be level would be 
- 8 dB and the gain 20 dB over that of a single 
elemen t. This somewhat surprising result as well 
as a few others can be predicted from the theory 
and are subsequently verified by the Monte Carlo 
experimCllts in this paper. 

The major part of t he theory has been established 
and reported elsewhere [Lo , 1962b]. However, for 
completeness only a few main results will be first 
sUlTunarized here. Then some experimental results 
and a few statistics of antenna characteristics will be 
discussed and compared with the thcoretical pre
dictions. This will also illustrate how the theory 
is applied. 

It is perhaps of interest to point out that this 
problem is related to Weyl's sum in number theory 
[Vinogradov, ] 954] and to the random series studied 
by Steinhaus [1929]. There is also a similarity 
between this problem and wav(s scattered by ran
domly distributed simple objects, except that in this 
case the cont.ributions from all elements are coherent 
in a certain direction in space and also the outcome 
of the random events could be con trolled to a 
certain extent. Indeed in this approach the design 
of an array is reduced to playing a game of chance, 
which could be so designed that the odds would be 
overwhelmingly in favor of success. 

2. Statement of the Problem 

For simplicity a linear array with uniformly 
excited elements will be considered. Let the number 
of elements be N and also let the array with a 
normalized apertme [- 1,1] lie along the X axis 
of a Cartesian coordinate system. Denote X n for 
the position of the nth element and assume the set 
of random variables {X n} be independent with a 
common probability density function g(x). Then 
the normalized pattern function is given by 

1 N 
P(u)= N ~ exp iuXn (1) 

where u = a7r(sin 8 - sin a) = reduced variable of the 
angle of observation, 

8 = observation angle measured from the 
normal to the alTay axis, namely to 
X-axis, 

a = main beam angle also measured from the 
above normal, 

a = actual aperture dimension in wavelengths. 

Mathematically speaking, (1) is it mapping of a 
random vector defined in an N -dimensional cube 
- 1 ::;Xn ::;l into a scalar function P(u) . By giving 
g(x) i t is required to determine some probabilistic 
properties of the function P(1J ) . Those of practical 
interest are the beamwidth , antenna r esponse at 
each observation angle, sidelobe level in the visible 
region, fmd directive gain. 

3. Distribution of Radiation Characteristics 
at Each Observation Angle 

Let the real and imaginary parts of P(u) be 
Pj(u) and P 2(u) , respectively. Then by the central 
limit theorem the joint distribution of Pj(u) and 
P2(U) is asymptotically normal. Again for sim
plicity assume g(x) even; then the joint density 
function at each u is given by (with u deleted): 

(2) 

where 

= characteristic function of X 

Hence for any u the probability for the antenna 
response being less than r is 

This is a generalized noncentral chi-square distri
bution with two degrees of freedom. Tables of · 
percentiles of T for various values of parameters 
have been compiled by DiDonato and Jarnagin 
[1960]. When r is large as compared with (Tl and 
(T2, an asymptotic expansion can be found (see 
appendix A). The apprm. . .'lmation due to Patnaik 
[1949] may also be found useful. In his method 
a generalized noncentral chi-square distribution of 
any degree of freedom is approximated by a central 
one with different degrees of freedom, depending 
on the noncentral parameter. The latter can be 
read off from an imcomplete gamma function 
tabulated by Pearson [1934]. For details see 
appendix B. 

It is important to notice that since g(x) has a 
finite support, <p(u) is an integral transcendental 
function of the exponential type with exponent ::; 1. 
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By Lebesque-Riemann t heorem, <p(u) approaches 
zero as u approaches infinity on the r eal axis. In 
fact if T is the order of zero of g (x ) at x= ± 1, 
I <p (u) I ", Iul-I- T. Thus for almost all cases of prac
tical in terest, O"I (U) ""' 0"2(U) ""' 1/2N and <p(u) "", 0 as 
u is outside of the m ain b eam r egion. As a r esul t 
the distribution of IP(u) I for large u, b ecom es simply 
chi-square and independen t of u. 

