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An approximation mcthod for calculating the diffract ion of electro mag netic waves 
from perfect conductors coated with weakly scattering material is developed, whi ch co nsists 
essentially of a co mbination of the physical optics approximation (for t he perfect conductors) 
with t he eikonal m ethod of Saxoll and Schiff (for t he coatin g). A Born-type expression fo r 
t he scattering amplitude may be obtained as a simplified version of t he more genera l results, 
but is shown to be of qualitative valu e only . N um erical results a re prese nted for the 
case of nose-o n backscattering from a dielec trically coated semi-infinite perfectly conductin g 
cone. For t his spec ial exa mple, we alternati vely use an exact eikonal Green 's function, 
thus exte ndin g the r esults of t he Saxo n-Schiff eik onal met llOcI to illclude small co ne open ing 
an gil's and arb it ra ry complex d ielectric co nstant a nd permeability of t he coatin g. In an 
appen di x, the same problem is t reated by t he stra igiltfor\\'arci phys ical-optics approx imation. 

1. Introduction 

Some interes t has arisen r ecently in the scat tering of elec tromagn etic waves from coated 
bodies [Hiatt, Siegel, and ' Veil, 1960; Weston and I-Iemenger, 1962). Th e following paper is a 
contribu tion to this subj ect. ' "Ale consider a situittion where perfect conductors and weak 
scatterers (complex dielectric constant and permeability with magni tudes neitf unity) are 
present simultaneously, and develop a method, b ased on the application of Green's Lheorem 
and combining the usual Kirchhoff method (gen eralized to the vector case by Somm erfeld 
and by Stratton and Chu) with the eikonal method [Saxon and Schin' , 1957; Brown, 1959; 
tiberall , 1962) for calculating the electromagnetic fleld scattered from such it system of ob
stacles . The general method is outlined in scction 2 and carried as far as possible, al though 
application s of (21) to specifi c examples still require , as in the Kirchhoff approximation , a 
judicious choice of physical-op tics fields. Section 3 applics the method to scattering from a 
semi-infinite perfectly conducting an uniformly coated cone- not a completely gen eral ex
ample, since complications arising from shadows are avoided. Here, Born-type fields are also 
obtained as simplified forms of the results, but are shown numerically to give only qualitittive 
approximations. In section 4, the problem of the semi-infinite coated cone is treated again, 
this time using an exact eikonal function rather than one corresponding to straight line propa
gation; the results are thereby extended to small cone opening angles and arbitrary scattering 
power of the coating. Graphs of the radar cross sections are presented. In appendix 1, physi
cal-optics fields of coated, perfectly conducting planes are worked out. Appendix 2 treats the 
problem of the coated cone by the straightforward physical-optics approximation. 

2. General Formulation 

The essence of our method will be an application of Green's theorem to M ax-well 's eql1ations, 
in order to express the scattered fi eld at infinity by the values of the field integrated over all 
boundary and discontinuity surfaces, as well as over the volumes of the scatterers coating the 
perfect co nductors. Analogously to the customary physical-optics (or Kirchhoff) approximit-
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bon, the fields in the integrals may then be replaced by those present on the surface and in the 
coating of an infinitely large, perfectly conducting coated plane ; as usual, this should give good 
results if the radius of curvature of the bodies is large compared to the wavelength. The usc 
of the eikonal rather than the free-space Green's function is expected to improve the results 
over those of Born appro:A"imation similarly as in the diffraction from an isolated weak scatterer 
[Uberall , 1962]. 

With a harmonic time dependence exp (-ikt) of the fields (setting c= 1, EO = J.Lo = 1) , Max
well's equations become 

V X H = -ih/E, 

The dielectric constant is complex: 

v= cr/h , 

and so may be the permeability J.L. Taking the curl of the first equation (1b) , one has 

a wave equation with propagation constant 

(la) 

(lb) 

(2) 

(3) 

(4) 

To apply Green's theorem, the eikonal Green's function of Saxon and Schiff [1957] ·will 
bused: 

(5a) 
with eikonal phase 

( p A 

D (r, r/ )= Jo [K (r/ + ps)-k]ds (5b) 

(p= r- r/ , p= p/p) , corresponding to propagation along straight line paths . This implies that 
we shall always consider situations where, besides perfect conductors, only wealdy scattering 
bodies (with magnitudes of e/ , J.L not much different from unity) are thought to be present. 
We can then introduce a dyadic 

[f(r, r/) = g F(r, r/) (6) 

with g the unit dyadic, satisfying the wave equation 

(7) 

where S = D + kp. Now, we shall use the vector Green's theorem [Stratton, 1941j 

Is n · [B X v X A- AX v X BjdA= Iv [A · V X V X B- B· v X v X Ajdr (8) 

and identify 
(9) 

a being an arbitrary constant vector. The expressions (3) and (7) will then be introduced in 
(8). Before that, however , we have to specify the surfaces S and volumes V over which the 
integrals in (8) ·will be taken. Since the bodies h rwe sharp surfaces which will give rise to reflec
tions , we shall apply (8) separately to all regions Vi of space separated from the other regions 
by closed surfaces of discontinuity. These are: (1) the material surfaces across which there 
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are abrupt changes of e' , fJ. as well as of the fields, due to the boundary conditions 

n X (E1- E2) = 0, 

n X (H 1- H 2)=K, 

(lOa) 

