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The main inference problems related to the Rayleigh distribution are the estimation of
its parameter and the test of the hypothesis that a given set of observations is from such a

distribution.

parameter is obtained using the sample mean power.
Methods are given to deal with such complications also.

are missing or are autocorrelated.

1. Introduction

In a previous paper [Siddiqui, 1962] some problems
of estimation and testing of hypotheses were dis-
cussed in connection with the Ravleigh distribution.
In the present survey article, for the sake of complete-
ness, some parts of the previous paper will be re-
peated. However, an attempt will be made to
condense the material already covered.

1.1. Notation

The function P will be used generically for any
distribution function and p for any density function.
Thus P(x) and P(y), in general, will not be the same
functions. If X is a random variable £X will
stand for the expected value of X and var X for the
variance of X. Thus

P =JEHX Ea),, 18X = f xdP (x)>

rar X=EX>—(EX)?,

and if P(z) is differentiable, P’ (x) =p(z).

2. General Properties of Rayleigh
Distributions

When an incoming plane wave (electromagnetic,
sound, or some other kind) passes through a scat-
tering medium, which at each instant of time may
be considered as a sample from an ensemble of media
with stable statistical characteristics, the outgoing

=
wave R=(R cos A, R sin A) may be thought of as
composed of many independent random wavelets

-

R, =(R; cos A, R;sin A)), 1=1,2, ..., n The

problem in its most generality will impose no re-
-

strictions on the distributions of ;. However, under
certain special circumstances, it may be reasonable
to assume the following:
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It is shown that (in case of radio signals) the most efficient estimate of the

Complications may arise when data

(1) Complete incoherence, which means that each
of A, is distributed umlmml_\ over the interval
(0, 2m).

(2) Inr/(»p(fm/(fn(’(f of phase and amplitude, i.e.,
R; and A; are ln(lvp(*n(l(*nt random variables.

(3) Absence of a dominant vector, defined by the
condition of the Central Limit Theorem [Cramdér,
1951, pp. 215-216, 185-186]. If the first two condi-
tions are satisfied, this third condition will be
satisfied if: (£ZPRHVP (EZR})™1? —0 as n—o.
Thus, in particular, if 2, have identical distributions
or if R;=r, a constant for all 7, then (3) is satisfied.

The condition (3) will not be satisfied if, say, a
dominant vector is present. Under such circum-
stances the Nakagami-Rice distribution applies
[Nakagami, 1940; Rice, 1944, and 1945].

If the above assumptions hold 2 cos A and R sin
A are asymptotically independent normal variates,
sach with mean zero and variance (1/2)¢°, where
?=KR2  The distribution of (£, A) is approxi-
mately given by

e~ dy f)m’ 0<r< o, 0<a<2m,
LT

: . 27
dP(r,a)==
o2

and 2 and A ave asymptotically independent. We,
therefore, consider a random variable 2, which has
the probability density and distribution function,
respectively

p(r)=2¢"2re I P(r)=1—e¢ "/ 0<r .

This distribution is known as the Rayleigh am-
plitude distribution. We immediately have p(0)=
p()=0, and p(r) has a unique maximum at the
mode r;=2""2¢=0.7070. 'The quantile function, r(p),
that is, the inverse function of () is given by

In (1—p)]'/% 0<p<1, (2.2)

r(p)=ol—
and gives the 100 p percentile, r(p), of the distribu-
tion (2.1). Thus if [—In (l—p)J”" is plotted hori-
zontally against »(p) vertically we obtain a straight
line through the origin with slope ¢. The values
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of 7(p)/o are given in table 1 column 2, in particular ,
the median

r(0.5) = (In 2)!2=0.8320.

@ P
ER*—2,-? f P 1P dr— g T (14-/2).  (2.3)

The mean, R, and the variance, var R, are
ER=(1)2)1"26=0.866¢, var R=(1—7/4)¢>=0.21460>

Note that R >r(0.5) >r,, which indicates that the
right-hand tail of the probability density function is
much longer than the left-hand one (positive-skew-
ness).

Set Z=R? y=¢> If R is identified as the ampli-
tude of a wave, then 7 is its power and y=/£7 the
mean power. The probability density and dis-
tribution functions of Z are, respectively,

PE=1"1e=, P()=1—¢~*",0< < .

(2.4)

This distribution is known as Rayleigh power distri-

bution or exponential distribution. The density func-

tion has its maximum at z=0 and decreases mono-

tonically to zero as z increases to infinity. If z(p)
is the quantile function, then z(p)=1r*(p), i.e.,

z(p)=—vIn 1—p),0<p<1. (2.5)
If —In (1—p) is plotted horizontally against z(p)
vertically we obtain a straight line through the

origin with slope v. The values of z(p)/y are given
in table 1 column 3. If k>—1

E(Z)y)= ﬁ " te—ida=T(k-+1). 2.6)

.

