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The main inference problems related to t he Rayleigh distribution a re the es t imatiop of 
its parameter a nd the t est of t he hypothesis that a given set of observation s is from such a 
distr ibution . It is shown that (in case of radio signals) t he most effieient es timate of the 
parameter is obtain ed using t he sample mean power. Complications may a rise wh en data 
are missin g or a re a utocorrelated. Methods are given to deal wit h such complicat io ns a lso. 

I. Introduction 

In a preyious paper [Siddiqui, 19621 some problems 
of estimation and testin g of hypotheses were dis­
cussed in co nnection with t he Rayle igh d is t ribution. 
In the present survey article, for the sake of complete­
ness, so me parts or the previous paper will be re­
peated. Howe, -er , an attempt will be made to 
conden se the material already co \rered . 

1.1. Nota tion 

The function P will be llsed generi cally for any 
distribution function and J) for any den sity Junction. 
Th118 P(x) and P(y), in genernl , will not be the sam e 
functions. If X is ft rftndom vftriftble EX will 
stand for the expected value of X find yur X for the 
yariance~of X. Thus 

P(x) = Pr(X::; x) , EX= .L"'"" xdP(x) , 

and if P(x) is differentiable, P'(x)=p(x) . 

2 . General Properties of Rayleigh 
Distributions 

'iVhen an incoming plane wave (electromagnetic, 
sound, or some other kind) passes through a scat­
tering medium, which at each instant of time may 
be considered as a sample from an ensemble of media 
with stable statistical characteristics, the outgoing ...., 
wave R = (R cos A , R sin A) may be thought of as 
composed of many independent random wavelets ...., 
R i= (Ri cos A i, R i sin A i), i = l, 2, ... ,n. The 
problem in its most generali ty will impose no re-...., 
strictions on t he distributions of R i . However, under 
certain special circumstances, it may be reasonable 
to assume the following: 

I Now at Colorado State U ni versi ty, F ort Collins, Colo. 

(1 ) Com])lete incoherence, whi ch means that each 
of A t is dist ri buted uniformly o,-er t he interval 
(0, 27r). 

(2) Independence of phase and amplitude, i. e., 
R i and A i are independent random Yclri ables. 

(3) lbsence of a dominant vector, defined by the 
condition of t he Central Limit Theorem [Cramer, 
195 1, pp . 215- 216, 185- ] 86]. If t he ?Lrst two con di­
tions f),re satisfied , this th ird co ndi t ion will be 
sftti ::1ed if: (E'Z:~RDII3 (E'Z: l tD - 1I2 0 as n -HXJ . 

Thus, in particuhr, if R i have identical dis tributions 
or if Ri= r, a cons tant for all i, t hen (3) is satisfied . 

The cond itio n (3) will not be satis:fied if , say, a 
domi nant \'ector is prese nt. Under Sll Ch circum­
s tances the .t\akagam i-Rice dis t ribu tion applies 
[Nakagami , 1940; R ice, 1944, tllld 19451. . 

If tho ftbo "e assu mptions hold R cos A and H sm 
A are asymptotically independent nor mal vari ates, 
each wi th men.1l zero and \'urian co (] /2) <T2, where 
<T2= ER2. The d is tribution of (H, 1) is approxi­
mately given by 

and R and A a re asymptotically independent. We, 
t herefore, consider a l"n.ndom "ariable H, which has 
the probability density a nd distribution function , 
respecti vely 

_ _ 2 / 2 () _ 2 / 2 < p(r) = 2<T 2re r U ,P r = l -e r U ,O::;r 00. 

This distribution is known as the Rayleigh am­
plitude distrib ution. We immediately ha"e p (O)= 
p(oo) = O, and per) has a unique mftximum at the 
mode ro= 2-!l2CT = 0.707CT. The qHantilefnnct ion, rep), 
that is, the inverse function of P er) is given by 

r(p) = <T[ - ln (l - p)JI j2, O::; p< l , (2.2) 

and gives the 100 p percentile, rep), of the distribu­
tion (2.1). Thus if [- In (1_ p )]112 is plotted hori­
zontally against rep) vertically we obtain a straight 
line through the origin with slope CT. The values 
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of r(p) /u are given in table 1 column 2, in particular, 
the median 

1' (0.5) = u(ln 2) 1/2=0.832u. 

