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Several numerical examples are presented to show the predominant features of radio
wave propagation over an inhomogencous earth. These are based on the theories derived
previously [Furutsu, 1957a, 1957b, 1959, 1963] in which the height and also the electrical
properties of the earth’s surface were assumed to change discontinuously several times along
the wave path; thus, the terrain represented could include ridges, cliffs, bluffs at a coastline,
ete. The theory is briefly reviewed, and numerical results are presented for the spherical
earth approximation and are compared to those for the flat earth approximation. For a
perfectly conducting flat earth, there are well-known formulas available in terms of the
Fresnel integral, and the spherical earth results are compared to those obtained using
these formulas to show the agreement at short distances. A few interesting phenomena are
also illustrated, such as the obstacle gain due to a ridge on a lossy ground and the variation
of field strength caused by a change of receiver (or transmitter) height when the wave is
propagated over a mixed path. Finally, sets of graphs are also included to aid in evaluating
the effects of a ridge or a cliff on a homogeneous earth; they can be used when the propagation
distances are sufficiently large on each side of the ridge or cliff.

1. Introduction

The purpose of this paper is to determine the field strength when a radio wave is propa-
gated over a terrain varying both in height and in electrical properties.

The problems of mixed paths over a smooth earth have been investigated by many authors
[Bremmer, 1954; Clemmow, 1950; 1953; Feinberg, 1944 ; 1946; 1959; Godzinski, 1958; Wait,
1956; 1957; 1961], and one of the authors of this paper [Furutsu, 1955a; 1955b; 1955¢]. Some
of their results were given in terms of a convolution integral which is usually evaluated by a
numerical method. Mixed paths mean that the wave path is over ground consisting of several
sections of different electrical properties, but in these papers, no change of height of terrain
had been taken into account.

However, it had been the main purpose of some papers by Furutsu [1957a; 1957b; 1959;
1963] to determine the effects on the groundwave propagation over an inhomogeneous earth!
caused by significant changes in the height of terrain, such as ridges, cliffs, etc., and also how
these effects could be treated. The model of the terrain, the height of a spherical earth surface
and 1its electrical properties were assumed to change discontinuously along the wave path
several times. This is illustrated in figure 1.> The formula of field strength for this model was
obtained in the form of a multiple residue series. This formula reduces to that for mixed paths
in the special case of a smooth earth and further to the ordinary Van der Pol-Bremmer series
in the case of a homogeneous earth.

The basic terrain used in this paper is illustrated in figure 2. This figure shows the terrain
consisting of two sections of different earth radii, @, and ay, and different propagation constants,

1 See, however, papers by Hufford [1952] and also by Wait [1963].
21In this figure, a,is the radius of the nth section, r, is its length, z; and 2.+ indicate the transmitter and receiver locations.
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Ficure 1.  The form of the terrain used in the theory FiGure 2. The form of the terrain consisting of two
of inhomogeneous earth. sections for (3).

ks and ky, respectively, with a ridge of radial distance a; (measured from the earth’s center to
the top of the ridge) at the boundary of the two sections. The transmitter and the receiver
are on each side of the ridge at the points z; and z; whose radial distances are z, and z;, respec-
tively. Their distances from the ridge are 7, and r,, being measured along a mean earth surface
of radius a.
The attenuation coefficient A is defined by (A.2.1)2 i.e., if I is the field strength to be

obtained,
__ &

4m (rytry)
where \ is the wavelength in free space and F, may be regarded as the field strength in free

space. The attenuation coefficient A thus defined is conveniently given in terms of the numeri-
cal distances ¢, and ¢, defined by

E:244E0, EO e_ikx(rz""ﬂ, klzzw/k,

o= (ry/a) (k1a/2)*3, cs= (ryfa) (kya/2)'7, 1)
and also the numerical heights 15, 15, ¥, 14, and y; defined by
n=k (z;:—a) (2/ka)?, Yo=ky(as—a) (2/ky2)*7, Ya=ki(as—a) 2/ky2)' 3,
Ya=h(@—a) (Qk:10)13,  ys=k,(z5—a) 2/ky1) . (2)