(lOb) 

with n the surface normal, wand K being surface charge and current density (the latter non
vanishing only for perfect conductors ; in the interiors of those the fields themselves vanish); 
and fur ther (2) the boundary surfaces of the "shadows" of the material bodies which would be 
produced by a light source in r '. The reason for this is that the S appearing in (7) has discon
tinuous derivatives across these surfaces, and it may even be discontinuous itself when the 
shadow surface coincides with a material surface. After application of Green's theorem , we 
shall let r ' go to infinity; the shadow "cones" will accordingly tend to cylinders. The boundaries 
between V i and V k shall be considered as double surfaces, i .e., S ik bounding V i, with normal 
vector D i pointing into V k, and S ki bounding V k, with normfLl D k pointing into V i. Green's 
theorem applied to all V i, and all the results added together then leads to : 

~ r Di . [Fa X v X H - H X ((v F) x a)]dS= - a.H ' + a . 2: r {FH [(V S) 2_ip2V. (p- 2v S)- IC] 
.k J Sik • J Vi 

+ H · VVF - Fe' - l(Ve ' ) X V X H }clT, (11) 

where we write for simplicity: H (r ) = H , H (r ') = H '. Next, we split ~ into those contribu
ilc 

tions which together add up to thfLt from the surface borde ring infini ty, S oo , plus the sum ~' 

over the rem fLining boundary surfaces . Using the asymptotic form of the fields , 

(12) 

with no· Ho= O, no being a uni t vector alo ng the direc t ion of incidence of t he radiation , fLncl 
k = kr /I', ko= kno, we find 

where 

r Doo' [Fa X VX H - H X ((v F ) X a)]dS= - a. Hoei(ko· r'Ho(r')l, 
.J SCD 

oo(r)= 100 

[K( r- nos) - k ]ds. 

The limiting expression of F , 

lim F(r, r ') = - (47r1') -lei(kr- k . r')eio+(r 'J 
r---> 00 

has also been used, with 

o+(r ') = lim D (r, r')= r oo [K(r+ ns)-k]ds. 
T-7 CD J 0 

(13) 

(14) 

(15) 

(16) 

Equation (13) represents the plane incoming wave in (12) which is modified only in the exact 
forward direction Do by the phase shift 00, as pointed out earlier [Uberall, 1962]. Extmcting fur
ther the vector a from the remaining surface integral by the use of some vector identities 
[Stratton, 1941], we obtain 

H ' = Hoe i(ko· r'+o~)+ L.;' r dS[(DiX H )X V F + FD iX (V X H)] 
.k J Sik 

+ 2f I vdr{FH [(VS)2_K2_i p2V. (p-2v S)] + H. VVF - Fe' -l(Ve' ) X v X H }. (17) 
• 

This can further be simplified if we consider on the one hand a sum. ~' over the volumes of all 
i 

material bodies plus possible free space volumes enclosed by bodi es (all these are finite volumes), 
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and on the other hand a sum 2:/1 over all shadow volumes in free space that reach to S oo ; in 
i 

them, Vt' = O. The remaining volumes are just free space reaching to S oo , with VE' = O, I-{= k, 
S = kp, and thus in these volume integrals, the square bracket vanishes. When we finally in 
(17) let r ' tend to infinity along n = r' /r' in order to obtain the asymptotic form (12) and to read 
off the scattering amplitude A, we have to remember that such a limit may be taken before the 
integrals are actually performed only if they are "restricted," i.e., if the integration goes over a 
finite volume or surface. In order to achieve this, we want to transform some of the integrals 
containing H. vv F into surface integrals. Consider the expression 

~ L ikdsn i • [(v X H ) X v (a . VF)), (18) 

integrated over S oo , the shadow surfaces in free space reaching up to S oo , and the surfaces separat
ing the material from all free space that reaches to S oo . By application of Gauss' theorem and 
Maxwell's equations in free space, we may transform this into 

(19) 

over all volumes in free space that reach to S oo . However, the contribution to (18) from S oo 
vanishes due to the boundary conditions (12) and (15); using vector identities, it becomes 
further 

~"J~'kdS [n iX (V X H )]. v (a. VF), (20) 

where 2:/1 includes the shadow surfaces in free space reaching up to S oo (but not S oo itself), and 
i k 

the surfaces separating the material from all free space that reaches up to S oo . An example for 
all such surfaces and volumes will be presented in the figure of the following section. Altogether, 
we have for our general results the final expression 

H' =Hoei(ko . r ' Ho')+~' Is"dS [(niX H ) X vF+ F n iX (v X H )] 

+k-2~" Is/S[niX (V X H )]. vvF 

+~' Iv, dr {FH [(VS )2_ J{2-ip2v· (p -2V S)] 