4 . Approximate Distribution of Sidelobe 
Level 

The sidelobe level is defined as the supremum of 
the r andom pattern fu nc tion IP (u) I for u in the 
visible r ange U excluding the m ain beam r egion . 
To this author 's knowledge, a rigorous m ethod for 
determining the distribu t ion of this qu an tity is 
unlmown. By using the fact that P (u) is analytic 
with a proba bili ty 1, the probability for IP (u) 1<1' 
for all u in U excluding t be main beam region, say 
Uo, can be approximately estim ated by [Lo , 1962b, 
1964] 

wher e [2a] is the larger of t he two in teger s nearest 
to 2a. In the case of a symmetrical array to be 
consider ed later (i.e., on e wi t h an elemen t at - X " 
whenever ther e is an elemen t at A n) , the above 
probability measure becomes 

(5) 

wher e erf (x) lis the ~eITor function of X and the 
exp ansion applies for large i NT. 

It is in teresting to see t hat (4) and (5) im ply 
t hat, for a given probabili ty, N is closely related to 
t he sidelobe level l' and to a much lesser degr ee to 
t he aper ture dimension a . In fact for a given T, 

t here exists a number N, called t he cri tical number 
of elemen ts, b elow which the probability of achieving 
the sidelobe level T decr eases rapidly to zero and 
above which the probability increases only slowly . 
For symmetrical arrays this is shown in figure 1. 
A close examination of this chart will show that for 
a given N, say 2 X I 03, th e sidelob e level would be 
- 20dB for a= 104 and - 19.2dB for a= 105 , both 
with 80 percent probability. Since the beamwidth 
is inversely propor tional to a, i t is clearly seen that 
the beamwid th could be r educed by a factor of 10 
by incr easing a by ten t imes withou t significantly 
raising the sidelob e level. From this r esul t i t is 
also of in terest to note that for a given N, the side
lobe level is aLmost fixed , independent of g(x), or a 
p ar ticular set of elemen t positions among m any 
oth ers. The numerical resul ts ob tained by m any 
workers ci ted in section 1 already verified this 
conclusion. 
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FIG UHE 1. The cri tical number of elements of a symmetrical 
anay as a f 1tnction of the sidelobe level with 80 percent 
pTObabihty . 

N = total number of elements. 

5. Distribution of Half-Power Beamwidth 

The r andom variables U o defined by the t wo first 
roots (one positive, th e other negative) of the follow
ing equation determine the half-power beamwid th 
comple tely: 

Using the fact that P (u ) is analytical with proba
bility 1 and also t he fact th a t 0" 1 (u) and 0"2(U) are 
small for small u, the random variable Uo can be 
simply and closely approximated by 

PI (ul ) - I /.J'i 
UO""'Ul - ' () cp Ul 

(6) 

where UI is the corresponding first root of the equ a
tion <P(UI) = 1j.J2, and <p ' (u) is the derivative of 
<p(u) [Lo, 1964]. The above equation implies that, 
to t he first order of approxim ation U o and PI (UI) 
ar e linearly r elated . Since the distribution of 
PI (Ul) is known, that of U o can be readily determined. 
Without going into detail , i t is easy to show that 
for large a and moder ately large N , U o is appro}..'1-
m ately equal to Ul wi th a probabili ty nearly equal 
to l. 
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6 . Distribution of the "Distance" and Direc
tive Gain Between the Random Pattern 
Function P(u) and the Desired Pat
tern \O (u) 

An antenna array may be regarded as a finite set 
of samples taken from a continuous excitation g(x) 
over the aperture [Lo , 1962a]. In this approach 
the pattern function of the latter , namely cp(u) , 
may be considered as a r eference or desired pattern 
since the technique for designing an antenna with 
continuous excitation is well known. Therefore, it 
is of in terest to investigate t he differ ence between 
P (u) and cp(u) . 