Thus, using (A.3.1), A can be given in the form

AZ@ {(cate9)fea} P A(Yss, c4) z4T(3)(Cz) tg 1515 (W12) (3a)
with the conditions o

(21—(12)/1"2<<1, (a3—a2)/7‘2<<1, (25—0‘4)/7"4<<1; (0/3—@4)/7’4<<1;

k17’2>>1; k'17"4>>1; (Sb)
where
Yii=Yi—Yi=—Ysi 4)
A(Ys4, 1) = (meq) V2 (ti—qi) _1jz4(?/54) exp [—i{eyut-t)+m/a}], (5)
T (e2) 1y 1= { Qi (Y3 f1y(Ys2) — Qo 1y (Ys) 1, (Ys2) } {ys— 1ot ta— 1o} “Hty—g3) T exp [—ic (Yo t-ta) ]
(6)

Here, the set of values t,,(m=2, 4) stands for the roots of the equation
W’ (tn) = guW (tn) =0; @)
W’ (t) is the first derivative of the function W(¢) defined by
W(—t)=(xt/3) e~ BHG(3837), (8)

3 Equation numbers preceded by an A refer to equations in Part I of Furutsu [1963].
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and

kkz,—I3 k2, Vertical Polarization

Q:an: (kl (l//2>1/3>< (9)
vVkz,—Iilk;, Horizontal Polarization.
The function f,, (y) is the ordinary height-gain function defined by
i) =W (tn—y)/W(tn), (10)
and the function f% (y) is defined by
Inf" () =—Q/ONS tn(1) =W (b —1) [ W(En). (11)
Thus, it can be seen from (7) that
O =r (=1 (12)

In the special case where a;=as(as>ay) or az=a,(a;<a,), the terrain would represent
a cliff, and then

T'®(c2) 4, 15=T'(c2) iy oy = =yt ta—to} 7 (t— )"

, @t o) —aof o, (Ye)y  22Us
Xexp [—ica(Yat-t2)] X ; (13)
Qo 1y (Yu2) — G212, () s Yo <Yy

In the case of ay—a, and ¢.=¢,, the terrain would represent a ridge on a homogeneous
oround. In this case, both the numerator and the denominator of

1'(3) (62) 14y 1

vanish for t,=tf,; then

T (o) to,lg— [{1—yslt.—q¢)™ }ffg(?lsz)
(14)

g l— )M FE W) = (yae) 1] exp [—ica(yat ).

Further, in the case of smooth earth where ,=1;=1v,=0, (13) gives, on using (12) and (14):

T (€2) 14, 1= (qa— o) Ca—12) 7 (t— @3) ~'eP2"2 (q:5# ¢2)

re_“2t2, t4:t2
= (Q4:Q2) (15)
0, 1y F 1,

and thus, formula (3) becomes:
A:t}:t‘; {m(catcs) } 1/2(Q4'—Q2) (tsi—t2) “(tz—qé) “1(t,—qd) !

Xflg(yl)fl4(y5) exp [—i{ctat+edstm/4}], (a#q2) (16)

=27 {mleated } 2 (ta—3) "1, (1) Ty (ys) exp [—i{(cate)tatn/4}], (@=g2). (17)

&
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Equation (16) is a special case of the established formula for mixed paths over a smooth
spherical earth consisting of several different sections [Furutsu, 1955¢], and (17) is the ordinary
formula for a homogeneous earth.

In the Van der Pol-Bremmer series for a homogeneous, smooth earth, the convergence
becomes poor when the propagation distance is sufficiently short, and likewise, the convergence
of the series (3) becomes very poor when the propagation distance on one or both sides of the
ridge is very short. However, in the latter case, the effect of the earth’s curvature is so small
that the flat earth approximation can be used; the result in the flat earth approximation then
provides the asymptotic form of the series (3) as a—<.

