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Propagation of VLF radio waves in the earth-ionosphere waveguide is co nsidered for 
the situation wher e the ionosphere is depressed over a cir cular region . Using first-order 
scattering theory, expressions for the expected field perturbations a re developed in the form 
of double integrals. In a number of important special cases, these are expressed in closed 
form. In certain other situations, the integrations are carried out by num erica l methods. 
The results confirm that a locali zed ionospheric depression may modify t he received field 
even though the io nosphere a long the great circle pat h is undisturbed. 

1. Introduction 

In a previous paper (Wait, 1964], an approximate 
analysis was given for VLF propagation in the earth 
ionosphere waveguide of variable height. The height 
changes were not restricted to points along the great 
circle path connecting transmitter and receiver. By 
choosing a simple example, it was shown that iono
spheric perturbations lying within the first Fresnel 
zone are most effective in modifying the phase of the 
signal. In this paper, the ionosphere is assumed to 
be depressed in the form of a shallow inverted bowl. 
Such a condition may exist as a result of a localized 
ionizing source such as a high altitude nuclear 
explosion . 

The method employed in the previous paper 
(Wait, 1964] is followed here. It is based on the 
idea that the phase velocity of the waveguide modes 
is determined by the local value of the ionospheric 
height. This concept has also been used by Crombie 
(1964] in treating similar problems in r adio propaga
tion under disturbed conditions. The problem thus 
becomes a two-dimensional one, and it may be 
readily demonstrated that there is a close analogy 
with weak scat tering from cylindrical obstacles. An 
inherent complication is the near field character of 
the problem. This will be evident in what follows. 

2. Formulation 

The situation is illustrated in figure 1 which is a 
plan view of t he circular disk-shaped region. Choos
ing a Cartesian coordinate system, (x, y), the vertical 
dipole transmitter is located at T( -Xl> 0), and the 
receiver is located at B(xQ, 0) . Furthermore, without 
loss of generality, the center Q of the disk region is 
on the y axis with coordin ates (0, Yo). As far as 
the path geometry is concerned, the earth's surface 
is regarded as £lat. The vertical field e at B may 

1 This work has been supported by the Advanced Research Projects Agency. 
Washington, D.C., under ARPA Order No. 183-62. 
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FIGURE 1. Plan view of the situation. 

be regarded as the sum of t he primary field eO and 
the secondary field e', which is scattered from the 
disk region. Following the reasoning given in the 
previous paper (Wait, 1964], it is found that 

'k2Jf es=e-eo~-T (SZ(x,y) 

- (SoY]e (x, y)H J2) (kSOp)dxdy , (1) 
where 

P= ((Xl+X)2+ y2J1 /2 and P= ((XO-X)2+ y2J1/2. 

H~2) is the Hankel function of the second kind of 
order zero, kS(x, y) is the (complex) wave number 
for a particular waveguide mode at a point P within 
the disk region, and kSo is the (complex) wave num 
ber for the same waveguide mode outside t he disk 
region. The integration extends over th e r egion 
where S(x, y) differs from So, namely, the disk 
region. The complex quantities S and So may b e 
computed from the theory of VLF mode propagation 
(Wait, 1962a]. 

The above general result is really an integral 
equation for t he resultant field e. As a consequence 
of the two-dimensional formulation, it is understood 
that such an equation holds for each waveguide 



mode. Because of the slowly varying nature of 
the problem, the coupling between these equations 
is absent. In other words, it is asslllled that mode 
conversion is negligible, which is justified when the 
cross section of the guide changes slightly in a 
lateral distance of one wavelength [Wait, 1962b]. 

3. Simplification of Double Integral 

The first order (Born-type) approximation corre
sponds to the replacement of e(x, 11), within the 
integral of (1), by eO(x, y). Furthermore, p and p, 
where they occur in the phase factors, are expanded 
binomially and terms beyond the second order in 
y2 are neglected. In the amplitude factors, p and P 
are replaced simply by (XI+X) and (xo-x), respec
tively. Thus, as indicated in the previous paper 
[Wait, 1964], 

fo~ -i!2 J J[7rkSo~~o-x)]' 
[S2_(SO) 2] [~I~:I]' e-icNdxdy, (2) 

where 

(3) 

The above result may be conveniently rewritten in 
the form 

where 
1 fa [S(x,Oi-SOJ 

P 00=2a -a S(O,O)-SO dx (9) 

is determined by the shape of the ionospheric depres
sion. Normally, P 00 is somewhat less than unity 
since the maximum depression is in the middle of the 
disk region. 