For k> - 2 

(2.3) 

The mean, EE, and the variance, varR, are 

ER = (l j2)7l'1 !2u= 0.866u, val' R = (1-7l'j4)u2= 0.2146u2 • 

Note that ER> r(0.5) > 1'0 , which indicates that the 
right-hand tail of the probabili ty density function is 
much longer than the left-hand one (positi ve-skew­
ness) . 

Set Z = R2, y = u2. If R is identified as the ampli­
tude of a wa\re, then Z is its power and 'Y = EZ the 
mean power. The probability density and dis­
tribution functions of Z are , respectively, 

(2.4) 

This distribution is known as Rayleigh power distri­
bution or exponential distribution. The density func­
tion has its maximum at z = O and decreases mono­
tonically to zero as z increases to in:fi.nity. If z(p) 
is the quantile function, then z(p) = r2(p), i.e. , 

z (p)= - 'Y In (l - p) , O~p< 1. (2.5 ) 

If - In (l - p) is plotted horizontally against z(p ) 
vertically we obtain a s traight line through the 
origin with slope 'Y. The values of z(p)jy are given 
in table 1 column 3. If k > - 1 

Thus EZ= 'Y, val' Z = 'Y2. Differentiating (2.6) j 
times with respect to k and then setting k = O, we 
obtain 

E [In (Zh) ]i= 100 (1n z)je-'dz= r U )(I ), j = O, 1, ... 

Thus 

E (In Z) = In 'Y + '" (1) = In 'Y - 0.577 

val' (In Z) = "" (1) = 7l' 2/6= 1.64493, 

where ", (x) = r' (x) jr(x). It is customary to measure 
power in decibels. Thus, writing Q= 10 loglo 
Z = 20 10glO R , we have 

We note that the variance and also other central 
moments of Q are independent of the parameter 'Y 
This is not unexpected since the distribution of 
(Zjy), hence that of In Z- 1n'Y, isfreeofparameters. 

The quan tile function, q(p ), of Q is easily evaluated 
without explicitly writing down t he distribution 
function of Q. In fact, t he events " Q~ q(p )" and 
"Z~ z(p)" have the same probability if q(p)= 10 
10glO z(p) . 

Thus 
q(p) = 10 10g lO'Y + 10 10glO( z(p ) h ). 

Hence q(p) -q(0.5) is free of the parameter 'Y. This 
quantity, which measures the distance of1the 100 
p percentile from the median, is tabulated~in table 
1 column 4. 

T A BLE 1. P ercentiles of R, Z, and Q 

(I ) (2) (3) (4) 
100 P r(p )/" 2(p )/r q(p ) - q(0.5) 
----~ 

0.1 0.0316 0.00100 - 28.4 
I . 100 . OJOI - 18. 4 
5 . 227 . 0513 - II. 3 

10 . 324 .105 - 8.18 
25 . 537 .288 - 3. 82 
50 . 832 .693 0.00 
75 1.18 1. 39 3.01 
gO 1. 52 2.30 5. 21 
95 1.73 3.00 6.36 
99 2.14 4.61 8. 22 
99.9 2. 63 6.91 9.98 

A comparison of (2.4) with (2.1), or (2.5) with 
(2 .2) indicates that the properties of the Rayleigh 
power distribution are much neater and better 
suited for statistical estimation and for testing of 
statistical hypotheses. In fact, if we even start 
with (2. 1), we find that the maximum likelihood 
(also the unbiased sufficient) estimator of u2 from 
random sample R l, ... , EN is N - l J:,~Ri = N-l 
J:,~ Z i , which is readily understood as (sample) 
"mean power" rather than "mean of ampli tude 
square." Similarly, the l'eparametrization , with 'Y 
replacing u2, simplifies our estimates. From here 
onwards, therefore, we will mainly study the Rayleigh 
power distribution as given in (2.4) . 