In order to present the flat earth formula corresponding to (3), it is convenient to introduce
the parameters defined by:

dy=1q3co=—"1(k1/k5)*krr5/2,

dy=1q¢5cs=—1(ky/k3) *herrs/2,

Ji=3es Pypetm = (21—ay) (hy/2ry) e '™,

Js=%cs Pyse' ™= (25—ay) (k1/2r,) Pe' ™4,

Jo=%65Pyge' ™= (az—az) (ky/2r,) ' Peim,

Fr=her Py (ay—a) (f2r) e,

ny=ry/(ry+1y),

Ng="4/ (Ta+74), (18)
with

y *{ k2 eE—E, Ver. Pol. (m=2, 4) (19)
"\ BNE—E,  Horis. Pol ’

all of which are independent of the earth radius a. It may also be noted that d, and d, are
the Sommerfeld numerical distances on the respective sides of the ridge.

In the special case where both the transmitter and the receiver are on the ground, i.e.,
when z,=a,, z;=a, or fi=1;=0, the attenuation coefficient A is given, with the aid of (A.4.2)
to (A4.4), by

A=F(dy, filds, fo) =¢ Ui [(g (\ ’7727[4+ \Efz) —'IZW;(V"M‘F x;l;/ﬂ:) !
X [\ ({;@mg (_ﬂ-{* ?'w;@) g (fz+’l\72> = ((14/”4){6 (047 (\;l;/;“:‘\‘yafz)/ﬂ)
— & (py, (fitivds) o)} 4 (dofro)1 6 (00, (Wafit-vnufe)for) — & (2, (fotind) )], (20)

Here the vertical line in the arguments of the function /' defined above is used to distinguish
between the variables on each side of the boundary, and

= \/n4f4- \,7727[2+ i\/d4/n4, p4:iv'd4nz/n4—f2,

02:\‘/772][2—\’/Evf4+iw/dz/nzy Pzz’i\/dzm/ﬂz—fu (21)
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and

2 ® ©
& (z, 7&/2)1(\%) g2+’ f dre="" f( . e~ Vdy. (22)

The analytic expansions for & (z) and & (z,n /z)are treated in the appendix of Furutsu [1963].
In the general case of 2,7 a, and z;7 ay,

A=F(dy, fst+Fsldo, fot 1) + B {F(ds, fs+S510, fo—11) — F(ds, fs+150, fot- 1)
+FQ, fi—fsld,y ot i) —FO, fitfilds, fot-f1) } H%{F(O, fit-1£5l0, fot-fo) + F(O, fi—1l0, fa—
—F(O: f4+f5|07 .fZ—fl) _']"(()7 ,14‘./5’0) f2+fl) } . (23)

When the earth’s surface is perfectly conducting and the wave is vertically polarized, (18)
and (19) yield d,=d,=0. Thus, (20) becomes simply

A:(i—(fﬂﬁ)g (\E/F*‘\/Efz)y

_ — —ay | « ey :
Ji / — 4 i,, 17472 ir/d (5, — P 9
Ty [Ny Jo— = 21= 25—0y). 4
Vit S S } \/9(r4+,2 (z1=a,, z:=ay) (24)
As is seen from the definition of the function & (z) in (22), (24) is given by the Fresnel integral
and, as expected, is exactly the same as the result for ordinary knife-edge diffraction.
On the other hand, when the earth’s surface is smooth and both the transmitter and
receiver are on the ground so that

.’fl:fz:f:;:l;:fszo,

formula (20) becomes

A=1—i~m(Vdyns+ +do/ns) ™ [\(/4r/2/n,4n3€ (ivdy) & (ivdy)
~- ((/4/7’4) { (C’; (’?:\'(/4/'/14> - g (’l.'v/’/{"/z//";; \ ;;4/71)}
T (do/n2) {6 (ivdofn) — & (ivdynyfna, Vnofng) J].  (25)

This equation is essentially equivalent to the formula first obtained by Clemmow [1953] and
also the same as by Furutsu [1955a]. Further, if the earth is homogeneous so that dofn,=d,/n,,

(25) becomes
© 2
A=1—i(mdo/n2)'? & (ivdao/nz) =1—1i2(do/ny) 2 e~balns f __e~*d, (26)

tda/ny

which is the formula commonly used for a homogeneous flat earth. In deriving this formula,
the following relation is used:

& (a, bja)+ & (b, a/b)= & (a) € (b). (27)