In the general case, one writes 

where 

eS 

-(j=-i2ka[S(0, 0)-SO] P, 
e 

1 f a [f V2 (X) ? 2 J (i)} P = -2 . f(x,y)e- icO dy - mix, 
a -a YI {xl 7r 

with 
S(x , y)-SO 

f (x, y) = S(O, 0) _ So' 

(10) 

(11) 

(12) 

It is clear that, in the limiting case when Y1 ---C>-00 
and Y2 ---C>+ 00, the quantity P approaches P 00 . 

When the disk region is assumed to possess circular 
symmetry, it is desirable to express the double 
integral in terms of cylindrical coordinates (r, 8) as 
indicated in figure 1. Thus, the quantity P is 
written in the form 

- (i)t 1 i ai 2
1T' , - 22 P = - - f~1')e-'(X Y a1'cl()d1', 

7r 2a ° ° 
(13) 

eS f +a o=-ik Q(x)dx, 
e -a 

(4) where 

where 

(i)!i Y2 (X) . 22 Q(x)= a - [SeX, y)-SO] e-'a Y dy, 
7r VI (x) 

(5) 

and it is understood that Yl and Y2 are the upper and 
lower limits of the y integration. In writing the 
latter result , use is made of the fact that S and So 
are near unity for the important modes. 

In order to obtain some sort of convenient nor
malization, it is desirable to first imagine that the 
disk region straddles the path. Also, it is assumed 
thatY2(x) ---c>00 and Yl(X) ---C>-oo, which readily leads to 

(6) 
and thus, 

eS eSJ f a 0=0 ~-ik [S(x,O)-SO]dx. 
e e 00 -a 

(7) 

It is immediately evident that the preceding simple 
formula corresponds to the anomaly or secondary 
field of a strip of width 2a whose propagation wave 
number is kS(x, 0) for -a<x<a .• It proves to 
be convenient to write 

eSJ eo 00= -i2ka[S(0, O)-S°]P 00, (8) 

and 

fCr) 
S(1')-SO 
S(O)-So' 

(14) 

(15) 

At first glance, this appears to be more complicated 
than the Cartesian form of the integral. Consid-
8l'able simplification is achieved, however, when it is 
assumed that both Xo and Xl> > a. Thus, within 
this restriction, a is a constant given by 

(16) 

Then, by changing the radial variable to B =a1', and 
defining A =ayo, it is found that 

(i)t 1 Jaa (B) P = - - f - F(A, B)BdB 
7r 2aa.0 a ' 

(17) 

where 

(18) 

The major task remaining is the determination 
of P for a specific form of the radial function f 
(Bfa). In general, resort must be made to numeri-
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cal methods. However, when j(B/cx) is a constant, 
some special limiting cases may be expressed in 
closed form. The derivation for these special 
formulas arc gin'n in appendixes A and B . 

4. Some Concrete Results for Specific Cases 

As mentioned above, the simplest case is when 
j (r) is !1 constant con:espond~ng to a~ iopospher.ic 
depresslOn of unvarymg hmgh t as mdlcated III 

figure 2. For this model, it is assumed that j(r) = 1 
when r<a and j(1') = 0 when 1'>a. The integrals 
for the functions F(A, B) and P were evaluated 
numerically for this case, by the method of Gaussian 
quadrature [Kopal , 1961] . As is well known, in 
quadrature methods, a definite integral is approxi
mated by a weighted sum of particular values of the 
ordinate with abscissas distributed in an optimum 
manner. In actual fact, the abscissas are roots of 
the Legendre polynomials and the weights (of the 
ordinates) are functions of these roots . The re
sulting elTor may, in general, be made arbitrarily 
small by increasing the number of intenals which 
here is denoted n. 