In Hilbert spa.ce this difference can be expressed 
by the " distance" b etween P(u) and cp(u) which is 
defined to be the norm II P - cp ll . Following a 
theorem due to K arhunen [1947] and Loeve [1960], 
P -cp admits a spectral representation; then th e 
distribution of II P - cp l! " can be determined as given 
by [Lo, 1962b, 1964] 

? [ .... /-E{ D }] [ E {D }] 
Pr {D< .. Y-} = <Po O' {D } -<Po - <T{ D } 

where 

D= II P - cp ll "= f )p(,l.I) -cp ('II) 1
2du 

E {D } ""'27rdav - 21I gW/N 
O'2 {D } ""'87r2dav Il gW/N 

dav = a/N, Il gW= f~l l g(xWdx, 

(7) 

<I> o(x) = the standardized normal distribu tion function. 

FrOlU the above it can be shown that the difference 
between Go, the directive gain of the reference 
antenna pattern cp(u) , and G, that of the ran dom 
pattern F (u), is given by 

(Go- G)dB ::;20 log (l + C-Jd.vl ll gll )) (8) 

with a probability nearly equal to 1. For large 
day (i. e., when elem en ts are widely spaced) Gbecollles 
proportional to N. 

With r eference to the r esults obtained in the 
previous sections, the following interestin g conclu
sions can be drawn: For a given N, there exists a 
sidelobe level which is likely to be achieved . This 
level increases extremely slowly wi th the aper tm e 
dimension a. Thus for given N and a the beam
width could b e reduced by a factor of 10 or 100 by 
merely incr easing a to lOa or 100a. In so doing 
the risk of obtaining a mu ch higher sidelobe level 
is very small . The gain, being proportional to N, 
will remain unchanged. This conclusion has been 
verified quantitatively by the :Monte Carlo exp en
ments, as will b e seen in section 8. 

7 . Stationarity and Ergodicity 
Approxima tion 

By r eferring to (1), as u = o, P (u) is deterministic 
and equal to 1. For small u and large N, the var
iances are very sm all quan t ities and F (u) is nearly 
deterministic. Therefore , in general, t he b ehavior 
of P(v) requires attention only when u is outside 
of the main beam region. Fortunately for large 
u, P(u) behaves like Gaussian noise with 0'1 "'" O'~ "'" 1/2N 
and E { .f' (u) ) "", 0. Thus follo\\ing Wood\\ard 
[1953] on e may speak of "optimum" pattern in the 
sense that it has a m aximum entropy; i.e. , statis- (' 
tically speaking all sidelobes have equal level with 
equal probabilities. Also for large u, P (u) becom es 
stationary, since by a simple math ematical m anipu
lation its covariance function is found to be 

for large u and v, where * implies the complex con
jugate and the last approximation is due to t he 
asymptotic behavior of cp(u) as discussed in section 
3. Since P(u) is asymptotically normal and its 
spectral distribu tion fun ction, in general , is con tin
uous, by ~[aruyama's theor em [1949] P (u) is met
r ically transitive, hence ergodic for sufficiently large 
Nand n. It fo llows that the" time" aver age over 
u is equal to the "space" average over w in probabili ty 
sp ace. As a consequence, for large u , t he statistical 
behavior of a sample function P w(u) observed over 
a long "time" interval Uo can be approximately 
determi ned from the pro babili ty distribution at a 
fixed u, which is simply given by (2). In a few 
examples studied i t is found that the gen er al behavior 
of the sample function IP w (u) I ca.n be predicted 
from this t heory with high accuracy, as will b e seen 
in the next section . 

8 . Statistics of a Few Sample Arrays 

FoUl' symmetrical arrays with 100, 300, 600, and 
1000 elements, respectively, have been designed by 
the Monte Carlo method, according to a scheme 
implied in the th eory. It is remarkable to find that 
in just a sil1gle trial for each case the statistics of 
vrtrious an tenna properties sho,ved a close agreement 
between the theory and experiment. 