In formula (3), it frequently happens that the propagation distance on one side cf the
ridge, say 7, is small enough so that ¢,<<(1, while the propagation distance on the other side
is large enough so that ¢,>1. Under these conditions the flat earth approximation may be
used on the ¢, side, while keeping all spherical properties as they are on the ¢, side; i.e., when

€< <1, ]Cz(y42‘|‘t4>f<<1, Y <<, a3 <1, (28)
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it has been shown [Furutsu, 1957b] that
ZTW (€2) 1, 1,1, (12) 2B, (Yss, doy Fop 1) =[{(gs/@) 2, (ae) — T2, (Y) Wdo (Vdz, fi+12)
z(q /(] [t (y34)\/([2{<](0 fo—f1)—J (0, fo4-f1) } +3. fz (W20) {J (fo—S1) +J (fo+1f1) } JeH @@ -1ikrs

(29)
where fi, f,, and d; are the same as defined in (18) and
J (@, N=e{E(N—E(f+iv)}/z,
J(f)=e"E(S). (30)

Furthermore, when ;< <1,
fz,(y34)21_y34(14:1+i(k1/k;)lf1<(13—a4), Yz <1

and

(Q4/Q2)f;4 (Y34)22(qu/ @2) — Yt o/ 2= (o R') — ks (s —as) (2/hya) 38, Y34 < 1. (31)

Also, when y3,=0, the right-hand side of (29), ])’,4 (0, ds, f5, f1), turns out to be independent of
t, and thus applying formula (29) to (3) on the condition (28), we get

Al“tEA(Z/su ¢)1,B,(0, dy, 2, ) =Alc,=0B:,(0, &3, f2, 1), Alc,me=23AYs4, €0),. (32)
4 ty

The latter series is the ordinary Van der Pol-Bremmer residue series for a homogeneous earth.

In this paper, the above formulas are used to find the attenuation for several typical cases of
inhomogeneous earth. Emphasis is first placed on the comparison of the numerical values in
the spherical earth approximation with those in the flat earth approximation, since they are
expected to asymptotically approach each other at short distances.  Although there is almost no other
literature available for wave propagation over a terrain of finite conductivity, there is the well-
known formula given by the Fresnel integral for a ridge on a perfectly conducting plane, which
therefore gives an interesting means of checking the corresponding sphelical earth values.
Secondly, a few interesting physical phenomena (such as the “obstacle gain” and a complicated
variation of the field strength versus the height over mixed paths, ete.) are discussed with nu-
merical illustrations. Finally, a set of graphs is presented for use in calculating the effects of a
ridge and a cliff on the eroundwave propagation; this is an extension of the work shown in
figures 8 and 9 in [Furutsu, 1963]. They can be used in the same way as the ordinary height
gain function for the transmitter and/or the receiver, when the propagation distances on both
sides of the ridge are large enough so that

Yt > > 1, =y > > (33)

However, the above condition may be too strict for practical use, as will be seen by a few
examples shown in the appendix.

In the last section, the more general case is treated in which the inhomogeneous earth
consists of several different sections with a ridge at each section boundary. Thisis illustrated
in figure 12 and the formula for the attenuation coefficient is given, which was derived in earlier
work [Furutsu, 1957b]; this formula corresponds to (3) for two sections with a ridge between

them.

2. A Ridge on a Homogeneous Earth

The basic formula for the attenuation coefficient is given by (3) in the case of a spherical
earth and by (20) or (23) in the case of a flat earth; for a ridge on a homogeneous earth, the
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Frcure 3. A ridge on a homogeneous earth (flat or
spherical) for figures 4 and 5.
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9,2q, =-i® —=—==FLAT EARTH VALUES
fa=rp =1 —O—— SPHERICAL EARTH VALUES

JA(rg  r2)l

00 :

002 0.05 0l 02 05 10
(r/a)(k a/2)s

Ficure 4.  Comparison of the spherical and the flat
earth values of attenuation due to diffraction by a
ridge on a perfectly conducting earth (vertical
polarization) .

