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The effect of fini te compressib il ity of the electron gas is taken in to accoun t in the calculat ion of t hc propa­
gation constant a nd t he power carr ied by a VLF wave propagat ing in the ionosp here. 

The principal r es ul t is that t he electromagnetic wave ("whistler" mode) a nd a quasi-aco ust ic or com­
pressiona l wave are coupled near the critical, or max imum, a ngle of t he wave normal with respect to the d irec­
t ion of t he geomagnetic fi eld . Ncar t he cr it ical a ngle, t he d irection of power ft ow is no longer co nstrain ed to 
lie wi t h in a nitrrow cone of itngles a bout th e geo magnet ic fi eld , bu t energy can p ropagate in a quas i-aco ll st ic 
mode at itll a ngles up to t he cri t ical angle of the wave normal. Because of colli siona l dampin g, t he cfl' ects of 
fin ite co mpr essibi l ity do not appear to be detectable unless t he electro n te mperaturc in t he ou ter ionosphere 
cxceeds 10' ° IC 

1. Introduction 

R ecen t expel'i men ts in comm u ni cation with satell ites and spnce probes II aye stim ulated 
consid erable in terest in st udi es o f' pl'opagatio n or electro magne ti c wn \"es in ionized gases. Thi s 
interest l ias not b ee n confined to th e high er l'ad io f'l'equen cies, but exte nciS to the VLF band as 
well. Although mucll or th e ba sic pb el]omenon o r VLF propH,gation within th e ion os ph ere 
has been satis ractorily explain ed b y Storey [1953] and b y mOre recen t workers (1'01' example, 
[Helliwell a nd Morgan , 19,59; Smi th , H elli well , and Y abrofl', 1960 ; Yabrofl', 1961]), in co nn ec­
tion with t b e stud y 0 (' atmosph eric " whis tlers," the possibility o r pcrl'orming satellite experi­
m ents [Lei ph art ct al. , 1962; Ca i n et a1., 1961] at VLF, u tilizi ng a n ten nas located wi thi n the 
ionosphere, afl'ords t]le opportull ity o f' m easurin g othe r efrec ts whi ch may not be m easured 
directly from tllC g round. 

One 0(' the efl'ects whi ch has not prcviously becn accounted roJ' in tll e tl1 cory 0 [' ionospll eric 
propagation is the fi nite compressibili ty o f the electron g,lS. T il e effec ts 0 r fill ite compressi­
bility may not be apparent at frequcn cies above the gyrof'req uency, becn,use o r the grC<Lt dis­
crepancy in th e propa gation " elocit ies of electromagnetic and ,1 CO Ll SLic w,wcs. A t VLF, 
IlOwever, t he great ph asc retardation o r th e electromagnetic wa ve whi ch can Occur appears to 
provid e favorable cOllditions for interaction 0(' t he electl'o ma,g ne li c waye wit h aD acoustic, or 
compressional wn. ve . It is til e purpose of this paper to i nycstigate the efl'ects o ('fini tc compressi­
bility on the propagation of' small-signal, plane wa \"es at VLF frequencies in a unirorm 
ionosphere. 

2 . Magneto-ionic Theory for an Electron Gas 

In considering propagation at frequencies 0(' several kilohertz and high er , th e mo t ions of 
heavy ions may be ignored. sin ce the ion plasm a frequency and ionic gyrorreq uen cy in the 
earth's atmosphere are less than a few hundred hertz. 

T he field equations for a time-harmonic (e Jwl ) electromagnetic field in an electron gas can 
then b e wl'itten [Oster, 1960] in linearized form for fields of small amplitude (}J.olIr,< < Bo), 
and for zero average drift velocity of the electron gas, 

V' X E = -jw}J.oH 

V' X H = jwtoE-Nev 

(1) 

(2) 

1 Pan or the resu lts presented in t hi s paper were given in a paper presented at the [ E EE Symposi um on An ten nas and Propagation in BouI · 
dcl', Colo., J ul y 1963. 
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JW v ·v= - - p 
'YPo 

Vp=-(jw+v)mNv-Ne(E + v X Bo) 

where 

E, H represent the time-varying electromagnetic field intensities, 
Bo is the flux density of the geomagnetic field , 
N is the average electron density, 

(3) 

(4) 

v is the electron velocity, averaged over a small element of volume whose radius is the Debye 
length, 

e is electronic charge, 
m is electron mass, 
v is the electron collision frequency, 

Po is the time-averaged pressure of the electron gas, 
p is the time-varying component of pressure, 
'Y is the ratio of specific heats, eq ual to 5/3 for a gas of free electrons. 