The Monte Carlo Method is a random experiment 
simulated by a computer, involving the following 
essential steps. First a set of random numbers with 
uniform distribution must be generated. Various 
methods are available. F or example, a million 
r andom digits published by the Rand Corporation 
were generated by a chance-dependent electronic 
device. Since yon Neum ann in troduced t.he mid
square method , the analytical approach becomes 
more widdy used today. The number s so obtained 
are generally referred to as t he pseudorandom num
bers since they are generated by a deterministic 
method . In recent years with t he aid of modern 
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computers, pseudorandom numbers can be easily 
generated by various congruential methods [Green
berger , 1961] . Then from these numbers, samples 
of a random variable of any distribution can be ob
tained by the probability integral tl'a ll sfol'mation. 

In this paper, in order to sho"'" how simply one can 
determine the element positions, 500 random num
bers have been drawn directly from Owen 's table 
[1962]. The poker test and the chi-square goodness
of-fit tests for t he frequencies of digi ts, pairs, and 
distance between zeros of these numbers have been 
given by Owen and are shown below : 

Poker Frequency of Frequency of D istance be-
digits p airs tween zeros 

1.0 6. 9 89. 3 17.0 

Again assume g(x) = cos2 7rx/2; then by probabili ty 
integral tnmsfOl'mation t he correspondi ng samples 
for this density function can be obtained. The 
distributions of t hese samples are shown in figure 2 
along with t he t heoret ical probability disLlibution 
function. However, Lo avoi.d unnecessary complica
tions only positions of every fifth element are shown 
with do ts in tbis figure. 

The pattern functio ns IP (u) I for symm etr ical 
arrays of 100,300,600, and 1000 elements wiLh their 
positions determined respectively by t he first 50, 
150, 300, and 500 random numbers of Owen's table 
cited above have been compu ted by IBM Computer 
7094. To assure t hat t he hU'gest sidelobe maximum 
will be obtained the pattern function for each case is 
computed at 4 X l 04 eq uispacecl poinLs for u/ 7r in a 
range from ° to 101 (corresponding to a= 1 04) . For 
u/ 7r in t be in terval (0, H)) , t hey are plotted in figure 3. 
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.... Sample di stribution , --popula tion dis tribution 

It is soen t hat regardless of the number of elements 
all have Lhe same half-power beamwidth and nearly 
iclentical main beam as expecLed from the theory in 
section 5. As for the rest, a pattern plot beco mes 
not only impractical, but also of little importance. 
Therefore a statistical study of P(u) bas been made. 

Since for a symmetrical arr ay Pz(U) = 0, it follows 
from (2) that for eacb u, P (u) has a normal distribu
tion. On t he other h and , in t he last section it h as 
been established t hat for large u and N, P(u) is 
approximately ergodic. Th erefor e, it is of great 
interest to compare th e distribution of actually COJ11 -
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FIGU RE 3. Sample pattern Junctions oj symmetrical arrays with N = 100, 300, 600, and 1000 elements, respectively. 
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puted values of P(u) (excluding those for small u's) 
with a normal curve. In the case of 103 elements 
this is shown by a histogram in figure 4. The middle 
poin ts of eac h digitized step lie close to the normal 
curve. Since actually IP(u) I is of more interest in 
practice, a histogram of (P/ cr) 2 is plotted along 
with the x2-distribution density function in figure 5. 
In this case the midpoints of all steps lie almost 
exactly on t he theoretical curve. Figure 6 shows the 
sample distribution function and the x2-distri
bution. It is seen that they agree very closely. 
These results have verified the ergodicity approxi
mation obtained earlier. In application the converse 
is important ; namely, from the theoretical curves one 
can predict the frequency distribution of the antenna 
responses over all angles with extremely high 
accuracy. 

Long "time" correlation functions of the above 
sample pattern for u in various ranges, each averaged 
over a length equal to 10371", have also been computed. 
When lu-vl/ 7I"<2, they agree closely with the co
variance function given by (9). For I u-v I outside 
this interval, the correlation function becomes 
random-like. A typical curve averaged over u from 
571" X l 03 to 671" X l 03 is shown in figure 7. It is believed 
that the disagreement of this curve with (9) for 
lu-vi /7I" >2 is due to t he insufficient length of u used 
for averaging. However the details in this portion of 
the curve are of minor importance. 
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FIGU RE 4. H istogram of the normalized sample pattern 
function P 1fT for N = 1000 as compaTed with the theol'etical 
density Junct-ion, namely the normal CUTve . 
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FIGURE 5. H istogram of thle square of the normali zed pattern 
function (P Iff)2 for N = 1000 as compared with the theoretical 
density function, namely the chi-square density function with 
1 deg of freedom. 