Just as in the case of the usual Kirchhoff theory, the general procedure stops here with the advice 
to insert physical-optics fields into the integrals, which have to be chosen specifically for fitting 
each individual situation. For example, in the case of a perfect conductor covered with a 
uniform coating, one might use the known fields present on the surfaces and in the coating of a 
coated perfectly conducting infinite plane, for the illuminated side of the 0 bj ect; zero in the 
region shadowed by the conductor. Some general remarks may, however, still be made: (a) 
All integrals over the volume of the perfect conductors and their shadows, as well as over the 
surfaces bounding them, vanish due to the factor exp (iD) (or exp t.io+)) which contains J{, its 
imaginary part being positive and >"oJ (J"l /2 , tending to + co for perfect conductors. (N ote that in 
the shadow, the line of integration of D or 0+ still passes through the conductor.) (b ) The 
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Born approximation is valid when the eikon al phase are small, and may be obtained from (21) 
by taking the limit 80---70,8+---70. Since 8+ gener at es the discontinuity surfaces of t ype 2, these 
surfaces will be absent in B orn approximation . Indeed, Green 's theorem would in this case 
have been applied to the m aterial surfaces and volumes only, excluding the volumes of the 
perfect conductors, and only t hose integrations will appear in the Born equivalent of (21 ). 
(c) Guided by the Born approximation , the integrals in :8', :8" over the shadow surfaces reach-

ik ik 

ing to 8 ", could quite possibly be dropped al together if physical-optics fields cannot easily be 
found for them. This would also be suggested physically by the fact that shadows of finite 
bodies do no t reach to infinity , but are washed out over distances ?:. R2jA, where R is the dimen
sion of the diffracting obstacle. (d ) The remaining surface integrals, as well as the integrals 
in :8', are all restricted, and the limit r' ---7 00, equivalen t to (15), may be tak en in them im-

i 

mediately. (e) The remarks under (c) can also be applied to :8". However , these integmls 
i 

may be transformed into integr als over r estrict ed regions by methods outlined earlier [Saxon 
and Schiff, 1957 ; Uberall, 1962]. (f) Our suggested method t o obtain approximate solution 
out of (21) is not t he iteration metb od of Saxon and Scbiff l1 957J, but is comparable to t he 
more intuit ive Kirchhoff approximation [Sommerfeld, 1959]. The condit ions of applicability 
of the meth od are t hen n o longer th e clear-cut ones of t be iteration [Ubel'all, 1962, (24), (28)], 
e.g., leR> > 1, but become mor e obscure. Generally spealcin g, it is known that Kirchhoff 's 
method works best when t he wavelength is small compared to t he longest dimension of the 
obstacle. (g) Due to the boundary co ndition on t he surface of a perfect conductor 

[from (lOa ), owing to the vanishing of the fields in perfect conductors], and from M axwell's 
equation (lb, first equation), the econd in tegral and t he second term in t he fil'st in tegral o[ 
(21) vanish on these surfaces. This is the essence of all t he methods using th e formula of 
Stratton and Chu [Stratt on , 1941 ; K err, 195 1] for t he calculation of t he scattered fields. 

3. Application to a Semi-Infinite, Perfectly Conducting Coated Cone 

The method ou tlined in the preceding section will now be applied to a specific example, and 
many of th e general ideas may become clearer in the application. The example ch osen, namely 
diffraction of clectromagnetic waves by a semi-infinite perfectly conducting co ne coated wi th a 
homogeneous weakly scattering materi al of uniform. thickness, represen ts, however, not the 
most general case, since it avoids all the complica tions arising from the shadows. \7\T e shall 
star t out with a fini te coa ted cone, as shown in figure 1. The sums over integr ation surfaces 
and volumes needed in (21 ) are here as follows: 

:8' contains 8 01 , 8 10, 8 12, 8 21, 8 23 , 8 32 , 8 ]4, 8 41 , 8 04 , 8 40 , 8 34 , 8 43 ; 

ik 

:8' contains VI, V2 ; 
i 

:8" contains V 3, V4• 
i 

Since F= O inside the perfect conductor V 2 and its shadow V 3, the volumes 112 and V3 and t he 
surfaces 8u , 831 may be dropped. The semi-infini te co ne may be con idered as a limiting case 
o[ figure 1, with ro ---700. The cone bas is, as will be demonstr ated later , and the shadows are 
then removed to infinity and give no con tribu tion, so that all surfaces and volumes with indices 
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s~ 

FIGURE 1. Material and shadow volumes and sw'
faces for the case of a finite coated cone. 

3, 4 may also be dropped; this leaves us with: 

2:::" con tains SOl; 
ilc 

2:::' contains VI; 
i 

2:::" gives no contribution. 
i 

We also assume homogeneous coating, thus Vel' = 0, and further on the conducting surface 
S12, ntX V X H = O. If we call 

(22) 

then, since we cannot consider any scattering in the exact forward direction , 

+k-2 ( dS[niX(V X H)]· v (VF )+ ( (niXH )X v FclS 
) S o, ) S12 

The square bracket in t he last integral may be rewritten as 

If the limit ro-'700 (see fig. 1) is not yet taken in (23), then all integrals are "restricted," and we 
may let r' go to infinity in F(r, r' ), so that (23) represents the scattered far field , related to the 
scattering amplitude A(ko, k ) by (12). 