Thus EZ=v, var Z=+’ Differentiating (2.6) j
times with respect to &£ and then setting k=0, we
obtain

E[ln @h))= fm(ln e dz=TD(), j=0.1, . .. .
J 0O

Thus

E(ln Z)=Iny-+¢(1)=In y—0.577

var (In Z)=y' (1) =72/6=1.64493,
where y(2) =1"(x)/T'(x). It is customary to measure
power in decibels. Thus, writing Q=10 log,
Z=20 log,, R, we have
EQ= (10 log,¢) E(1n Z)=4.343 (1In y—0.577)

var Q= (10 loge)? var (In Z)=231.0 (2.7)

We note that the variance and also other central
moments of () are independent of the parameter vy
This is not unexpected since the distribution of
(Z]v), hence that of 1n Z— 1ny, is free of parameters.

The quantile function, ¢(p), of Q is easily evaluated
without explicitly writing down the distribution
function of . In fact, the events “0Q< ¢(p)”’ and
“7Z<z(P)” have the same probability if ¢(p)=10
log,o 2(p).

Thus
q(p) =10 log,cy+ 10 log(z(p) /7).

Hence ¢(p)—q(0.5) is free of the parameter y. This
quantity, which measures the distance offthe 100
p percentile from the median, is tabulated’in table
1 column 4.

TaBLe 1. Percentiles of R, Z, and Q

(1) (2) (3) 4)
100 p r(p)le 2(p)/Ir q(p)—q(0.5)
0.1 0. 0316 0. 00100 -28.4
1 100 . 0101 -18.4
5 .227 . 0613 -11.3
10 .324 .105 -8.18
25 . 637 . 288 -3.82
50 . 832 . 693 0. 00
75 1.18 1.39 3.01
90 1.52 2.30 5.21
95 1.73 3.00 6.36
99 2.14 4.61 8.22
99.9 2.63 6.91 9.98

A comparison of (2.4) with (2.1), or (2.5) with
(2.2) indicates that the properties of the Rayleigh
power distribution are much neater and better
suited for statistical estimation and for testing of
statistical hypotheses. In fact, if we even start
with (2.1), we find that the maximum likelihood
(also the unbiased sufficient) estimator of ¢* from
random sample R, . Ry 1s N7! SVRI—=N!
V7., which is readily understood as (sample)
“mean power”” rather than “mean of amplitude
square.” Similarly, the reparametrization, with v
replacing ¢, simplifies our estimates. From here
onwards, therefore, we will mainly study the Rayleigh
power distribution as given in (2.4).

3. Estimation
3.1. Estimation From a Random Sample

The only essential parameter to be estimated in a
Rayleigh power distribution is the mean .  All other
characteristics of the distribution such as the distri-
bution function, momemts and percentiles are func-
tions of . Let Z,, .. . Zy denote a complete
sample of N independent observations from the dis-
tribution. The likelihood function (the joint prob-
ability density of Z,, . . ., Zy considered as a
function of v) is given by

Lv)=v=" exp (—=ZZ:}).

This shows that X7, a sufficient statistic for -
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Since EXZ,=N7, the unbiased ‘sufficient (also the
maximum likelihood) estimator of vy is the sample
mean,

(3.1)

The variance of ¢ is, of course, var e=v*/N, and if ¢’
is any other wunbiased estimator of +y then
var c< var ¢’. Since 27,/y is a x* variate with 2 deg
of freedom and Z,, . . ., Zy are independent,

C:N_IEZi;

2Ne/y=22 7]y
is a x? variate with 2N deg of freedom. Thus
X=Nec/y (3-2)
has the distribution
dP(x)=[T(N)]~

le=%aNdx, 0< <™, (3.3)

from which the distribution of ¢ is easily derived by
substitution from (3.2). We note that if t >—N

EX‘=[T(N)]- fo 4+ -1p -2y —T (t+N)/T'(N).
(3.4)

Since ¢ is the sufficient statistic for the family of
Rayleigh distributions { P(z): 0<y< }, all other
characteristics of the distribution should be estimated
in terms of ¢. For example

A
Pe)=1—g 2, 0<2< o, (3.5)
is the maximum likelihood estimator of (z) and
Zp=—cln(l—p), 0<p<w,  (3.6)

that of z(p). In general, if a function f(y) has an
unbiased estimator, it also has an unbiased estimator
based on the sufficient statistic ¢, and this estimator
is the most efficient estimator of f(y). Also let A(x)
be a function which in some neighborhood of the
point z=+ is continuous and has continuous deriva-
tives of the first and second order. Then, if
[h(x)|<eX* for all >0 where K is some constant
independent of z, it can be shown that, for suffi-
ciently large NV,

Eh(e)=h()+OWN )

var h(c) =N""v2h"*(y) +O (N 37). (3.7)

For example if we wish to estlmate the mean
amplitude ER=(rv)"?/2, we consider m= (w¢)"?/2
and from (3.7)

Em=(rv)"%/2+ 0N ), var m =Zo+ON ).