3. Estimation 

3.1. Estimation From a Random Sample 

The only essential parameter to be estimated in a 
Rayleigh power distribution is the mean 'Y. All other 
char acteristics of the distribution such as the distri­
bution function, momemts and percentiles are func­
tions of 'Y. Let ZI , . .. , ZN denote a complete 
sample of N independent observations from the dis­
tribu tion. The likelihood fun ction (the joint prob­
abili ty density of Zl, . .. , Z,v considered as a 
function of 'Y) is given by 

EQ= (10 10glOe) E(ln Z) = 4.343 (In 'Y-0.577) 

val' Q= (10 10gloe)2 val' (In Z) =,3l.0 (2.7) This shows that J:,Z i a sufficient statistic for 'Y' 
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Since E'Z,Zi=Ny, the unbiased 'sufficien t (also the 
maximum likelihood) estimator of I' is the sample 
mean, 

(3. 1) 

The variance of c is , of course, val' c= I'z/N, and if c' 
is any other unbiased estimator of I' then 
val' c<var c' . Since 2Z dl' is a XZ variate with 2 deg 
of freedom and Z1, ... , ZN are independent, 

is a XZ variate with 2N deg of freedom. Thus 

X = Nch (3 .2) 

has the distribution 

(3.3) 

from which the distribution of c is easily deri Ired by 
substitution from (3.2). We note that if t>-N 

EX' = [r (N) ]-11'" xI+N- 1e-xdx= r(t + N) /r (N). 

(3.4) 

Since c is the sufficient statistic for the family of 
Rayleigh distributions { P(z) : 0::;: 1'< co}, all other 
characteristics of the distribution should be estimated 
i.n terms of c. For exampJe 

(3.5) 

is the maximum likelihood estimator of P(z) and 

~(p) =-c In (l - p), o::;:p< co, (3 .6) 

that of z(p). In general , if a function }(I') has an 
unbiased estim ator, it also has an unbiased estimator 
based on the suffi cient statistic c, and th is estimator 
is the most efficient estimator of}(I'). Also let hex) 
be a function which in some neighborhood of the 
point X= I' is continuous and has con tinuous deri Ira­
tives of the first and second order. Then, if 
Ih(x) l<eKX for all x2': 0 where K is some constant 
independent of x, it can be shown that, for suffi­
ciently large N, 

(3. 7) 

For exampJe if we wish to estimate the mean 
amplitude ER= (7rl')1 IZ/2, we consider m = (7rc) 1/2/2 
and from (3.7) 

and val' c1l 2 are possible. In fact, from (3 .2) and 
(3.3) 

E l /2 f (N + 1/2) l /2 1/2_ [1 fZ(N + 1/2)J 
1 C N l/2r (N) I' ,val' c - Nf2(N) 1'. 

Thus an unbiased estimate of ER and its variance 
are 

*_ (7rN) 1/2f (N) 1/ 2 • *_~( Nr2(N) 
m - 2f(N + 1/2) c ,Val m - 2 f 2(N + 1/2) ~ )1" 

(3.8) 

For small N these exact expreSSlOns can be used. 
For large N, 

m*= 1/2 (1 +8~) (7rc)l /2+0(N- 2), 
val' m*=·~+O(N-Z) 

16N ' 

which is an improvement over the biased estimate 
m. On the other hand, let R = N - I 'Z,fR i, then 
ER= ER, 

,.... 4- 7r 
val' R = 4N "(. 

Thus the r elati ve asymp totic efficiency, e(R), of 11, is 

e(R )= "arm* 7r 091 
varR 4 (4- 7r) ., 

i. e., the sample mean 11, is a less efficient estimator 
of the population mean ER than the estimator m * 
based on the suffi cien t statistic c. 

If the measurements are in decibels, that is, if our 
sample consists of Qi= 10 10glO Z i, i = .l , 2, ... '. ,N, 
then we note from (2. 7) that an estImatIOn of EQ, 
which involves In 1', is required. "Ve can directly 
evaluate E(In c) and var (In c) by differentiating 
(3.4) once and twice wi tIL respect to : and then 
setting t= O. We note that 

E(ln X) J= f (J) (N) /f (N) , j = l , 2, ... , 

N - l 
1/; (N)=r' (N) / f (N) = 1/; (1)+ L, 1'-1, 

r = 1 

Thus, since In c= ln X + ln I' - ln N, 

E (In c) = ln I' - ln N + 1/; (N) = ln I' + O (N- I ) 

var (In c) = var (In X) = 1/;' (N). 