Let us also specialize to the case of baclcscattering, so that k -'7-ko, 0+-'700' F urther, we 
introduce one common unit normal vector n to all cone surfaces, assumed to point away from 
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the body of the cone. The result is 

H~, c( ro ) = - (47r1.' )-le ikT' { - r _clS[ (n X H ) X V ei(ko· r+oo)+ei(ko· rH o)n X (v X H ) 
JSOl 

+ lc - 2[n X (V X H )). vvei(ko· r+oo) )+ r clS[(n X H ) X V ei(ko· r+oo) 
) 810 

+ ei(ko• rH o)n X (V X H ))- r clS(n X H ) X V ei(ko· r+oo) 
) 812 

The Born-Kirchhoff approximation result. would be obtained from this by letting 00-70, leading 
to a greatly simplified equation. A partially simplified result, which we shall refer to as 
"Born-type" approximation, may be obtained by keeping 00 in the rapidly varying exponentials, 
but n eglecting derivatives of 00. This leads to 

_ r clSeiko·r~ ' (n X E)- r dSei(koorHo)(n X H ) X no 
) S10 ) 812 

+ilcfVI clre i(ko· r+oo)[H(N-1)2 + non o · H )} , (25) 

using n,n index of refraction N= (~'!1-)~=K/lc o 
At this point, the physical-optics approximation will be made. F or th e fields on the 

surfaces of the cone and its coating, and in the volume of the coating, we sh all insert the exact 
fields which are present on t he surface and in the coating of an infinite perfectly conducting 
plane, coated uniformly by a homogeneous weak scatterer of thickness o. Appendix 1 outlines 
how this fi eld is obtn,ined. This is expected to lead to good results if the rn,dius of curvature 
is larger than the wn,velength of the incident radiation. Obviously this is not true in n, region 
with dimensions of less th an a wavelength around the tip of the cone. It i known , however, 
that the scattered field may b e thought to be produced by currents which are set up in a region 
stretching at least a wavelength a way from the tip [V. H . W eston , private communication). 
In any case, the physical-optics approximation for scattering from a perfectly conducting, 
uncoated semi-infinite cone leads to r esults [Siegel and Alperin, 1952) which are in extremely 
good agreement with the exact values [Hansen and Schiff, 1948 ; Siegel et al. , 1955); one may 
therefore expect this to be true to some extent also for the coated cone. 

Since the normal vector n of appendix 1 is not constant as one moves over the surface 
of the cone, we should introduce another reference direction. Using a unit vector e pointing 
from the tip into the cone along its axis (and we shall in the following always put the origin 
into the t ip of the perfectly conducting cone; r p · n = O then still holds), let us decompose the 
incident field: 

(26) 

One then find s 

(27) 

Further , since the Saxon-Schiff method applies to weak scatterers n,nd assumes straight-line 
propagation of the rn,ys, cf (5b ), we sh n,11 for the sak e of consiste ncy and simplicity m ak e the 
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same approximation in the physical-optics fields of appendix 1: set n~~no, n;~ nl' We obtain: 

with 

2i N cos Nex-iJ.l sin Nex 
al~ e " N N . . N ao, - cos ex+'/,J.l sm ex 

a ' ~ ei" NJ.l. . a 
0 - N cos Nex +'/,J.l sm Nex 0, 

b' r-J i" N J.l b 
o= C N J\T +. . N o. cos ex '/, J.l SIn ex . 

(28) 

(29) 

The integrals in (24) will be evaluated for a simple case only, namely for nose-on back
scattering. Then no= e, and the problem becomes very symmetric. For the surface integrals 
we use polar coordinates r,'tJ,cp('tJ, half the opening angle of the cone, is constant) and have 
dS= sin lJrdrdcp. For integrals over SOl or SIO, we shift the origin into the tip of the coating 
by the transformation r' = r + eo csc lJ. For the volume integrals , we use cylindrical coordi
nates p, cp, Z, and have 

also 

r !c po f P cot {i 1 211" 
dT= pdp dz dcp, 

• 0 pcot{) -ocsc{i 0 

oo= k (N- l ) (z+ o csc lJ - p cot lJ), 

voo= - nk(N- l ) csc lJ. 

(30) 

(3 1a) 

(31b) 

It is the surface integral over SI2 in (24) which will, both in the limits 0-70 (or a-70) and 
N -71, go over into the physical-optics result for a bare cone [Siegel and Alperin, 1952 ; Siegel, 
Crispin, and Schensted, 1955] 

(32) 

(actually, in the limit a-70, we shall obtain this result multiplied by a factor 4N(N + I) -2, 
which is , however, ~1 in second order in (N-I), whereas all the other integrals go to zero. 
In this integral, we also have oo = k (N- l )o csc lJ, and generally, no· n = -sin lJ. 