Attenuation versus the numerical distance (r/a)(kia/2)'/3 when

ro=ry=r, for several values of the numerical ridge height y=kih
(2/kia)1/3,

attenuation is found when yzo=ys—=y=kh(2/ka)"? and ¢=qs or ks=ky. For the numerical
illustration the transmitter and receiver were placed on the ground at equal distances from the
ridges, as shown in figure 3, and thus 7,=7,=r or c;=cs=c=(r/a) (k;a/2)"® and z,=a,=a,=z; or
Y12=Y5:=0.

2.1. Case of a Perfectly Conducting Earth

When the earth is perfectly conducting and the wave is vertically polarized, ¢,=¢,=0
according to (9). Furthermore, if the earth is assumed to be flat, the attenuation coefficient A
is given by the Fresnel integral of (24). In figure 4, the absolute value of A is plotted versus

c=(r/a) (kra/2)'"

for several values of % and is displayed by the broken lines.* The corresponding values in the
case of a spherical earth, shown in the same figure by solid lines, were obtained by evaluating
formula (3) for ga=¢,=—:10"% (which is effectively zero). As expected, the figure clearly
shows that the spherical earth values asymptotically approach the corresponding flat earth
values when ¢<Z<’1. It may also be noted that the attenuation increases with the height of
the ridge in the range of variables presented.

4 Although both the variables  and ¢ are dependent on the earth’s radius a, the attenuation coeflicient A is independent of «, as is seen from
relation (18).
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Ficure 5. Comparison of the spherical and the flat
earth values of attenuation due to diffraction by a Ficure 6. Mountain gain and diffraction loss by a
ridge on an earth with a finite propagation constant. ridge on a lossy surface.
2.2. Case of a Finite Conducting Earth
The result of the comparison using the same data except for ¢,=¢,=—150 is presented in

figure 5. Asin figure 4, the spherical earth values approach the flat earth values when ¢<<1.
However, there is a remarkable difference between the characteristics of the two figures; i.e.,
in figure 5, the higher the ridge, the smaller the attenuation. This implies that the propagation
loss along the lossy smooth surface is much greater than the diffraction loss by a ridge on the
surface. Thus, we have the so-called obstacle gain. However, since the diffraction loss in-
creases with a decrease of distance from the ridge, the obstacle gain is apparent only in a
limited range. This situation is illustrated in figure 6, which is a continuation of the flat earth
values in figure 5.

On the other hand, when the propagation distances on both sides of the ridge are large
enough to satisfy the conditions given in (33), the convergence of the series in formula (3) is
fast enough so that only the first term of the series is necessary to give a sufficiently accurate
value. This is reflected in figure 5 by the fact that the three solid lines for the spherical earth
values are almost parallel to each other for the large distances occurring when e¢;=c,~1.
Therefore, in this case, the effect of the ridge (of height &), located on a homogeneous spherical
earth of earth constant ¢,, can be obtained by multiplying the attenuation coeflicient for the
homogeneous earth by the ridge gain factor 7%(p) given by:

Tr(p)={1—y(ts—@) "M +EE—) " W —fiw ), y=hkh@ka)'”.  (34)°

5 This equation is the same as (A.3.3) except that the second term is omitted in the latter. However, all the values in fig. 5 [Furutsu, 1959]
and fig. 8 [Furutsu, 1963], were computed using the correct equation (compare with fig. 13 in this paper).
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Frcure 7. A cliff or a bluff on an earth (flat or
spherical) for figures 8, 9, and 10.

This is the term in square brackets on the right side of (14) where # stands for the first value of
t, for the homogeneous earth specified by ¢.; for later convenience, p is defined as

p=2"13y=Plh(kia) 17, h=height of ridge, (35)

and ¢, can be expressed as
q2:2—1/3K—10—i(o/z+1r/4>’ (36)

where K and b are the parameters introduced by Norton [1941].
A set of graphs is presented in figure 13 for |Tx(p)| versus p for various values of K and b.

3. A Cliff or a Bluff at a Coastline

When the obstacle is a cliff or a blufl (of height %), the basic formula in this instance is
again given by (3) for the spherical earth and by (20) or (23) for the flat earth with 15,—=0 and
Yo=hkih(2/ka)'®.  Further, if ¢, is chosen sufficiently large to satisfy the condition (28) for
ty, formula (29) is available for the range of ¢,<’<1. The latter is the case of figures Sb, 9,
and 10 to be explained in the following, where the absolute values of the ratio A/(A|,-,) are
plotted versus ¢, for several values of the parameters.