Finally figure 8 shows the most important feature 
of these arrays, namely the sidelobe level, where the 
theoretical curves are obtained from figure 1. Since 
in this paper normalized aperture is used (see (1)), a 
change in the actual aperture dimension corresponds 
to a proportional change in u, and hence a corre
sponding change in beamwidth. This is indicated by 
the half-power beamwidth scale in minutes of arc in 
the figure. 

The agreement between the e2.,])erimental and the 
theoretically predicted r esults, t hough not as close 
as other properties studied earlier, is considered quite 
remarkable, particularly in view of a few methods 
suggested by other authors [Lo , 1963]. In addition, 
t he present method is both extremely simple and 
general. As stated earlier the chart in figure 1 is 
more accur ate for large N. This is also seen in this 
figure. 

From these r esults it is interesting to find that an 
array can be designed to produce a beam of about 1 
min of arc with only 100 isotropic elem ents over an 
aper ture on the order of 4 X 103 ;>... The sidelob e 
level would be -8.4 dB and directive gain would b e 
20 dB over a single element. In case of a conven-
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tiowtl design wi til lluifOl'udy spaced, clemen Ls at 
least 4 X 10° of them would be required. 

Of course, the gain for Lhe latter will be subs tan
tially higher- roughly by a factor of 40 in power ratio 
if they are uniformly excited. In that case it is well
known that the sidelobe level will be - 13 dB. On 
thc other hand if these 4 x 103 elements were spread 
ttt random over a larger aperture, say 4 x 10o}., a 
much narrower beam, about one-hundredth of that 
of the uniformly spaced array, could be obtained 
with practically no loss in gain. In addition, by 
referring to figure 1, the sidelo be le\-01 would be con
siderably lower, about - 21 dB. 

When N = 300 and the aperture equals 5 x 103}., 
the half-power beamwidth will be abou t 1 min of arc. 
The sidelobe leyel as found from figurc 8 is equal to 
- 13 dB, about the same as that of the uniformly 
spaced counterpart, but the numbcr of elements is 
only 6 percent of the lattcr. 

Figure 8 also shows that for 103 clemellts and an 
aperture of 104 }., a bcam of 0.5 min of arc can be 
obtained with - 18 dB sidelobc lcvel. Although the 
computation was perform ed only for u up to 104 71" , 

it is expected that thc sidelobc would r emain at 
substantially the Eal11 C le\'cl for 1,{, increasing Lo 
seyeral times this rnngc. 
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9. Conclusion and Remarks 

In this paper the probabili ty theory is used to 
obtain a solution to a problem which , although not 
pro babilistic origi tally, is mathematically in tractable 
otherwise. In this respect, the present approach 
seems to be similar to the congruential technique 

1017 
731- 855- 04--7 



used in generating pseudorandom numbers, but ill fL 
reversed manner. This may become clearer if at
tention is paid to the fact that the contribution from 
each term (or element) of (1 ) is determined by its 
phase angle X n~{, (mod 27f). In genera'!, eyen though 
{X n} may not be random, {X nu (mod 27f)} appears 
like random. Thus the results obtfLined in this paper 
nmy fLlso be applied to many nonunifonnly spaced 
arrays [Lo, 1963] . 

In essence, this in \-estiga tion has shown that high 
resolution can be achiend without the need of a great 
number of elements unless yery high gain is of pri
llmry importance. On the other hand, for a gi\·en 
number of elements higher and higher resolution call 
be obtained by spreading the elements at random 
onr a larger and larger aperture whereas the sidelobe 
le\-el would remain essentially the same and the 
directiye gain constant. This inycsLigation has also 
shown that almost all the properties of radiatio n 
pattern function can be accura tely predicted from 
the theory without resorting to a high speed 
computer. 