However, in this case, exact evaluations of [e!/?

and var ¢V? are possible. In fact, from (3.2) and

(3.3)
: 1/2
Ee‘”z%’ylﬂ, var 01/2:[1_————P1i7]\p7;{€]\/) ) v

Thus an unbiased estimate of £R and its variance
are
(wN)'*T'(N)
*__ e,
ST (N T1/2) var m*

o NT?(N)
(ww’mﬁ)
(3.8)

For small N these exact expressions can be used.

For large N,

12 <1+$f () 2+ ON ),
+O(N?),

var m* I(N

which is an improvement over the biased estimate

m.  On the other hand, let R=N-'2VR,, then
ER=ER,
= 44—
var If——w’y

Thus the relative asymptotic efficiency, e(R2), of I is

s m*
var R

*4_(74"—7)40 91,

i.e., the sample mean R is a less efficient o%lnmtor
of the population mean KR than the estimator m*
based on the sufficient statistic c.

If the measurements are in decibels, that is, if our
sample consists of ;=10 log, Z;, 141, 2
then we note from (2.7) that an estimation of 1’(},
which involves In v, is required. We can directly
evaluate Z(In ¢) and var (In ¢) by differentiating
(3.4) once and twice with respect to ! and then
setting t=0. We note that

E(ln X)'=T% (N)/T(V), j=1,2, . . .,
YN =T" (V)T V) =y )+
VD=3 ()~
Thus, since In ¢=In X+In y—In N,
E (1n ) =In y—In N+ 9(N) =In -+ O(N)

"(N).

the unbiased estimator of FQ

var (In ¢)=var (In X)=y¢

Thus, to order N7,
based on ¢ 1s

Q*=4.343 (In ¢—0.577), var Q*=(4.343)%y' (N). (3.9)
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On the other hand, if Q=N"'2Q,, EQ=EQ and

(4. 34‘31r)2

var Q-—~ 6N

Thus the efficiency eN((?j of Q relative to Q* is

n@=TE 0 5% @
For N=1, ex(Q)=1, otherwise ey(Q)< 1. Using
the Euler-Maclaurin formula
> - ﬁ"'ﬂwdx-l/z[ﬂk) —/(0)]
15 /P )=/ (0)]— (3.10)
to sum the series in EN(@ we obtain, for large

N(=10),

Thus the efficiency of  is approximately 61 per-
cent.

We have thus established the fact that when a
complete random sample is available, one should
invariably use estimates of population character-
istics using appropriate functions of the sufficient
statistic ¢. The use of the other estimators men-
tioned above involves considerable loss of efficiency.

3.2. Confidence Limits

We noted that 2Ne/y is a x* variate with 2N deg
of freedom. To set up confidence limits on y with
a confidence coefficient 1—a we determine from x?
tables two numbers a¢ and b, corresponding to 2N
deg of freedom, such that

Pr(x*<a)=¢/2, Pr(x*’<b)=1—a/2.
Then a<2Ne/y<b has probability 1 —« and

2Ne/b<v<2Ne/a (3.11)
are the desired confidence limits. If A is a monotone
function from (0, =), then A(2Ne/b) and h(2Ne/a)
will be 100(1—«) percent confidence limits for i(y).
Thus, for example, £ and P(z) are monotone funec-
tions of v, and confidence limits for them can be
easily written down.