For the numerical illustration, the antennas were again placed on the ground (z,=a,,
2=y =0z, Or Yn=15=0), as shown 1n figure 7.

3.1. A Clit

In this case, ky=Fk, or g=¢q, and, when the earth’s surface is perfectly conducting and the
wave is vertically polarized, ¢=¢,=0. Then the attenuation coeflicient is again given by the
Fresnel integral of (24) with f,=0 for the flat earth approximation. These values are shown
in figure Sa and 8b by the broken lines, and the corresponding spherical earth values are shown
by the solid lines (as in section 2, ¢,=¢, was again chosen to have a very small value —7107°,
which is effectively zero). Figure Sa shows the absolute values of A versus (r/a) (ka/2)'?, when
ry=ry=r, while figure 8b shows the relative values of |[A| versus the numerical distance
cy=(rs/a) (k1a/2)'?, when ¢,=10; the latter values of |A| were computed using formula (32).

A similar comparison is presented in figure 9 for the same data except for g,=g=—150,
where the flat earth values were computed using the function B, (yy, ds, 1o, f1) defined in (29)

with y3s=/1=0 and ¢g=¢,. It may be noticed here that, when z,=a, or f;=0, B,, is independent
of the value of ¢;=¢, on account of the identity (12). Thus, the flat earth values are the
same as in figure 8b.

As in the case of a ridge on a homogeneous earth, when the propagation distances on both
sides of the cliff ‘are large enough to satisfy the conditions in (33) for 175, =0, the effect of a cliff
(of height /) can be obtained by multiplying the attenuation coefficient by the cliff gain factor
Te(p). On referring to (13) and figure 7, the factor T¢(p) is found to be

Telp)=gu(t8—g8) "'y {Ta) =S )}, G7)
where p=2""%y=kh(kia)"*.
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Upon reference to (31), we see that T¢(p) tends to 1 as p—0.

A set of graphs (fig. 14) is included for |7%(p)| versus p for various values of K and b as
defined by (36). These figures together with figure 13 for |7T%(p)| may be used to determine
the gain (or loss) by a cliff or a ridge on a homogeneous earth; they are used in the same way
as the ordinary height gain function to evaluate the gain caused by the variation in height of
the transmitter and/or the receiver.

3.2. A Bluff at Coastline

This is the case where |¢.|<<|qs| for vertical polarization or |g.|> > |¢:| for horizontal

polarization (see fig. 7). For the numerical illustration, ¢, and ¢, were chosen to be ¢s=—150
and go=—110"% and the values obtained are shown in figure 10. The flat earth values were

computed using formula (32) with
y32:y:k1]l (2/[{'1(1/)1/3,

h being the height of the bluff. Figure 10 again shows that the flat earth values give the
asymptotic values for ¢,<< 1. Also shown here is the interesting phenomenon of increasing
field strength with the increase in distances from the bluft on the ¢, side (sea).
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Fiaure 1la.  The form of terrain used in conjunction
with figure 11b.
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]
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consisting of two different sections.

for several values of the numerical distance cs.

4. Field Distribution as a Function of Height Over Mixed Paths

The field distribution as a function of the height over a homogeneous earth has been
numerically treated by many people. However, there have been few attempts made to find
the field in the case of mixed paths. A sketch of mixed paths is shown in figure 11a. In this
sketch, the transmitter and the receiver are located over sections of different electrical properties
and one of them, say the receiver, is allowed to vary in height.

In figure 11b, the field strength is plotted versus °

Ieyh(2/kya)
for ¢;=10 and some values of

= (ro/a) (ksa/2)*

both for this case (solid lines) and for a homogeneous earth (dotted lines) specified by ¢;.  When
the receiver is above the optical boundary point (noted in both figs. 11a and 11b by a cross),
the field strength becomes more and more dependent on the earth’s electrical properties on the
transmitter (¢,) side; this is indicated by the asymptotic behavior of the curves in figure 11b.
[t may be remarked that, although the field strength approaches the values for homogeneous
sarth at large heights, the points of approach are much higher than the optical boundary points;
furthermore, the field strength oscillates with the height at larger heights. This oscillation
may be reasonably interpreted as the interference between the principal wave and the wave
induced at the boundary of discontinuity between the two sections of the inhomogeneous earth.