Because oJ t he highly oscillatory nature of the 
integrals, in the equations for botl: F and P , extreme 
care was needed to insure that the mtcgr als converged 
to their proper values. 2 Thus, P was evaluated, 
for a representative set of A's, by using an arbitrary 
value of n. The value of n was then increased 
until the resultant values of P became insensitive 
to further changes of n. The value of n = 48 was 
satisfactory to evaluate P for cxa= 0.1 , 0.2, 0.5, and 
1 for all values of A. It. was also sufficient for cxa= 2 
when A < lO, for cxa= 3 when A <5, and for cxa= 5 
when A < l. In other cases, it was necessary to 
take n = 96 except cxa= 5 when A > lO. In this 
latter case, 192 abscissas were needed for F(A, B ) 
and 96 for P. 

Some important checks were carried out for 
special cases using the formulas derived in the 
appendixes. Wh en A = O, for all values of aa, 
the closed fOUT} gi\Ten by (B- 9) was found to give 
answers within five digits of the quadrature answers. 
For other values of A and when cxa= 0.1, 0.2 , and 
0.5, the approximate form for (cxa)2 < < 1, given by 
(B- 14), was used. H ere, the agreement was well 
within graphical accuracy for cxa= 0.1 for the whole 
range of A and for cxa= 0.2 in the range where A<9. 

The value for P given by (B- 10) , for A > > cxa, 
leads to an expression for P in terms of Lommel 
functions as indicated by (B- 12). Unfortunately, 
the voluminous tables by D ekanosidze [1960] did 
not cover the range of arguments which are of in
terest in the present investigation. Instead, P 
was checked directly against (B- lO). Agreement, 
to within gr aphical accuracy, with the quadrature 
method was obtained for cxa= l when A > 8, for cxa= 2 
when A> 9, and for cxa=3 and 5 when A > lO. 

f 2'The numerical techniques to handle double integrals':o( this type are de
scribed by Mrs. Lillie O. WalLers iu a~Techni ca llNote (to be issued). 

( a ) 

f(r; DISK DEPRESSION 

(b) 

F I G lIRE 2. Th e form oj the circular depression 1lsed in this 
paper. 

The quadrature method of entluating the double 
integrals was also employed for situations where 
j (r) was a con tinuolls function . F or example, 
ifj(r) = exp (-r2jl2) where l is a constant, thc mcthod 
described above may be uscd with only minor 
modificatio ns. 

5. Presentation and Discussion of NumericaJ 
Results 

As indicated by (1 0), the complex quantity P 
determines the relati ' -e influence of the circularly 
shaped depression. T o simplify t he presentation 
here, without restricting the generality of the results, 
it is assumed that the quantity [S(O , OJ-SO] is real. 
In other words, the modal atte nuation over the 
circular region is assumed to be negligibly small. 
It is then clear that the real part of P is related to 
the change of phase of the signal. Thus, following 
the convention in earlier work [Wait , 1964], the 
real part of P is described as the "Normalized Phase 
Anomaly" or simply NPA. The imaginary part 
of P is then related to the change of amplitude of 
the received field. In a similar fasbion, the 
imaginary part of P is described as the "Normalized 
Amplitude Anomaly" or N AA. Positive values of 
NAA correspond to a reduction of the total field 
amplitude. 

Choosing j(1') = 1 for r<a andj(1') = 0 for 1'> a, the 
depression of the ionosphere has the form shown in 
figure 2a. For purposes of discussion, this is called 
a disk-type depression. Using the methods de
scribed above, the normalized phase anomaly NP A 
is plotted in figure 3a as a function of the transverse 
distance parameter A for various values of the 
factor cxa which, itself, is proportional to the disk 
radius. 