Using (3 1 b), we may rewrite (24) in the form 

where terms of orders (N - l)2 have been neglected, but terms "' CN- l ) were kep t. Use of 
the Born-type a.ppro},,'lmation (25) would have given (33) without the term containing th e 
square bracket (thus leading to inconsistencies in powers of (N - 1». The individual terms 
are: 

(34) 

(34a) 

(35) 

(35a) 
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Ll= f clSn X (n X H )eiko." (36) 
SOl 

L2= f clS(n XH) Xn ei(ko. '+~o) , (37) 
s" 

Since for nose-on scattering there is azimuth al symmetry, we may take H II= O. Equations 
(27) then becom e by a limiting procedure: 

ao= Ho cos <picos l'J , bo= H o sin 'Picos!J. (40) 

In t erms of these quantities , the ph ysical-op tics fields needed in (34) to (39), always using 
the straigh t-line approximation , ar e from (AI2) t o (A 14), (2 ), (29), and usin g Maxwell 's 
equation: 

b. 011 SOl: 

noX (n X H ) = -2N2t,.- 1 eiallo' "no . n[aonoX n + bonoX (n X no) ]eiNko ' 'P, 

n X (n X H )= - 2N 2t,. - leiano· n[aonoX n + bo(no' n)n X (n X no) ]eiNko · ,p. 

noX [(n X E) X no]= 2ij.lt,.- lno · n s in (Nano' n )[aonoXn + bonoX (n X no) ]eik" r" 

(n X H ) X n = 2Nt,.- 1 cos (Nano' n )[aonoX n + bo(no' n )n X (n X no) ]eiko' r" 

H = N 2.6.- 1ei (t llo· n {aonoX n + bonoX (n X n o) + [aonoX n 

(41) 

(42) 

- bo((no' n)n X (noX n ) + n (l - (no' n )2)) ]e-2iNk(no' Il)n. r} eiNko", (43) 
wh ere 

t,. = N cos (Nano' n)+ij.l sin (Nan o' n ) . 

Wi th t h ese fields, the integr als (34) to (39) ar e evaluated in the limi t To ---.) OO or p ---.) oo ; in th is 
case, th ere is n o contribution from the b ase of the cone which moves away t o infin ity; "tip 
scatter ing" alone r em ains . (In the nose-on situation , t here is formally an infinite co n t ri
but ion from the b ase as 1'0---.)00 ; physically, it must vanish due t o the finite conductivity of Hil' , 

and the zero r esul t may also be ob tained by star ting out with non axial incidence and t aking 
the limit of nose-on in cidence afterwarcls.)2 The r esult is: 

(44) 
with 

S = eia[(N-l) csco-sinOl[cos (Na sin l'J)-ij.lN-l sin (Na sin -0) ]- 1 

X {1 +(l -t' )i/lN- l sin (Na sin l'J)e-ia(NCScHcos ocotO) 

+ (N- l ) csc t?H(sin t? +csc t?)(I - cos (Na s in !J)e- i(t(NcscHcos 0 cot 0») 

-sin !J (N + 1) -2(1_e-2iNa cos 0 cotO)]} . (45) 

2 All tbe "longitndinal" integrals (proportional to no) vanisb for nose·on incidence. 
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FIGU RE 2. Radar cross section of a semi-infinite, 
perf ectly condtlcting dielectrically coated cone (nose
on incidence) , plotted versus a = kll (Il = thickness 
of coating) for ,'various values of the refracti ve index 
N of the coating and of the half opening angle e 
of the cone. 

The radar cross section is obtained from 

and we find 

10.-------------------. 

5 
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FIGU RE 3. Comparison of radar cross section of 
the cone considered in figtlre 2 with results of a 
Born-type approximation. 

(46) 

(47) 

where A. is the wavelength of the incident radiation; (47) goes over into the result for the tip 
scattering from a bare perfectly conducting cone [Siegel et al. , 1952 and 1955] in physical
optics approximation if 8 ---71. This is also the limit of (45) for a. ---70 or for ~/ , J.L ---7 1. 

Values of rJ' jA.2 are plotted versus a in figure 2, for a dielectric coating with N = 1.33 and 
1.67, and for three cone half angles, '/J= 30° , 50°, and 70°. The results are expected to be less 
accurate the smaller '/J becomes , since then the basic assumption of straight-line approximation 
will be less accurate even for N near unity. 

The Born-type approximation for 8 is obtained by dropping the term multiplied by 
(N - l) csc '/J in (45). It is clear that this is again less justifiable for smaller angles '/J. A compar
ison is made in figure 3, where rJ' jA.2 is plotted versus a, with and without this approximation. 
One can see that the Born-type approximation reproduces no more than the general trend of 
the complete result in a qualitative fashion; it also exaggerates the diffraction minima, 
similarly as in Uberall [1962]. For smaller angles, the discrepancies become even worse. 
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4 . Use of Exact Eikonal for the Semi-Infinite Cone 