5. Formula for the More General Case

Formula (3) gives the attenuation when the wave is propagated over an inhomogeneous
earth consisting of two different sections. This formula can be extended for the more general
case, illustrated in figure 12. The terrain in this figure consists of several sections (each of
which is a homogeneous surface having different heights and electrical properties), with a ridge
at each section boundary [Furutsu, 1957b]. The transmitter and the receiver are located at
the points x; and x,,;, and the attenuation coefficient 4 is then given by:

A j;Ztn‘ ly—2 1y, lz((,‘/(t,,>]/2A(:I/n+1, 7 c”) lnT(n~D (C"_Q)ln, tn—2
X T=® (Cn—4)zn_2’ tyeg o+ - - T (cs) t, U ™ (02)1& tzfzz(?llz) (38)

6 h denotes the height of the receiver.
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Fiaure 12, The general form of the terrain as used
for (38).

with the conditions similar to (3b). Here, the functions

A(yn+l,ny Cn)tn and T(m“U(anf?)lm.

tm--2

(m=n, n—1, . . ., 4) and f,(y;) are the same as those defined in (5), (6), and (10),
respectively, and ¢ is the total numerical distance.

The above formula, (38), agrees with (3) in the special case of n=4. Also, when a,=
Ay =0Cp—2= . .. =a3=ay—a, formula (38) reduces to the established formula for mixed paths
on a smooth earth [Furutsu, 1955¢]. Further, the following lemmas hold:

T("” (CQ) Lyt Ay, g (I'.D
li“l Z T(M) (Cn)tl, ty ]‘(p) <C(1) tys lq:: (39)
¢n>40 tn L Iv(p) (C//)tl, » amg a,,
Ll >5 B P(e,) 7. tq_flq(qu) :][t”(?/xn); BsZ dp. (40)

ce>1+0 tq

These are required from the self-consistency of the formula when the length of any section
involved in the inhomogeneous earth approaches zero, or when the receiver (or the transmitter)
approaches the boundary of the section.

6. Summary and Discussion

Some numerical results, based on theory developed in previous paper [Furutsu, 1957a,
1957b, 1959, 1963], are presented for several typical cases of inhomogeneous earth. The
results are found for both the spherical earth approximation and the flat earth approximation,
and, as expected, the spherical earth values approach the flat earth values at short distances.
In the special case of a ridge on a perfectly conducting flat earth, the numerical results are also
favorably compared with those obtained using the Fresnel integral.

Many problems which seem to be independent (e.g., mixed paths on a smooth earth,
terrains including ridges, cliffs, and bluffs at a coastline, etc.), can be treated by special
applications of the same formula. For the first illustration, the effect of a ridge on a lossy
homogeneous earth is presented, which shows the obstacle gain at large distances, and the
diffraction loss at small distances. Using the same formula in the second illustration, the
field strength is found for a varying receiver (or transmitter) height when the wave is prop-
agated over a mixed path. These values are presented along with the values for a homogeneous
earth, and the comparison is quite interesting, especially from the optical viewpoint; they
approach the optical values at much higher points than expected and also show an interference
with another wave which is supposedly induced at the boundary of discontinuity of the mixed
path.

The effect of locating a ridge or a cliff on a homogeneous earth is also found by the same
basic formula, and sets of graphs (figs. 13 and 14) are presented showing this effect when the
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Figure 14.—Continued. Cliff gain function |Tc(p)|
as a function of the numerical height p.

distance on both sides of the obstacle is large. As the graphs indicate, the field strength
increases continuously with height (denoted by p) when the earth is a poor conductor (K< <1),
but decreases for small ridge (or cliff) heights as the earth becomes a better conductor. It may
also be noted that for very large heights the gain caused by a ridge is much larger than that
for a cliff of the same height. These sets of graphs may be used in the same way as the
ordinary height gain function has been used for evaluating the effect of antenna height of the
receiver and/or the transmitter.