If N>15, 2= (4Ne/y)"*—
mately a standard normal variate [Cramér,
p. 251].  If z, 1s the number such that

(4N—1)"* is approxi-
1951,

z
_ U
(2m) 1’/2f Sk de=1—aq,

'T(l

then 4Ne[(AN—1)"*+2,]72 are 100(1—«) percent

confidence limits for yv. If N>100, these limits are
approximately N'/%¢(N'?+z,)~%

3.3. Estimation From Order Statistics
An estimate of v can be made with reasonably high

efficiency from a few order statistics. lLet Z;, . . .,
Zy denote, as before, a sample of N independent

observations on Z and let Y~ Y.< ... <Yy be
thell ordered values, e.g., Y1 min (Zy, . . ., Zx),

y=max (Z;, . . ., ZN).
functmn of Y} is given by

The probability dGIlSltV

N! B
k+DyAlt—exp (—ymF,  0<y<e.
The moment generating function of Y7 is
© k
(W)= | e"p()dy= 0 (N—k+5)(N—k+j+yu)~.
=

From @, (1) we easily evaluate, with a;=(N—1-++1) 71

k k
B =D Gy Var Y=y 2 DR 7. (3.12)
i=1 i=1

Using the Euler-Maclaurin formula (3.10) to approxi-
mate these summations, I have shown elsewhere
[Siddiqui, 1963] that the optimum unbiased estimator
from a single order statistic corresponds to

k=~0.79681(N+1)—0.39841+1.16312(N+1)"!

(3.13)

where the value of 4 thus obtained is rounded off to
the nearest integer. For this k,

k
=Y,/ > a,220.6275Y ; (3.14)
i

is an unbiased estimator of v with efficiency

var ¢

enle)=1gre 065 +OWN™)

Comparing the efficiencies ey(c;) and ey(Q), we
notice that even a single order statistic, properly
chosen, is more efficient than the mean of all the
decibel values for estimating the parameter of a
Rayleigh distribution. It may also be noted that
the efficiency of the estimator based on the median,
i.e., the order statistic corresponding to k=>~(1/2)
(N-1), is only 48 percent.

The asymptotically (N-—>w) optimum unbiased
estimator of y from two order statistics is given by

¢2=0.523Y,,4+0.179Y,, m=~0.639(N-+1),

n~0.927(N+1), (3.15)

with asymptotic efficiency e¢(c;)=0.82. Sarhan,
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Greenberg, and Ogawa [1963] have given asymptoti-
cally optimum unbiased estimators of v from 1 to 15
order statistics. A linear combination of as few as
five properly chosen order statistics provides an
estimator of ¥ whose efficiency exceeds 94 percent.

A big advantage of the estimators based on order
statistics is that only a partial knowledge of the
sample is required. They are especially good when
low values of the sample are poorly recorded, not
recorded or missing. Let us say that the lowest 60
percent of the sample is missing. We can still
construet the estimators ¢; and ¢, although the
sample mean (even median) can not be determined.
The optimum estimators from more than one order
statistic cannot be constructed if, say the highest
8 percent or more values in the sample are missing.
If only the highest values are missing so that we are
left with Y, ..., Y, m<N, the most efficient
unbiased estimator of v from these order statistics is

Cm=— ’n¥1 [i 1’1‘1— (]\(T_ //l) )—'m (3 1 (i)
1

and has efficiency e(c,)=m/N. In fact, 2me,/y is a
x* variate [hpsl('m and Sobel 1954| with 2m deg of
freedom. Confidence limits based on ¢, can be
constructed in exactly the same way as with e.

3.4. Estimation From Correlated Observations

In this section we consider Z=Z7(t) to be a station-
ary Rayleigh process and assume that for all ¢ and s

EZ(t) =y, EZ(t) Z(t+5)=v*(1+a(s)),

so that a(s) is the correlation fun( tion of the process.
Notethata(0)=1, a(—s)=als). Let Z(t) be observed
over aninterval ()f time 0<t<7. From the analogy
of the random sample estimate, we use the sample
mean

(3.17)

4
(,-7:1’—1[ Z(t)dt (3.18)
J0

to estimate v. ¢, 1s unbiased and has variance

.
var c,=2y*T"! f (1—5/T) a(s)ds. (3.19)
0

We note that if we choose to take a discrete set of
equally spaced observations Z(h), Z(2h),
Z(Nh), then the mean, ¢y, will have the variance

v "7‘ el f
var ey=1420 > < N) a(sh).  (3.20)
The exact distribution of ¢, or ey 1s unknown.  How-
ever, let N’ be defined by the equation
var c=v*/N’,i.e., N'=v’/varc, (3.21)

where var ¢ is either (3.19) or (3.20). Then 2N’¢,/y
or 2N’ex/y 1s approximately a x? type variate with
2N’ deg of freedom.

Generally, the correlation function a(s) will be
unknown and will have to be estimated from the
sample. Let

Cl)=(T—s)" ﬁ " 20 2 +s)dt.