Equations (1) and (2) are just Maxwell's equations, taking into account convection 
CID'I'ents due to electron motion; (3) is the combined equation of contin uity and state, and 
(4) is the momentum equation. 

Equations (3) and (4) can be combined to give 

- 'Y~ovv.v=-(jw+ v)mNv-Ne(E+ vXBo) 
JW 

(5) 

which now gives the behavior of the electron plasma, expressed in terms of the velocity, in 
response to the electromagnetic forces acting upon it. 

Now to solve the field equations (1), (2 ), and (5), consider propagation of a plane wave. 
Expressing the field vectors in terms of a Cartesian coordinate system, and taking the z-axis 
along the direction o[ propagation, it is seen that the spatial dependence of all time-varying 
quantities is given by e- i {3z, where {3 is the propagation constant, which may be complex. 

The two Maxwell equations, (1) and (2), may be combined to give a wave equation, 

v X V X E - k6E = jw,uoN ev (6) 

where lco= w~ ,uOEO is the wave number in free space. In view of the assumed plane-wave spatial 
dependence of the fields, (6) becomes 

(7) 

It is convenient to write (7) in matrix form, observing that (V, E ) = {32Ez, obtaining 

h 1 2 ,uoN e2 2 • 
were (n=--=WIl ,uOEo IS 

m 

lk5- f3 2 

. e 
J - 0 wm 

o 

o 
:]. E= k! v 

k6 

(8) 

o 

the square of the wave number corresponding to the electron 

plasma frequency. Similarly, by taking the coordinate system such that Bo lies in the x- z 
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plane, (5) can be written as 

where 

.wm L =-] - ·v 
e 

2 ,,(Po· h f' h . I ' . 1 d' U = Nm IS t e square o · t e aco ustIc ve oClty 111 tle me lum, 

WL= W cos fl , 

W7' = Wo sin fl , 

wo=~ E o, the electron radian gYl'ofrcq uency, 
m 

e is the angle between the direction of t he wave normal and the geomagnetic fi eld. 

(9) 

The acoustic velocity is directly r elated to the temperature or the electron baas, u2= "(kT, wh ere . m 
T is in degrees Kelvin, andle is the Boltzmann constant. 

Combining (8) and (9) and eliminating E gives a determinan tftl equation for t he propa­
gation constant, 

(10) 

. W 'f ' le? ] - 0 
W 

It is the solut ion of (10) for values of (3 whi ch is now of co ncern. 

3. Perturbation Solution of the Determinantal Equation 

The d eterminantal (10) yields a cubi c equation in (32, with complex coeffi.cients. An analytic 
solution of the equation is difficult except for some special cases, wh en the direction of propa­
gation is either along, or transverse to the direction of the geomagnetic fleld. For the trans­
verse case, there are no solutions which yield Re ((3Z» O, or a propagating wave. In the longi­
tudinal case, two such solutions occur. One of these values of (32 corresponds to whistler mode 
propagation, and the other to a longitudinal acousLic wave. 

A perturbation solut ion to the determinantal equation may be obtained using the solutions 
for longitudinal propagation as the zero-order solution. The first perturbation of the equation 
will be shown to give a propagation constant for the electromagnetic wave which is recognizable 
as t he qu asi-longitudinal approximation of magneto-ionic theory for an incompressible plasma, 
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plus another propagation constant for an acoustic wave. Application of the perturbation 
method to obtain a second order correction is not fruitful, since the perturbation parameter is 
not small for all angles O. 

It is useful to rewrite (10) as an operator eq uation 

[

U-j.Z)( l - A)-X 

Sx· v = JYL (l - A) 

° 

-jYL (l-A) 

(l -jZ) (l-A)-X 

jY 7• 

where, in the usual notation for the magneto-ionic theory, 

and, in addition, 

2 k? 
X_Wn_~ 

- ?- k 2 ' 
W- 0 

} T _ WL 
L--' 

W 

Y _ WT 
T-- J 

W 

-jY TOU-A) ].v=o 
1-jZ-VA-X 

(11) 

and A is the sq uare of the refractive index. It can be seen that f.. is an eigenvalue of an operator 
So by separating the terms containing f.. from Sx , 

(12) 

The operators So and I'- are, in matrix form, 

[P-X -jYL -:y,] So= j:L p-·x 

jYT P-X 

(13) 