Thus, to order N - I, the unbiased estimator of EQ 
based on cis 

However, III this case, exact evaluations of Ec1lZ Q* = 4.343 (In c- O.577), val' Q*= (4.343)21/;' (N). (3.9) 
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On the other hand, if Q=N-1 ~Qi' EQ=EQ and 

-Q (4.3437r) 2 

val' 6N' 

Thus the efficiency eN(Q) of Q relative to Q* is 

For N = I, eN(Q)= I, otherwise eN(Q) < l. Using 
the Euler-Maclaurin formula 

~j(r) = ( kj (x)dx-I /2[j(k)-j(0)] 
r-O ) 0 

confidence limits for "(. If N?,IOO, these limi ts are 
approximately Nl /2c(Nl/2±Xa)-1. 

3 .3. Estimation From Order Statistics 

An estimate of"( can be made wi th reaso nably high 
efficiency from a few order statistics. Let Z1, .. . , 
ZN denote , as before, a sample of N independent 
observations on Z and let Y 1::; Y~ ::; ... ::; Y N be 
their ordered values, e.g., Y1 =min (ZI' ... , ZN), 
YN = max (ZI' ... , ZN)' The probability density 
fun ction of Yk is given by 

p(y) 
N! 

(k- l ) l (N - k ) !"( exp [- (N-

lc+ l )y/'Y][ I -exp (_y/'Y))k-I, 

+1~ [Pl) (k)-fl) (0)]- ... (3 .10) The moment generating function of Y k is 

to sum the series in eN(Q) we obtain , for large 
N(?10), 

Thus the efficiency of Q is approximately 61 per­
cen t. 

We have thus established the fact that when a 
complete random sample is available, one should 
invariably use estimates of population chara('ter­
istics using appropriate functions of the sufficient 
statistic c. The use of the other estimator s men­
tioned above involves considerable loss of efficiency. 

3.2. Confidence Limits 

We noted that 2Nc/'Y is a x2 variate with 2N deg 
of freedom. To set up con:6.dence limits on 'Y with 
a confidence coefficient 1- a we determine from x2 

tables two numbers a and b, corresponding to 2N 
deg of freedom, such that 

Then a::; 2Nch::; b has probability 1 - a and 

(3.11 ) 

are the desired confidence limi ts. If h is a monotone 
function from (0, 00), then h(2Nc/b) and h(2Nc /a) 
will be 100 (1 - a) percen t confidence limi ts [or h ('Y) . 
Thus, for example, EQ and P(z) are monoton e func­
tions of ,,(, and confidence limits for them can be 
easily written down. 

If N?, 15 , x= (4Nc/'Y)1 /2- (4N- l )I /2 is approxi­
mately a standard normal variate [Cramer, 1951 , 
p. 251]. If Xa is the number such that 

From <I\(u) we easily evaluate, with ai = (N-i+ I) - I, 

(3. 12) 

Using the Euler-Maclamin formula (3. 10) to approxi­
mate these summations, I have shown elsewhere 
[Siddiqui, 1963] that the optimum unbiased estimator 
from a single order statistic corresponds to 

k~0.7968 1 (N + 1) - 0.39841 + 1.16312(N + 1)- 1 
(3. 13) 

where the yalue of k thus obtained is rounded off to 
the nearest integer. For this k, 

k 

cI = Y k/22 ai ~0.6275Yk 
1 

is an unbiased estimator of 'Y with efficiency 

(3. 14) 

Comparing the efficiencies CN (CI ) and eN( Q), we 
notice that even a single order statistic, properly 
chosen, is more efficient than the mean of all the 
decibel values for estimating the parameter of a 
R ayleigh distribution. It may also be noted that. 
the efficiency of the estimator based on the median. 
i.e., the order statistic corresponding to k~ (J /2) 
(N+ l ), is only 48 percent. 