To facilitate the comprehension of the curves in 
figure 3a, two additional horizontal scales are shown. 
In scale I , xJ=xo=2000 km which corresponds to a 
separation of 4000 km between transmitter T and re
ceiver R with the circular disk depression located 
midway. Thus, the scale Yo in hundreds of km is the 

909 



Ul 
W 
...J 
<l 
U 
Ul 

a 
w 
~ 
LL 

I 
Ul 

~ 
<l 
:::;; 
o 
Z 
<l 

w 
Ul 
<l 
:I: 
a. 
o 
w 
N 

:::i 
<l 
:::;; 
0:: 
o 
Z 

<l 

1.0 

0. 9 

1.0 

0.9 

0.8 

0.1 

0.6 

0.5 

0.4 

0.1 

~ 0.1 

0.1 

0.1 

-0.1 

-0 .1 

DISK TYPE 
DEPRESSION 

A. TRANSVERSE DISTANCE PARAMETER 

SCALE 1 

Il 

FIGURE 3a. Normalized phase anomaly for disk depression as 
a function of the paramete1· A 01· "'Yo. 

distance from the center of the disk depression to the 
gTeat circle path connecting T and B for a frequency 
of 20 kc/s (i.e., A= 15 km). In the inset scales in 
figure 3a, the corresponding values of a are given for 
these same conditions. In the case of scale II, Xo = 
Xt = 5000 km, and the frequency remains at 20 kc/s. 

For the larger values of aa, it may be observed in 
figure 3a that NPA is approximately unity for small 
values of A. Under these circumstances, the full 
effect of the depression is being felt. As A increases, 
the value of NP A diminishes and becomes very 
small when A becomes somewhat greater than aa. 

The general behavior of the NPA curves for large 
values of aa are in general accord with simple 
arguments based on geometrical optics. If the de
pression is merely imagined to change the electrical 
length of the direct ray connecting the two ends of 
the path, an exercise in geometrical optics leads to 
the simple formula 
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FIG URE 3b. Normalized amplitude anomaly for disk depres
sion as a function of the parameter A 01· "'Yo. 

NPA= [1-(A/aa)2]t for A < aa 

= 0 forA > aa. (19) 

The dashed curves corresponding to this formula are 
shown in figure 3a where they are labeled "G.O." 
to stand for "geometrical optics." As may be seen 
from geometry, NP A in this zero-order approxi
mation is proportional to the chord length at a 
distance Yo from the center of the circular region. 
It is quite amazing how well the geometrical optics 
predicts the shape of the central portion of the NPA 
curves for the larger values of aa. Of course, geo
metrical optics does not give any meaningful infor
mation for values of NP A when A is either compa
rable with aa or when A is greater than aa. Also, 
for smaller values of aa, even though a itself is 
several wavelengths, geometrical-optical considera
tions fail to give any meaningful r esults . In these 
latter situations, diffraction is playing a dominant 
role. 
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The normalized amplitude anomaly, N AA for the 
disk-type depression (i.e. , j(r) = 1) is shown in figme 
3b. The scales are essentially the same as those in 
figme 3a. It is interesting to note that for smaller 
values of aa the value of NAA, directly behind the 
depression (i .e. , A = O), is positive, corresponding to 
a diminishing of the amplitude. In this sense, the 
depression is acting as a diverging lense. For large 
values of aa, this effect is not so clear cut. 

It is interesting to note that in all cases the NAA 
cmves have a mean value of zero with respect to the 
range of A. This factor is consisten t with conser
vation of energy if it be remembered that the modal 
attenuation constant has been assumed to be neg
ligible. Thus, the undulation of the NAA CUI'Ves 
is a result of the redistribution of the energy which 
results from diffraction. The structme is compli
cated because of the relatively large size of the 
depression in terms of a wavelength . 

To adopt a more realistic model of an ionospheric 
depression, the function j(r) was taken to be a 
continuous function of r . The example chosen IS 

the Gaussian sbape defined by 

j(r) = exp (-r2jZZ) , (20) 

where l is a constant. As a fairly good approxi
mation, j (r) shown sketched in figm e 2b can be 
regarded as the shape oE the ionospheric depression. 
Aptly, it is described as a bowl-type depression . 
The assumed proportionality between the function 
j (r) and the dependence of the ionospheric reflec ting 
height is justified by the approximate linear de
pendence between height changes and phase velocity 
changes in VLF propagation [Wait, 1962aj. 