These results are also applicable to fLrrays of 
higher dimensions with litt.le 1ll0difictLtion. In bct , 
the advantage of using rcwdom spacings in these 
arrays will be e\-en grefLtcr. 

High order solutions of the distribution function 
P r { I PI < 1' } as shown in (3) have also been obtained by 
following a method due to Edgeworth who expanded 
a one-dimensional distribution function in te ,1l13 of 
Hermite-Chebyshev polynomials. However, for the 
two-dimensional distribution, as in the present case, 
the expansion becomes too complicated to be pre
sented here. For interested readers, these solutions 
and their effect on the results in (4) and (5) can be 
found in Lo [1962b]. However, a rigorous solution 
to the distribution of the supremum of a random 
function as in (4) and (5) is still fLU outstanding 
problem. 

The author acknowledges the support of tlle N a
tional Science Foundation in this iuvestigation. He 
also expresses his gratitude to Professor G. A. 
Deschamps br many interesting discussions, and to 
Dr. V. Gylys for progl'fllnming some pattern 
compu tations. 

10. Appendix A 

In this appendix an asymptotic expansion of the 
generalized noncentral chi-square distribution of two 
degrees of freedom given by (3) will be determined. 
This expansion is applicable to the mainbeam region 
where r> > 0" 1 and O"z. The method used here is to 
replace the probability measure inside a circle of 
radius l' as shown in (3) by that inside a square 
region of side equal to l ' and some error terms. This 
error, being the probability measure in the region 
bounded between the circle and the square, is small 
for large l' and can be eyaluated fLsymptotically. 

Let X= P r/O"l , y = P Z/ lJl , m= cp/ IJI , S= 0"1 / 1J2 then 
(3) becomes 

= 2s ('[JT - f --"'-v,- [T J 
7f .J 0 - r -r • , 'r2_y2 

exp [- (x- m F-sV]d,rdy. 

The first double in tegral represenling the proba
bility mass in the square region, can be easily eval
uated in terms 8f enol' function ; whereas the second 
and third double integrals are t he error. Now con
sider the third one and separate the range 11 = 0 to 
r into y = O to lcr fLnd k1' to 1', ,,·ith O< k< l; i.e., 

2s [i N' [TJ [' =- + exp [·-(x- mF-sV]dxdy. 
7r a , kT . , lr2-y2 

L et o= r- 1n, xl = x- 1' , y! = y/r. F irst expand t he 
integral iu to fL Taylor series in Xl and integrate term 
by term with respect to Xl; next expand (-Jl'Z_y2_ 1') 
ill to a power series ill yl and integrate again with 
respect to yl. Then one find s t hat t he above double 
ill tegI'll l red uces to 

Similarly olle obta,i ll s an asymptotic expansion 
for the second double in tegl'al. By combining these 
r esul ts one has 

pr{ .. /xz+yz<r}=~ erE (sT)[erf (r+m)+erf (T-m)] 
2 

_ _ 1_ ex -8Z{ 1 ~ [2. 15(282-1)J 1:. 
4 , hrS21' . P + 4s2r'+ 882 + 48s4 1'2 

+0(S-41'-3) +O( -Jsk1' exp-s2k21'2) ~ . 
) 

For t he special case when 0"1 = 0"2 (i.e., s= l) the 
above expansion reduces to thfLt given by Rice 
[1945], who utilized the asymptot,ic expansion of 
Bessel fun ction in his derivfLtion. 

11 . Appendix B 
Following Patnaik [1949], a generalized noncentral 

chi-squfLre distribution can be approximately com
puted by fL central one with a different parameter 
and different degrees of freedom . The IfLtter then 
can be read from Pem·son 's Table [1934] of incomplete 
gfLmma function l (v,p ) . By following the SfLllle 
Il O ta tio Il as ill (3 ) : 
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r 
I 

where 
Pr { ~Pi+P~<r }=I (v, p) 

2 

p=~-l, 
J.l2 

For convenience I (v,p) is plotted against v for 
various valu es of p in figure 9. At p = O, it is simply 
the Rayleigh dis tribution. 
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