The asymptotically (N----'7 oo) optimum unbiased 
estimator of "( from two order statistics is given by 

c2 = 0.523Ym+ 0.179Yn , m~0.639(N+ 1), 

n~0.927(N+ 1 ), (3 .1 5) 

then 4Nc[(4N-I)I/2 :l: xa] - 2 are 100(1 -0') percent with asymptotic efficiency e(c2) = 0.82. Sarhan, 
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Greenberg, and Ogawa [1963] have gi ven asymptoti­
cally optimum unbiased estimators of ')' from 1 to 15 
order statistics. A linear combination of as few as 
fi ITe properly chosen order sta tistics provides an 
estimator of')' whose efficiency exceeds 94 p er cent. 

A big ad ITan tage of the es ti mators based on order 
statistics is that only a p ar tial knowledge of the 
sample is required. They are especially good when 
low values of the sample are poorly recorded, not 
recorded or missing. L et us say t hat the lowest 60 
percent of the sample is missing. ' Ve can still 
construct the estimators CI and C2, although the 
sample mean (even median) can not be determined. 
The optimum estimators from more than one order 
statistic cannot be co nstructed if , say the highest 
8 per ce nt or more values in the sample are missing. 
If only the highest values are missing so that we are 
left with Y1, ... , Y m , m~N, the most effi cient 
unbiased estimator of ')' fr om these order statistics is 

(3 .16) 

and has efficiency e(cm) = m /N. In fact, 2mcmh is a 
x2 variate [Epstein and Sobel 19541 with 2m deg of 
freedom.. Confidence limi ts b ased on Cm can be 
constructed in exactly the same way as with c. 

3.4. Estimation From Correlated Observations 

In tbis section we co nsider Z = Z(t) to be a sta tion­
ary Rayleigh process and assum e that for all t a nd s 

E Z (t )= ')', E Z (t) Z (t + s) = ')'2( I + a(s), (3 .17) 

so that a(s) is the correlation function of t he process. 
Note th ata(O) = I , a( -s) = a(s). Let Z(t) be observed 
o ITer an in ter val of time O ~ t ~ T. From the a nalogy 
of the random sample estim ate, we use the sample 
mean 

cT = T - I C Z (t )clt 
•• 0 

(3 .18) 

to estimate ')'. CT is unbiased and has I'ar iance 

(3. 19) 

We note that if we choose to take a discrete set of 
equ ally spaced observations Z(h), Z(2h), .. . , 
Z (Nh), then the mean, CN, will have the I'ari a nce 

')'2 2')'2 N- l ( S ) 
val' CN= N+ N ~ I - N a(sh). 

The exact distribution of CT or CN is unknown. 
ever , le t N' be defined by the equation 

var c= ')'2/N', i.e., N' = ,),2/var C, 

(3.20) 

How-

(3 .21 ) 

where var C is either (3 .] 9) or (3 .20) . Then 2N'c°l'h 
or 2N' CNi'Y is approximately a x2 type variate with 
2N' deg of freedom. 

--_._--

Generally , the correllction function a (s) will be 
unknown and will h ave to be estimated from the 
sample. Let 

Then 

C(s) = (T -s) - I i T
-

S Z(t)Z(t +s)clt. 

a(s) =C(s) /c~- l 

is a consistent estima tor of a(s). Usually, it is 
desirable to fit to a(s) some ma t hemati cally specified 
function such as exp (- ,u lsl), exp (- ,us"), ,u(,u+S2)- ]. 
Before choosin g an approximating fun ction , howeyer , 
a more carehJ in vestigation of a(s) near s= O is 
necessary. For example, if we take exp (-,u lsl) to 
represent a(s) then, sin ce this f unction is Ilo t differ­
entiable ftt s= O, we will be co mpelled to co nclude 
that the process Z(t ) is n ot difrerentiabIe, a nd this 
may not be a I'ery desirable sta te of ,tfLtirs . 