The NP A cunes for the bowl-type depression 
are shown in figm e 4a for various values of the 
parameter al . H ere, the distance l, which is 
analogous to the radius a in the disk depression, is a 
measme of the size of the bowl-type depression. 
Scales I and II, which correspond to the same 
conditions as previously used for the disk depression , 
are indicated 0 n figllre 4a. 

A striking characteristic of the NPA cmves in 
fi gme 4a is their relative smoothness. It is only 
for the small values of ad is t here any evidence of an 
oscillating behavior as a function of A. In other 
words , the diffraction effects for such a tapered 
form of depression are greatly reduced. This 
factor is confirmed by comparing the calculated 
NP A data with a simple formula based on geometrical 
optics. In the latter case it is assumed that NP A 
is proportional to the chord length weighted by the 
function j (r). Thus, in the geometrical-optical 
approximation 

1 r oo 
NPA= r Jo exp (- r2W)dx, (21) 

where r2=r2+y5. This is readily evaluated to give 

where as usual, A = ayo. 
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T AB L1, 1. Com parison with geomet1'ical optics 

.Il =-aYo " I NPA (,,~f2) exp (-A'/L2J 

0 10 0. 8862 0. 8862 
1 ]0 . 8780 .8774 
2 10 . 8515 .8515 
3 10 .8000 .8099 

0 5 .8857 .8862 
1 5 .8510 .8514 
2 5 . 7550 .7552 
3 5 .6183 . €l 83 
4 5 .4674 . 4673 
5 5 . 3260 . 3260 
6 .J . 2]80 . 2100 
7 5 . 1344 . 1248 

0 3 .8821 . 8862 
1 3 .7909 .7930 
2 3 .• \696 . 5682 
3 3 .0285 .3260 
4 3 .1511 .1498 

0 2 .8663 .8862 
1 2 

I 

.6885 . 6902 
2 2 . 3384 .3260 
3 2 . 0964 . 0934 
4 2 . 0138 . 0162 

Within graphical accuracy, the geometrical-optical 
predictions for NP A are identical to the curves in 
figure 4a for al= 10 and 5. The departures for the 
curves al= 3 and 2 are small. To indicate the 
correspondence, the values of NPA from the double 
integration are shown in table 1 along with the 
geometrical optical formula. The agreement for 
the cases of small A and large ad is particularly good. 
The small but noticeable departures for large A 
and large al can probably be attributed to some 
convergence difficulties in the e\' aluation of the 
double integr als. On the other hand, the rather 
larger departures for smaller al values can be attrib
uted with some confidence to the nonvalidity of 
geometrical optics. 

The normalized ampli tude curves for the bowl
type depression are sh own in figure 4b. These are 
for t he same conditions as the NP A curves In 

figure 4a. In many respects , they are analogous 
to the N AA cunes in figure 3b for the disk-type 
depression. The main feature of the N AA curves 
in figure 4b is the relatively small magnitude of the 
ordinates. 

6. Concluding Remarks 

The results given in this paper would indicate 
that an artificially produced depression of the 
ionosphere will influence VLF propagatiop even 
though the ionosphere along the great circle path 
is undisturbed. The effect is most clearly noticed 
when the depression is sharply localized such as in 
the case of a circular disk-type depression with 
constant height. In fact, at VLF, the disturbancf\ 
caused by such a depression is appreciable even 
when the great circle path passes within 100 km or 
more from the edge of the disk region. In such 
circumstances, simple ray optics would predict no 
disturbance. 

In the case of a depression which is characterized 
by a tapered heigh t distribution, the modification of 
the field is more in accord with geometrical-optical 

considera tions. In this case, the diffraction effects 
are relatively small although, for smaller lateral 
dimensions of the depressed region, they are still 
important. 

I thank Mrs. Lillie C. Walters \"ho devised the 
computer program for evaluating the integrals and 
carried out the numerical work. The general 
problem was suggested by A. Glenn Jean. Some 
useful comments and suggestions were also received 
from D. D. Crombie and J. R. Johler . 