In the general situation of section 2, ftnd in tJl e appli cation to the semi-infinite con e of 
section 3, we restricted ourselves to usin g ftn eikonal Green's fun ction corresponding to 
straight -line propagation [Saxon and Schiff, 19S7] , for r easons of mathematical simplicity . 
This is equivalent to considering a weaJdy scattering coating (dielectric constant and per'me
ability neal' unity) only; for small opening angles of the coated cone, assumption of straight
line prop ftgation will not be Justified unless the scattering proper ties of the coatin g are extremely 
weak. The semi-infinite cone, h owever, is a sufficiently simple obj ect so that one may use an 
exact eikonal Green's function which corresponds to the actual refraction of the rays in the 
coating material. This immediately removes the restriction to hU'ge cone angles and also to 
weakly scattering coating (cf, the remarks (f) of section 2) . The inLegrHls over the mfttel'iai 
boundftries and volume of the coating, in terms of which the far field is given af ter ftpplication 
of Green's t heoren'l, ar e again evaluated by inserting the physicm-optics field of an in6nite, 
perfectly conducting coated plane. 

As in section 2, we begin with the wave equation (3 ) . The eikonal Green's function to 
be used is : 

F (r, r' ) = F(r' , r) = - (47l'P) - l eiS(r , r'l , (48) 

\'1hich satisfies 
(49) 

with p= r- r'. 1£ the eikonal S (r, r ') satisfies cer tain limi ting condi tions [Brown, 19S9], we 
obtain by application of the vector Green's theorem flgain the general equation (21) , 01' for 
the coated cone, (23) for the scattered field ftt r ', where SOl is the boundary just ou tside and 
S10 that just inside the ou ter surface of the coftting, S12 the surface of the coating sepftrating 
it from the perfectly condu cting cone, 111 the volume or t he coating, an d n j the normftl vectors 
of S ik poinLing in to 11k or away from l1i . Later , a common normal vector n pointing out of 
the cone will be used. 

The function S(r , r' ) = S(r ', r) will now be chosen , not as in 2 corresponding to straigh t-line 
propagation from r' to r with W'KB phase, but following a suggestion of Saxon [19S7] as the 
classical action function satisfying 

(SO) 

where l{ is the propagation constan t in the medium in which r is located. For an infmite, 
uniformly coated plane (in an ticipation of the physical-op tics approx'imfttion to be used later) 
[and also for nose-on incidence on the cone when r' is r emoved to infinity (corresponding to 
the far field)], S may be taken as 

with p ' = r - rJ, p" = rl- r' , corresponding to (a) r, r ' both in air , (b) rin t hecoating, r ' in air , 
(c) r in air , r' in the cOfLtin g, (d) r, r ' both in the coat ing. The point r l , situated on the surJace 
of the coatin g, is determined from the law of refraction : 

lcp" X n= l{p' x n (Sl ) 

(for case (b )), with p' = p'/p' , etc., and n the normal vector to t he plane (or the cone) pointing 
into the air. It can be shown easily usin g (Sl) that (SOa) to (SOd) sfLtis fies (SO) as well as 
the necessary limi ting conditions on S [Brown , 1 9S9]; we also used r1 • n = 0 where 0 is the normal 
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thickness of the coating (assuming always that the origin is situated on the conducting surface; 
in this case, we have on the surface of the conductor, r== r p : n · r p = 0; on the surface of the 
coating, r== rc : n · rc= o, both for the plane and the cone). 

To obtain the scattered far field in the direction N from(23), we remove r'sNr' to infinity 
and obtain 

lim F(r, r ' )=_(47rr' )-leikT'e-ik .r'HI+(r) (52) 
r'--7 oo 

with k = kN; 
(53) 

if r lies in the coating, and o+(r) == 0 if r lies in air (this is also the value of 0+ in general if the 
Born approximation, corresponding to S = kp, had been used). 

Considering now only backscattering of the radiation , i.e., N ---7 - no where no= ko/Tc is the 
direction of incidence of the radiation (along the cone axis if nose-on incidence is considered), 
then o+(r) becomes---7 

oo(r)=Kp' - ko' p', 
and (24) now reads : 

H~.c( (0) = - (47r1" ) - Ie ikr' { - r clS[ (n X H) X v eiCko·rH o) +ei(ko. r+oo)n X (V X H ) 
) 8 01 

+ Tc -2[n X (v X H )]· vvei(ko·rHo)] _ r clS(n X H) X v ei(ko ·r+oo) 
) 8 12 

+ r clS[(n X H) X Vei(ko·rHo)+ei(ko.rHo) n X (V X H )] 
.J 81O 

If we rewrite (54) in the form 
oo(r) = g(a-kn . r ), 

we find , using (51), 

(54) 

(56) 

(57) 

with a = ko, N = K /k, and the square root is defined to have a positive real part . Note that 
(53), (54), (56), and (57), as well as the following equations, may b e derived using vector 
identities only (which are formally valid also for complex I{) , rather than geometrical consider
ations. We also obtain t he following identities: 

p'. n=-N - 1[N2-1 + (no' n)2]1 /2, 

p' = (p' . n)-I(r . n -o), 

if we introduce the half-opening angle of the cone 15-, then 

no· n = -sin 15-. 