For the sake of sim pli city we Lake the uni t of ti me 
such t lliLt T = I . Let 

i = l, 2, ... , N, 

wh ere N is gi I'en different I"<tlues, say, 25, 50, 100, 
etc. 'vVe calculate 

N 

SN= ~ YiYi-l, and NSN' 
1 

It can be shown that 

wh ere a' (- 0) is t he left-hand and a' (+ 0) is the 
rig ht-hand deri lratil e of a(s) at 8= 0. If a(s) is 
differe nt iable at zero t hen this Ii l1li t is ;"eI"O, other­
wise n ot equal to zero. Thus Lhe beha lTiol" of SN as 
N incr eases will tell us wh ether a(s) is different iable 
at s= o or not. Now s llpposing a(s) is t wi ce differ­
enti able at s = o with al/(O) ~ O, we must hal'e 

plim S N= O, plim NSN= - ')'2a" (0). 

We already know, in this case, that a' (0) = O. If 
exp (- ,uS2) seems to represent a(s), then an estimate 
of ,u is obtained as m =NSN/ (2c},). 

4. Tests of Sta tistical Hypotheses 

4.1. Tests for the Distribution Function 

Let Z], .. . , Z N denote indep endent obser vations 
on a nonnegative I'ariate Z. We wish to test the 
statistical hypothesis that Z h as Rayleigh power 
dis tribution. We employ the x2 goodness-of-fit 
test for this purpose. We first calculate C= N - l ~t'Z i ; 
then the numbers Xi = - C In (l-p;), p i= i /m, i = l , 
2, .. . , m - l , where m~5. From (3.6) we see th at 
Xi are lOOP i per centiles of the Rayleigh power distri­
bution with ')' = C. The expected number of observa-
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tions in each of the intervals (0, XI )' (XI, x2) , . .. , 
(Xm- I, ro ) is N lm. Let f1 ' . .. ,fm be the number of 
obsBtTed Z /s falling in these intervals. The statistic 

m ""mf2_N N L.J l. , (4.1) 

is asymptotically a x2 variate with m - 2 deg of 
freedom under the hypothesis t hat Z is a Rayleigh 
variate. \,ye preassign some cri tical probability 
level a ( = 0.05 or 0.01 , say) and from x2 tables de­
termine the number x~ such that Pr(x 2"2 x~) = a. 
If the obsenTed X2< x~ , we accept the hypothesis 
that Z is a Rayleigh variate , otherwise we reject it. 

If the sample is truncated at one or both ends, we 
use order statis tics to estimate I' and proceed as above 
changing the fiTst and last intervals, if necessary, to 
read (0, x) and (y, ro ) where X is a number slightly 
less than the lowest recorded observation and y is a 
number slightly greater than the highest recorded 
observation. The expected number of observations 
in (0, x) is N(l -e-x/ C) and in (y , ro) is N e-Y/ c• We 
calculate 

where fo = obser ved, f e = expected frequency. 
In case of correlated observations it is necessary to 

multiply the value of x2 thus obtained by Nfl IN 
where Nfl is the equivalent number of independent 

observations. Thus x~= (Nil IN) ~ (foj!e)2 should 

be considered as an approximate x2 variate with m - 2 
degrees of freedom. It is difficult to determine Nfl . 
However, if a(s) is the correlation function of Z (t ) 
process and the sample consis ts ofZ(h), . .. , Z (Nh) , 

appears to be a reasonably good approximation to 
Nil IN. 

4 .2. Comparison of Two Samples 

Sometimes we wish to tes t the hypothesis that 
two independent samples, which are known to be 
from Rayleigh power distributions, are from 1,he 

same distributions. Let C1 and C2 be the means of the 
samples of sizes Nl and N , from Rayleigh distribu­
tions with means "II, and 1' 2, respectively . Then, 
under the hypothesis 1'1 = 1' 2, 

is a Fisher-Snedecor F variate with the indicated 
degrees of freedom. We assume that CI "2 C2; if not 
we simply invert the ratio and interchange the 
degrees of freedom, preassign a sig ni:ficance level a 
and test for the significancE' of the calculated F by 
comparing it with t he upper lO Oa/2 percentage 
point of the F distribution. If the observations in 
each sample al"e au tocorrelated, we modify the 
degrees of freedom from N to N' according to (3.2 1). 
If the F -test indicates acceptance of the h ypothesis 
1'1 = 1'2=1', the common mean, /" is estimated by 
C= N - l(NIC1 + N 2C2),N= Nl + N 2' 
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