7. Appendix A . The Function F(A, B) 

The function F (A ,B) may be written in the form 

(A- I) 

where 

G(A, B)=~ ( " exp [- i B 2 cos2 e-2iAB cos e]de. 71'J o 
(A- 2) 

The form of the exponent in the latter expression 
suggests that we examine the generating function 
for Hermite polynomials [Morse and Feshbach, 
1953] I-ln(z ). For example, 

(A- 3) 

has t he same form as the integrand of (A- 2) , if 
Z= - exp (i 7l'/4)A and t= exp (i 7l' /4)B cos e. We 
then find 

'" G(A, B )= ~ Tn(A )B n, (A- 4) 
n= O, 1.2, ... 

where 

(A- 5) 

and 

r(n + 1) 
( 2" 2 

I n= Jo cosn ecle= 27r r G+1)' (A-6) 

[ 1. 3.5 ...... n-1] . 
= 27r 2.4.6 ..... . n for n an even rnteger, 

= 0 for n odd. 

Specific forms of the Hermite polynomials, H n(z ), 
of low orders ar e: I-lo= l , I-lJ = 2z , H 2=4z2 _ 2, 
I-l3= 8z3-12z , I-l4 = 16z4-48z2+ 12, and so on. 
Using t hese, the 10w-ordeT values of the coefficients 

~jA)liaTe igiven explicitly :by To= l , TJ = 0, T2= i~2, 

T3= O,"T4 = - !~ , where 1-l2= 4iA2_2, :and H 4= -16 

-48iA2+ 12. 

An interesting check at this stage is to consider 
the special case for A = O. For example, 
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1 ( 2'-
G(O,B)= 2,n-)o exp (-iB2cos20)dO 

It is then readily found that 

'" G(O, B )='L, Tn(O)B n 
n=O 

(A- S) 

Unfortunately, the expansion for F (A, B) or 
G(A, B ), in terms of H ermite polynomials, is poorly 
convergent when A is large. To gain some insight 
into the behavior of the function in this range, a 
saddle-point evaluation is useful. It is evident that 
the phase Q = (A + B cos 0) 2 is s t a tionary when 

~~=-2 (A+B cos O)B sin 0= 0, (A- g) 

Solutions are 0= 0, and 7r and O= arc tan (-A/B ). 
When A > > B, it is evident that no real saddle 
points occur except where 0= 0 and 7r. Thus, 
provided AB> > 1 and A > > B , it is found that, 
asymptotically 

F (A, B ) ""{:B)? [e i1r/4e - i(A+m2 + e-i1r14e-HA- B)2l . 

(A- lO) 

Another special case is when B2< < I, whence 

(A- ll) 

If, in addition, AB> > 1, the Bessel function J o may 
be represented by the first term of its asymptotic 
expansion. Thus, 

which is a special case of (A- I0) when B2< < l. 
An approximation which combines (A-I0) and 

(A- ll) is given by 

The latter result appears to be valid under the sole 
restriction that A > > B . 

8. Appendix B. The Radial Integration 

Using the special forms developed for G(A, B ) in 
appendix A, the integration with respect to B may 
be performed. For example, if (A-4is used, it 
readily follows that 

p = (7ri)! e-iA2 (aa j (B) G(A, B )BdB 
aa Jo a 

= (7ri)t e-iA2 ~ T (A )Q 
L...; n. n , 

aa n=O, 1, 2"" 

where 

Ifj(B /a) = 1, 

and ifj(B/a) = exp (- B/L), 

Qn= .ra exp (-B/L)Bn+!dB, 

(aa)n+! exp (- aa/L ) 
(I/L ) 

(11.+1) ( aa n . + (I/L ) J o B exp (- B/L) dB 

(11.+ l )! ' f' » L 
~ (I/L )n+2 l ' aa . 