F[ J~" 
-jYL 

-:T] p 

° 
(14) 

where P = l-jZ. 
The eigenvalue equation (12) can be put into a more conventional form by a coordinate 

transformation diagonalizing 1'-. This can be accomplished by defining 

which gives the eigenvalue equation 

where 
PX 1-P2_ Y i 

T·x - A,x= O 

PX 
1 P2-Yi 

. PYT 

J P2-Yi 
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The operator T is now written as the sum of a zero-order term and a perturbation term , 

wh ere 

and 

o 

, XYL 

-J r - Yl 

o 

o 

o 

j P 

XYL 

17 
,PX 

- J V 

PY 1' 
-17 

(18) 

(19) 

(20) 

Thus To corresponds Lo the qu asi-longitudinal approxim ation of magneto-ionic tl leory, and Lh e 
expansion parameter of th e per t urbation is Y1' /-,/Yi- P2 • 

The eigenvalues and cOlTesponding norm alized eigenvectors of 1~ are 

x x ~Ol= ( ~, - .7 o} \ (0)= 1- --, - , (21 a) 
I P - } 'L , 2 ./2 

\ (O)- l -~ x;0l= (,12, .2, o} (21b) 
2 - P+YL' 2 

\ (Ol _ P - X 
3 - ---v-' x~o) = (0, 0, 1) . (21c ) 

In calculatin g the eigenvectors, th e cl ampin g has been n eglected , by taking P = l. This is 
justifiable for the case oJ small losses sin ce Ul e eigenvecto rs ~U' e to be used only in power cal­
culations, in which a vector is mu ltiplied by i ts eo mplex conjugate in order to find real-valued 
quan tltlCs. In such calculations, Lhe errol' in culTed in neglecting Z in the eigenvectors will be 
of order Z2 in the power calculations, and cnn thererOl'c bc neglected for Z2< <1. 

The firs t-order approxim ation to the eigenvalues is now calcula ted from t he zero-order 
eigenvectors and the operator T, 

These are 

'XJOi ' r. X!Ol 
x)O) . x!0) 

(22) 

(23b) 

(230) 

Since V is ordinarily a very small number , only terms containing negative powers of V h ave 
been retained in the expression for A~l ). 
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For Z< < 1, the complex eigenvalues can be expanded to first power in Z, giving 

(1 ) _ x ( . z ) 
Al - 1-I-YL I + J l - YL ' (24a) 

(1 ) _ X ( +. Z ) 
A2 - 1-I+ YL 1 J l + Y L ' (24b) 

A 3(1 ) l-X-JZ n, ( I ' Z ) 
V V(1-YD 1,-J l -YD • 

(24c) 

It can be seen that the first two eigenvalues still agree with the results of the QL approxi­
mation of magneto-ionic theory, in which only one of these eigenvalues has a positive real 
part for X>YL>1. The third eigenvalue has a positive real part for YNCYi-l»X-l, 
which indicates that a quasi-acoustic mode can propagate over a narrow cone of wave-normal 
angles near the critical angle for whistler mode propagation, which is given approximately by 

The damping of either the electromagnetic whistler mode or of the quasi-acoustic mode be­
comes large near the critical angle, thus the acoustic mode may not be observed due to exces­
sive damping if the cone of the angles along which it may propagate is too small . The width 
of this cone can be shown to be approximately given by 

Thus the acoustic wave with low damping can probably be observed only in the outer iono­
sphere, above the height of maximum electron density in the F2 layer. 

It is now of interest to examine the first-order approximation to the eigenvectors. These 
are found from perturbation theory by writing the eigenvalue equation as 

[T - A]' X= [To- A CO) ] . X CO) + a[To - A (0) ]. (x (l) - XCO» + a[T1-(A (1) - A(O» ]. X (0) + 0(a2), (25) 

where .a IS a dumm y perturbation parameter , Since [To-A(O )] ,x(O) = O, x (l) can be found by 
setting 

[To- A (0)]. (x (l)-x (0»=-[T1- (A (l )- A (0» ], x (O) 

and solving for the vectors x (l) subject to the restriction 

(x (lJ- x (O») ·x (O)=O. 

(26) 

(27) 

This restriction enables x (l) to be specified uniquely, The new set of vectors which are found 
by this procedure are, again neglecting Z in solving for the eigenvectors, 

Xj1)= (I,- J'( I _ V) (l-i:~X) + XYL} 
X~I)=(I , J , Yl'l1 ) , 

(1- V) (l + YL- X) - XY L 

x.,\lJ = ( XY 7, J' XY 1, 1) 
> (I -X) (I -YD' (I - X) (l -YJJ' . 