Analogously to (33), the backscattered far field may be written as 

with J i, Li as before, and with 

760 

(58) 

(59) 

(60) 

(61) 

(63) 



The difference with (33) is now that 00 and 9 are changed; in particular, that 9 [which earlier 
was given by (N- 1) csc tJ] is now no longer considered as small compared with unity, so that 
a term g2M was kept in (62); and that in (62), the exact physical-optics fields above a coated 
plane have to be used, rather than those simplified by the straight-line appro:A'imation , as in 
section 2. These fields have been worked out in appendix 1, and the quantities needed in the 
integrals of (62) are as follows: 

with 

(a) on SI2(r = rp) : 

noX (n x H ) =2M- l[a~(no' n)n X n o+ b~ (p' . n)noX (noX n) ]eiko' rp , 

(n X H ) Xn=2M-l[a~noXn+ b~ (p' . n)n X (n X no) ]eiko.rp, 

where a = ano· n, and 

with 

(b) on SOI (r = rC= rp+ no) : 

!1b= Npl . n cos a' + i MnO ' n sin a', 
a' = Nap' . n. 

noX [ (n X E) X no] = (no' n )[noX nA _ + noX (n X no)B +]eiku.r,., 

n X (n X H ) = [n X noA ++ (no' n)n X (noX n )B _ Jeiko.rp, 

H = M- 1 { a~no x n+ b~N[n- (p' . n) p']+ [a~no x n- b~[ ( p' . n )n X (noX n ) 

(64) 

(65) 

(66) 

(67) 

(68) 

(69) 

+ N n (l -( p" n)2)JJ e-2iNkp .nn . r } eiNkP-- r. (70) 

For nose-on scattering, ao and bo are those given by (40) . 
vVe th en obtain for the in tegrals (for nose-on backscattering), keeping the tip-scattering 

contribu tion only : 

(71) 

(72) 

(73) 

(74) 

(75) 
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L3 = -(8FLlb)-17rHo tan2 lJ eia (w-2 sin ,I) {(w-sin lJ) COS2 lJ [1_ e-2ia(w+cos~ cotM] 

X (W+COS tJ cot tJ)- I+(w+sin tJ) sin lJ[l_ e-'iacos~cot')] }, (76) 

L4 = 0, (77) 

M = (SFLlb) - 17rHo tan2 tJ eia(w-2 sin~) {COS2 tJ [1- e -~ia(w+cos ~ cot~ ) ] 

X (w+cos tJ cot tJ) - I-sin tJ [l -e -Zia cos,) cot~]}, (7S) 

with 
(79) 

As before, we write the backscattered far field in the form of (44) , and obtain for the radar 
cross section (J" the expression of (47). Again, it goes over into the result for the tip scattering 
from a bare perfectly conducting cone in physical-optics approximation if 8~1. This is 
indeed the case for a~O , and/or for f' , f.L~1 , in our expression for 8: 

(SO) 

A =iN {e-2ia esc,) [(w-sin tJ) cos (aw) + i(l- f' - I)W sin (aw)]_we ia(w-2 sin~ ) } , (81) 

B =i sin lJ { e-2iaesc~ [w(w-sin tJ) cos (aw)+iN2( 1- f' - I) sin (aw)] 

+ eia(w-2 sin ,)W [i (w-sin lJ)(l- e- 2ia cos~ cot~) - (W+COS tJ cot tJ )]} . (S2) 

In the same notation , Lla and Llb become: 

Lla= - N sin tJ cos (aw) +if.LN - 1W sin (aw) , (S3) 

Llb=-W cos (aw)+i f.L sin tJ sin (aw). (S4) 

If the limit of straight-line propagation is taken carefully, (SO) can be shown to go over into 
the previous result , (45). 

N umerical results 3 ar e shown in figure 4 where [8 [2 is plotted versus a, for a ranging 
from 0 to 1 . 2, with a cone half-opening angle 0= 10° and for a purely dielectric coating of real 
dielectric constant, f' = 3.0, and f.L = 1.0. For such a small opening angle , the result is a rapidly 
varying function of a= ko, showing pronounced diffraction maA-lma and minima. If the 
expression (45) for [8 [2 had been used (which is not expected to be valid for small 0, due to the 
breakdown of the straight-line approximation), we would have found results resembling those 
of figure 4, but with the peaks vastly larger (by a factor'" 10), of approA-lmately the sam e 
height each, and with a much shallower minimum which, however , was at the same position 
as that in figure 4. For large angles, though, (45) is expected to be a better approximation 
to (80) . 