Then
a(s)=C(s)/cz—1

is a consistent estimator of a(s). Usually, it is
desirable to fit to a(s) some mathematically specified
function such as exp (—uls|), exp (—pus?), w(u+s?) L
Before choosing an approximating function, however,
a more careful investigation of a(s) near s=0 is
necessary. For example, if we take exp (—pls|) to
represent a(s) then, since this function is not differ-
entiable at s=0, we will be compelled to conclude
that the process Z(#) is not differentiable, and this
may not be a very desirable state of affairs.

For the sake of simplicity we take the unit of time
such that T'=1. Let

7/L:Z<F]\;>—Z<If;];)’ v=1,2 ..

.y L\T’

where N is given different values, say, 25, 50, 100,
ete.  We calculate

N
Sy=23Yi¥i-1,and NSy.
T

It can be shown that

phm Sy=v}a’ (—0)—a’ (+0)]

N>

where o' (—0) is the left-hand and o' (-+0) is t]le
richt-hand derivative of a(s) at s=0. If «a(s)
differentiable at zero then thl\ limit is zero, ()tll(‘l—
wise not equal to zero. Thus the behavior of Sy as
N increases will tell us whether «a(s) is differentiable
at s=0 or not. Now supposing «(s) is twice differ-
entiable at s=0 with «’/(0)#0, we must have

plim Sy=0, plim NSy=—+%""(0).

We already know, in this case, that o’(0)=0. If
exp (—us’ ) seems to represent a(s) then an estimate
of u1s obtained as m=NSy/(2¢%).

4. Tests of Statistical Hypotheses

4.1. Tests for the Distribution Function

Let Z,, ..., Zy denote independent observations
on a nonnegative variate Z. We wish to test the
statistical hypothesis that Z has Rayleigh power
distribution.  We employ the x* goodness- of-fit
test for this purpose.  We iirst cale 11L1te c=N13YZ,
then the numbers z,=—c In (1—p,), p,=i/m, i—=1,
2, ...,m—1, where m>5. From (3.6) we see that
z; are 100p,; percentiles of the Rayleigch power distri-
bution with y=e¢. The expected number of observa-
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tions in each of the intervals (0, zy), (2, z,), ...
(X1, ©) 18 N/m. Let fi, ... f, be the number of
observed 7 s falling in these intervals. The statistic

(fi=N/m)* _

=St e = DN @)

is asymptotically a x* variate with m—2 deg of
freedom under the hypothesis that 7 is a Rm’leloh
variate.  We preassign some critical pl()bdblhty
level a(=0.05 or 0.01, say) and from x* tables de-
termine the number x& such that Pr(x*> xi) =«a.
If the observed x*<xa, we accept the hypothesis
that Z is a Rayleigh variate, otherwise we reject it.

If the sample is truncated at one or both ends, we
use order statistics to estimate v and proceed as above
changing the first and last intervals, if necessary, to
read (0, ) and (y, ) where z is a number slightly
less than the lowest recorded observation and ¥ is a
number slightly greater than the highest recorded
observation. The expected number of observations
in (0, z) is N(1—e*°) and in (y, =) is Ne7?/°. We
calculate

Xz____z (fo;;fe)z

where fo=observed, f.=expected frequency.

In case of correlated observations it is necessary to
multiply the value of x* thus obtained by N’//N
where N’/ is the equivalent number of independent

Thus xi=(N'’//N)= (fo—fe)” should

be considered as an approximate x* \'armte with m—2
degrees of freedom. 1t is difficult to determine N'’.
However, if a(s) is the correlation function of Z(¢)
process and the sample consists of Z(h), , Z(Nh),

observations.

v 35 e | [1reSeein |

j=—
appears to be a reasonably good approximation to

ZV///N

4.2. Comparison of Two Samples

Sometimes we wish to test the hypothesis that
two independent samples, which are known to be
from Rayleigh power distributions, are from the

same distributions. ILet ¢; and ¢, be the means of the
samples of sizes N, and N. from Rayleigh distribu-
tions with means v, and v, respectively. Then,
under the hypothesis v,=v,,
F(2AT1, 2&7\/72) :Cl/C_.-

is a Fisher-Snedecor /' variate with the indicated
degrees of freedom. We assume that ¢;>¢,; if not
we simply invert the ratio and 1ntelch¢1noe the
degrees of freedom, preassign a significance Tevel a
and test for the sigmificance of the calculated F by
comparing it with the upper 100a/2 percentage
point of the F distribution. If the observations in
each sample are autocorrelated, we modify the
degrees of freedom from N to N’ according to (3.21).
If the F-test indicates acceptance of the hypothesis
vi=v:=v, the common mean, v, is estimated by

c— ]\Y—l (Z\/Tlcl ‘+‘ ATQC 2) y2\7: A‘TI +]\/Y~3.
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