4, Poynting Vector 

(2Sa) 

(2Sb) 

(2Sc) 

In order to find the ray direction, or direction of energy transport, it is necessary to evaluate 
the power flow from the generalized Poynting vector, Thus for a wave having both electro-
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magnetic and acoustic energy, the power density is given by 

p = t R e [E X H + pvacoust lc]. (29) 

For plane waves with the wave normal along the z coordinate, this expression can be written as 

1 { (3 [- - (wm)2 - J} P = 2"Re W}Lo E · Eaz-E zE+ - e- XVvzvzaz . (30) 

To find the quantities of interest, v and E from x, it is necessary to invert the transforma­
tion (15), finding 

V = }L - l. X. (31) 

This form is appropriate to find vz for use in the power calculation (30), but is not appropriate 
to find E. The electromagnetic energy term should not depend on the longi tudin al velocity 
componen t, so we fi nd that part of the electric field which con tr ibutes to the electromagnetic 
power How by employing a proj ection operator, 

(32) 

Then, for use in the calculation or (30), 

E .wmL 1 Q = - J- ' }L - ' , X 
e (33) 

where L is tIl e operator defin ed by (9). 
One finds then that 

(34a) 

and, for X « 1 so that X/(X- I)~I, 

E 'l) - 7' wm ~ (J - J' Y / (1- Y )i 
3 - . e 1- y~' ,T L " 

(34b) 

From these vectors, the power expressions are easily calculated , 

(35a) 

(35b) 

The ray directions, or directions of power How, deviate from the wave-normal directions by 
angles 

(PiX) lfi= arctan P iz ' i=I,3. (36) 

Because the ratio X /V is a very large number, it is seen that the ray direction of the quasi-
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acoustic wave, P 3, is nearly along the wave normal, whereas that of the quasi-electromagnetic 
wave, PI, becomes very nearly in the direction of the geomagnetic field for angles near the 
critical angle, if Y> > l. 

The wave impedance of the quasi-electromagnetic and the acoustic waves can also be 
determined from the power calculation. Defining a wave impedance in the direction of the 
wave normal by 

IPI 
Z Z= H 2' 

the impedance is found to be 

[ (Wm)2xv _] -- VzVz 

Z z= wjJ.:! 1+ e . 
(3 E· E-EzEz 

(37) 

In the quasi-electromagnetic wave, the ratio of acoustic to electromagnetic energy is 
small, and the impedance becomes approximately 

(38) 

For the quasi-acoustic wave, the acoustic energy is many times greater than the electromag­
netic energy, and the wave impedance is correspondingly greater, 

(39) 

As a result of the disparity in wave impedances, an antenna ",,-hich is designed to radiate an 
electromagnetic wav e efficiently will not couple greatly to the quasi-acoustic wave, and in order 
to observe acoustic wave propagation in the ionosphere, it may be necessary to employ special 
antennas. 

5. Some Numerical Results 

In figures 1 and 2 the refractive index is given for a lossless ionosphere (Z= O) as a function 
of wave-normal angle for parameters X = 50 , Y = 7.8, V = 0.002 2, as obtained by a numerical 
solution of the exact determinantal (10) . The refractive indices obtained by means of the 
first-order perturbation solution ar e also given in :6.gure 2 for comparison . The longitudinal 

.....-------
e ------- ------
~~---------

- - --- . 

FI GURE 1. S ection oj TejTactive i ndex 8mface f or X = 50, Y = 7 .B, V = 0.002. 

1' hc angle 0 is the inclination of the wave normal wi th respect to the geomagnetic fie ld . 'rhc arrows alon g the curve ind icate directions of 
power flo w for waves having \Oarious wave-normal angles O. 

' These parameter values correspond roughly to a model of the earth 's ionosphcro at a d istance of sli ghtl y Illore than one eartb radins above the 
earth 's surface. '-rhe value of 17 corresponds to an electron temperature of about 7X lOti 01":' . 'Phese values were not chosen to give a realistic 
approximation to any actual conditions so much as they " -e},e chosen to give results which could be illustra ted graphicall y. A more realistic 
set of values would have X~400- 7000 and V~5X(1O-'- 1O-') , yielding a larger critioal angle and a n arrower COIlO of angles in which the q uasi­
acoustic wave can propagate. 
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F IG URE 2. Refractive index as a .function of tan 8, 
indicating the transition from a quasi-electl'omagnetic 
to a quasi-acoustic wave. 