A subsequent paper will be published containing sets of graphs to aid in finding the field
strength for various values of earth constants, ridge or cliff heights, propagation distances, etc.

The authors express their thanks to L. A. Berry for the use of a few of his subroutines for a
high-speed computer, and also to Mrs. J. E. Herman and W. S. Stevenson for their valuable
assistance in obtaining the numerical results in this paper.

7. Appendix

TIn this appendix a few examples are presented showing the use of the set of graphs (fig.
13) for the ridge gain function.

The basic variables are the numerical distance ¢, the numerical height y=2'%p, and the
earth constants K and b defined in (1), (2), (35), and (36), respectively. In terms of more
practical variables, they are given as follows:

¢=2.188X f'Ra=?"r,

y=9.579X 103X f*Aa~1%h,

p=2-1y="7.603X 10X f2*a"17h,
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(E+s)12{(e—1)2 4%} 11 Ver. Pol.
K=0.3627X (fa)=# X
{(e—1)24s?} 14 Hor. Pol.,

2 tan~! (e/s)—tan~'{(e—1)/s} Ver. Pol.
= (A.1)
180°—tan='{(e—1)/s} Hor. Pol.,

with
s=18q/f.

Here fis the frequency in megahertz, a is the effective radius of the earth in kilometers, r is
the propagation distance in kilometers, £ is the height in meters, e is the relative dielectric
constant of the earth (referred to a vacuum), and ¢ is the conductivity of the earth in mil-
limhos/meter.
In the following, referring to figure 2, a ridge (of height 100, 200, or 300 m) is located on
a homogencous earth of effective radius 8500 km having the constants e=10 and ¢=0.1 (107%
emu) and a vertically polarized radio wave of frequency 300 MHz is propagated from the
transmitter to the receiver, both having the height 10 m, over the distances 7,=7,—100 km.
Then, by using (A.1), the following values are obtained for the necessary parameters:
= =01
K—0.00885,
b—89.99°,
Y12="Y5=0.210,
Yp=yn=2.10  (100), 421  (200), 631  (300),
p=2""Py»=1.67 (100), 3.34 (200), 5.00 (300). (A.2)

Here the values in parentheses are the corresponding ridge heights in meters.
The exact values of attenuation for the data in (A.2) are found, by using formula (3), to
be
|A|=6.201077  (100),  4.27X107¢  (200),  1.91X107  (300), (A.3)

where the values in parentheses are again the corresponding ridge heights in meters.

On the other hand, when there is no ridge, the corresponding attenuations can be obtained
by using the Bremmer series for a homogeneous earth, and the method for obtaining these
homogeneous earth values has been given [Norton, 1941]. The homogeneous earth value,
|Ay|, is then found to be

|4o|=1.4910"". (A.4)
Thus, the ridge gains [A/A4,| are
|A/A)|=4.17  (100), 287  (200),  128.  (300). (A.5)
Here, if Bis defined by
B=c,—ys—y'%, (A.6)

giving the left side of condition (33), it has the following values for the data in (A.2):
B=1.61  (100), 1.01  (200), 0.55  (300). (A.7)

Since b==90° according to (A.2), the ridge gains may be obtained from figure 13.6, and
the values in (A.5) are found to be the same as those from the graph within the range of graphical
error. Indeed, the exact values are

422 (100),  30.2  (200), 147  (300). (A.8)
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Here it is noticed that, as is seen from the values of B in (A.7), the condition given by (33) is
not satisfied for the above data used. However the values in (A.8) may be sufficiently accurate
for practical purposes.

It will be worth while to check a case where B is negative; e.g., when r,=7,=50 km or
¢;=—¢,—1.76 and the other parameters are the same as in (A.2), the exact value of the ridge
gain for h=100 m is found to be

|A/Aq|=3.52 (100) (A.9)
with
B=—0.5.

Here, the corresponding ridge gain from figure 13.6 is about 4.4, and therefore the error caused
by the use of the graph turns out to be about 25 percent or 2 dB.
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