5. Appendix 1 

In this appendix, we derive the fields on the surface and in the coating of an infinite 
perfectly conducting plane, uniformly coated hy a homogeneous material of thickness a with 
arbitrary complex dielectric constant and permeability. If there is an incident field Eoexp (iko' r) , 

3 I tbank Miss S. E . Ding. (or tbe computation of these numeri cal values. 
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)ISI< for 9= 10·, 0'=3.0, ,...=1.0 
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o 0 .2 0 .4 0 .6 0 .8 1·0 1.2 

FIG URE 4. RadaT cross section f01' axi al incidence 
on a semi-infini te, pe1jectl y conducting dielectri
cally coated cone, plotted versus a= ko (wave num
ber k = 271"/ "A , thickness oj coating 0) JOT E' = 3.0, 
IJ. = 1.0 oj the coating, and a half-o ])ening angle oj 
the cone 0= 10°. 

write the total field aboye (he coating as 

inside the coating as 
(Al ) 

(A2) 

where kO,I= leno,l , k~" = le' n ~,,, le' jle = N = (E' /J. )' /2 (com plex index of r efraction), no·Eo=O, ... 
n;. E;= O, a nd where the laws of r eflection and r efraction ar e 

n;=n~-2n(n~ .n), 

lenoXn=k'n~Xn , len 1 Xn = le'n; Xn , 

(A3) 

(A4) 

wi th n a unit norm al vector pointing from the conductor into the coating . The bou ndary 
conditions (10) require on the outer surface of th e coating (r = rJ: 

(A5) 

and on th e surface of the perfectly conducting plane (r= rp= rc-o, where o= no; we also h ave 
n · r p = ° if t he origin is put on th e condu cting plane) : 

(A6) 

the magnetic field is ob tained from E always by th e first equation (l a) . Equation (A6) is 
satisfied with 

E;=2n (E~ · n)- E~. (A7) 
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At this point, the so-called "impedance boundary conditions" may easily be shown as a by
product; these are 

(AS) 

with 

i IJ- tan k~ . 0 'f E' I 

7J = rlJ"=-N- ,,1 o..l n , no n · no 
(A9) 

(A10) 

and where for a strongly refracting or absorbing medium, iNI> > 1, 

7J J..~ 7J 1 1 ~-iIJ-N- l tan Nko , (All) 

being polarization and angle independen t. 
The reflected and transmitted fields are obtained simply by satisfying (A5). If one 

writes 

then we obtain the results: 

b' - ik. o n ·no N b. 
0 - e 0 I' • k ' 0 n·no- 7J J..?'Sll1 0' 0 

6. Appendix 2 

(A12) 

(A13) 

(A14) 

(A15) 

(A16) 

It may be of interest to see what results a straightforward physical-optics approximation 
would give for the scattering of radiation from a perfectly conducting cone with a homogen eous 
coating of uniform thickness. This calculation will tUI'll out much simpler than the foregoing, 
since it does not incorporate the phase shifts, characteristic for the Saxon-Schiff approximation, 
which appear in the coating and on Sl2 ' 

Consider first a finite coated cone in free space. As before, we start from the vector 
Green's theorem, but use a conventional Green's function, 

(A1 7) 

with p= r- r' , instead of F(r, r '), and integrate over 17=a11 of free space, bounded by SOl (the 
outer surface of the coating), Sb (the base surface of the cone), and Soo (an infinite spherical 
surface with cen ter at the origin which is again put into the tip of the conducting cone). In 
analogy to (17), we find 

(A 1S) 
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and using again the method outlined between (18) and (20), we may transorm this (using a 
normal vector n pointing out of th e con e) into: 

(AI9) 

where we introdu ced Schwinger's [Brown , 1959, a nd Levin e a nd Schwinger , 1950] tensor 
Green's fun ction: 

{t (r,r') = [il - k- 2vv ' ]G(r , r '), (A 20) 

il bein g the unit dyadic. W e prefer th e formul a tion (A I 9) to the equiv al enL one of Stra tton 
and eh u [S tra tton, 1941] since it demonstrates directly th e tntllsversali ty of the far fi eld . 
Indeed , for r' ----0> co , we obtain 

H;c( co ) = i(47rr ' )- leikr 'k X r dS {n X H + kX (n X E) } e- i k . r, (A21) 
J SO l 

wi th k=k/k a gener al direction of sca ttering . Th e tran sversality is obvious. "Ve h ave her e 
dropped the co ntribuLi on of Sb in the limi t of going over to H. semi-infini te cone, wh er e it is 
r em oved to infini ty a nd gives no contribu t ion as usual. 

For backsca ttering, k= - no, we nnd in analogy to (62): 

(A 22) 
wi th J2 as before, and 

J 5= r dSnoX(n X H)eiko. r. 
J S 01 

(A23) 

Th e physical-opt ics field on th e surface of the coating, SOl, corresp onding to n ose-on incid ence 
on the cone, is again evalu ated wi th th e help of appendix 1, and we ob tain 

(A24) 

If th e radar cross section is wTit ten as in (47), we obtain the simple r esul t 

S = te-2ia eBC tJ {[N2 sin lJ cos (aw) + i jlw sin (aw) ][N 2 sin lJ cos (aw) 

-ijlw sin (aw)]-I + [w cos (aw)+i jl sin (J sin (aw)] 

·[w cos (aw) -i jl sin lJ sin (aw) ]- 1) , (A 25) 

and the cross section again goes over into that of a bare perfec tly conducting con e (in physical
op tics a pprOA'1ma tion) if a ----0>0 or if N ----0>1, w -7l. 

I am grateful to V. H. Weston for many illuminating discussions and en couragem en ts, 
and to K . M. Siegel for his interest. Helpful discussions with 1. Schensted and T . Seni or are 
also aclmowledged. 
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