The fi rst-o rder pert urhat ion solut ion is co mparcd with tho exaet 
so lution of thc determ ineutal equation fo r X =50, Y = 7.8, V =O.002. 

acoustic wave is not shown in these fig ures. It is confined to wave-normal angles v ery near 
the direction of the geomagnetic field and does not couple wi th the electromagnetic wave. 

The curve of figure 1 shows the refractive indl'x and the direction of power flow, or ray 
direction, versus wave-normal angle with respect to the direction of the geomagnetic fi eld . 
Up to t he angle of transition from the quasi-electromagnetic to the quasi-acoustic wave, th e 
r efractive index is similar to that for the whistler mode in a cold or incompressible ionospher e, 
a nd the ray direction is approximately normal to the plane tangent to the r efractive index 
surface, as for the incompressible case. For larger angles, the wave becomes primarily acoustic 
in natme; the refractive index increases very r apidly with the wave normal angle, and th e 
r ay direction is nearly along the wave normal. 

From the approximate form (24c) for the square of refractive index, it is seen that the 
quasi-acoustic wave exists from an angle 8A to Be, where the angles are r elated by 

(40) 

6 . Damping Effects 

D amping effects can be accounted for by collisions between electrons and h eavy particles, 
principally positive ions and neutral atoms . The scattering cross section presen.ted by charged 
ions to electrons is rela ti vely very large at low electron temperatmes, due to the long range of the 
Coulomb force. H owever , as the temperatme, or mean kinetic energy of electrons increases, 
the scattering cross section of ions decreases, until at approximately 1.8 X 105 OK the scattering 
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cross section presented by the Coulomb potential is no greater than is that of short range forces. 
The result is that the collision frequency in the ionosphere can be extremely low if the electron 
temperature is of the order of 105 OK. For instance, if X = 50 , T = 105 oK, and it is assumed 
that the density of positive ions is equal to that of electrons, while the density of all heavy 
particles is 10 times that of electrons, then the collision frequency, estimated by the formulas 
given by Cowling [1945] would be approximately 8 X 10-\ giving Z at 18 kHz equal to 4.4 X 10- 8 • 

The darnping of the quasi-acoustic wave will be greater than that of the quasi-electromag­
netic wave , particularly near the region of coupling of the two waves. The ratio of attenuation 
constant to propagation constant for each of the waves is approximately 

tan (1)1 (41a) 

tan cf>3 
I 1m {J~ll .. , } Z 
Re (J~1 ) 2 (YL- 1)·h-(1-X) (l-ywn'" (41b) 

Near the transition angle, the denominator of the term on the right of (41 b) is small, giving 
a larger damping term than that of the quasi-electromagnetic wave. At the transition angle , 
damping will be greater, the smaller the value of V. For very small values of V, corresponding 
to electron temperatures in the range 103 OK or less, the damping will probably be so great 
as to prevent observation of a quasi-acoustic wave at wave-normal angles near the transition 
angle in any part of the ionosphere. 

7. Conclusions 

From the analysis presented here it appears that quasi-acoustic waves can be propagated 
within the ionosphere at VLF frequencies provided the electron temperature is sufficiently 
high (104- 105 OK). These waves will be coupled with the propagating electromagnetic waves, 
the so-called "whistler" mode of magneto-ionic theory, near the critical angle between the 
wave normal and the direction of the geomagnetic field. 

The effect of losses due to collisions between electrons and heavy particles is important, 
and in general the quasi-acoustic wave is subject to greater damping than is the electromag­
netic wave. The damping of the quasi-acoustic wave increases with increasing electron density 
and decreases with increasing electron temperature. Damping prevents observation of the 
quasi-acoustic mode in the lower part of the ionosphere. 

It also appears unlikely that waves propagating in a natural whistler mode which couples 
in the outer ionosphere to an acoustic wave will be able to be detected at the earth's surface, 
although this conjecture has not been confirmed by ray-tracing calculations. However, 
only waves which have wave normal directions near the critical angle with respect to the 
geomagnetic field will be appreciably coupled , and such waves may either be "lost," leaving 
the earth's field, or may be highly attenuated in the lower region of the ionosphere. 

Acoustic waves at VLF may also be directly excited by radio transmitters located on earth 
satellites or by large-scale disturbances, such as nuclear explosions in the upper atmosphere. 
The possibility of excitation of such waves should be taken into account in the design of VLF 
satellite transmitting antennas, as the effect on the antenna impedance could be appreciable 
for certain orientations with respect to the geomagnetic field. 
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