(B- 1) 

(B- 2) 

(B- 3) 

(B- 4) 

(B - 5) 

Because of Lhe poor convergence, It IS doubtful 
if the expansion in terms of the coefficients Tn (A) 
is very useful H owever, the special case for A = O 
does lead to a convenient closed form for the function 
P. Under this condition, 

(B - 6) 

and thus 

p = (7ri)} ( aa f(!i) exp (-iB2/2) J O(B 2/2) BdB. (B- 7) 
aa Jo a 

Changing the variable to X= B 2/2, it is seen that 

(B- S) 

This can be expressed in closed form when j = l. 
Thus, 

p = (7rxo/2)! exp [-i(xo-7r/4) l[Jo(xo) +iJ 1 (xo)], (B- 9) 

which may be verified by differentiation with 
respect to Xo. A partial check is obtained by noting 
that P tends to unity when Xo approaches infinity. 

A fairly general approximate form for P is obtained 
by using the representation for F(A, B) given by 
(A-13). Thus, provided A > > aa. 
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(B- I0) 
into the disturbed region . If refraction effects are 
ignored, it is easy to show that 

Introducing a new variable, t = B /(aa) , and de- il (x, y) ~k sin of_Ta [S(r) - SO]dr, 
fining w = 2(aaF, it is seen that 

This integral may be expressed in terms of the Lom
mel functions [Watson , 1944], Un(w, z), of two 
variables wand z, of order n. Thus, 

-iw/2 

P =(i7r)!e- iAZ (aa) ~ [U1(w, z)+iU2(w, z)]. (B- 12) 

From the basic definition of the Lommel functions, 
it is known that [Luke, 1962] 

V 1(w, z )+ iUiw, z) =(~) (~y 
00 

X exp (iw/4) ~ i k (2k+ l)JH t (w/4)J2k+ l( Z) . (B- 13) 
k=O 

The functions U1 and U2 have been tabulated 
[Dekanosidze, 1960] for quite a restricted range 
of wand z . 

A special case of the above formula for P is when 
(aa)2< <1. Thus, only the k = O term in the 
expansion need be retained. This leads to the 
relatively simple result that 

P C·)' C 'A2) Jl(2Aaa) 
~ ~7r • exp -~ 2A' (B- 14) 

The above form for P may be derived directly by 
using (A- ll ) which is valid for B2 < <1. Thus, for 
j(B/a ) = 1, it is seen that 

p~_7r_ J oC2AB) BdBe-w (i )1 / Z i aa 
aa 0 

(i 7r)1 /2 1 . ( 2Aa a 

= -;;a (2A)2 r,A2 Jo zJo (z) dz , (B- 15) 

which is equivalent to (B- 14) above. It is interest
ing to note that (B- 14) is valid for A = O, provided 
Caa)2< < 1. 

9 . Appendix C . Extending the Born 
Approximation 

The results given in this paper are valid only 
within the limits imposed b y the Born approxima
tion. To indicate the nature of this restriction, it is 
desirable to extend the range of validity by improv
ing the assumed form of the internal field. For 
example, rather than replacing e(x, y) by eO(x, y) 
inside the integral of (1), it would be better to use 
eO(x, y) exp [-iil(x, y)] where il(x, y) is to account 
for the modified phase of the field when it propagates 

~k sin 0 fa [S(r)-SO]dr, 

This means that the integral F(A, B ) , as given by 
(18), is to be replaced by 

(Z'" F (A , B ) = Jo e -i{; (x, y) e -i(A+ B cos O)2 do (C- 2) 

or 

F(A, B) = 2 So'" cos [g(B) sin 0] e-iOo sin Ori (.H B cos O)2 dO, 

(C- 3) 
where 

g(B)= k ( T [S (r)-SO ]dr=~ (n [S(B /a)-SO]dB , Jo a Jo 
(C- 4) 

and 

go= k (a [SCr)-SO]dr=~ (Bo [S(B/a)-SO]dB, 
Jo a Jo 

(C- 5) 

where Bo= exa. 
It is evident that this modification to the first 

Born approximation is insign~ficant w~en \go \<:(). 
This will be the case for smalllOnosphenc depreSSIOns 
even when the extent of the depression is large in 
terms of the wavelength. For example, at 15 kc/s, 
if the average value of the ionospheric depression is 
10 km, and a = 100 km, then go is only of the order 
of 10-z. Under some conditions, however, go may be 
comparable with unity and corrections should be 
made. 
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