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The problem of wave propagation in stratified media is reexamined from the stochastic
point of view by introducing the concept of random media. For a small inhomogeneity,
this problem is investigated by utilizing the effective refractive coefficient of Chen [1964].
For a large inhomogeneity, this problem is treated by subdividing the medium into many
parallel homogeneous layers of random media and utilizing the derived reflection and trans-
mission coefficients of Chen [1964]. In ecach case, it is found that the small randomness
has no drastic and unexpected effects on the behavior of the wave motion in the media
considered.  Hence, our reliance on the results obtained by a nonrandom approach is
increased.

1. Introduction

The subject of wave propagation through a nonrandom medium has been investigated
thoroughly by many authors [Brekhovskikh, 1960; Wait, 1962]. Since, in practice, the
properties of the medium are either impossible to be measured accurately or subjected to
random variations due to noise, humidity, wind velocity, thermal fluctuations, etc., this
problem should be reexamined from the stochastic point of view. Hence, the concept of
random medium is introduced.

The wave motion in a transmission medium is deseribed by a vector-valued funection
w(r, t) of the position vector 7 and the time t. As a consequence of the physical laws govern-
ing the wave motion, u(7, ) satisfies certain partial differential equations of symmetric hy-
perbolic type. The effect of the transmission medium on the wave motion is characterized
by a vector-valued function N7, t) the “propagation coeflicient.”  For a random medium
the coefficient N(7, t, ¢) depends also upon a parameter g, ranging over a space £ in which
a probability density P(q) is defined. If u(7, ¢, q) (1('5(-1'“)03‘1]10 wave motion in a random

medium, then the mean value of u(7, ¢, ¢) is defined by ()= I P(gu(r, t, q)dq.

In order to distinguish the many phases of random media, we write N(7, t, q)=k(7, 1)
7 (7, t, q). Then “homogeneous continuous random medium’ is defined as k(7 t) being a
constant. “Inhomogencous continuous random medium’’ is defined as k(7, ) being a con-
tinuous function of 7 and ¢ Finally, “discontinuous random medium” is defined as £(7, )
being a discontinuous function of 7 and ¢, and 7 (7, ¢, ¢) may have different P(¢g)’s on the two
sides of the discontinuity. By the above definitions, we observe that the random stratified
media can be either inhomogeneous continuous random media or discontinuous random media.

Many works have been done on the wave propagation in homogeneous continuous random
media [Chernov, 1960; Keller, 1960 and 1963; Furutsu, 1963]. However, their results fail to
apply to the problem of wave propagation in random stratified media. It has not been until
recently in a paper by Y. M. Chen [1964], that the effective refractive coeflicient of a slightly
inhomogeneous continuous random medium and the reflection and transmission coeflicients
for the wave propagation in a discontinuous random medium have been obtained; now one
can honestly investigate the problem of wave propagation in a random stratified medium.

In this paper we shall study the problem of wave propagation in stratified media of small
randomness. For a small inhomogeneity, this problem can be treated by utilizing the effective
refractive coefficient of Chen [1964]. The solutions of this type are obtained for two well-
known special profiles of the propagation coeflicient [Landau and Lifshitz, 1958].  For a large
inhomogeneity, this problem can be effectively treated by subdividing the medium into a num-
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ber of parallel homogeneous layers of random media and utilizing the derived reflection and
transmission coefficients of Chen [1964]. In fact, by taking a sufficiently large number of
such layers of decreasing thickness, any desired degree of precision may be obtained. In each
case, the results are compared with those for the nonrandom media and no significant differences
are found. For simplicity, only scalar waves of harmonic time dependence, e "', are

considered.

2. Reflection and Transmission of Plane Waves From Horizontally Stratified
Random Media of Small Inhomogeneity With Special Profiles

If 7 denotes a point in three dimensional space, then u(7, ¢), characterizing the motion of
plane in a random stratified medium, satisfies the following reduced wave equation

viu(r, @) +k(1+¢f (1) A +ew(r, ¢) Pulr, =0 (1)

where e is a small parameter, /(7) is a continuous function of 7 and w(7, ¢) is a continuous function
of 7 and ¢. From Chen [1964], by assuming (w)=0, it is found that up to and including
terms of order €, the mean value of u(7) satisfies the following differential equation:

VAu)+E(1+¢f (7)) u)=0, 2)
=k +eu)K), (3)
where
zczy—%kjm<a%u4qooyh, (@)
and the correlation coeflicient )
e :ﬁui@w“‘“ﬁl
C(|F—7)) W@ (5)

is assumed to be a function of the distance |7—7’| only.

Even for k being real and positive, the imaginary of % can be shown to be positive and its
real part can be shown to be greater than (14 €(w?) K)k [Keller, 1963]. Hence the amplitude
and phase velocity of the coherent wave, (u), is exponentially attenuated and reduced re-
spectively by the randomness of the medium.

Now, f(7) is assumed to be a function of y only, and w(7) =u(y) represents a plane wave,
coming from —o | propagating along the y-axis. Hence, upon omitting the term €f(y)? (2)
becomes

% () +-TE (14 2f () () =0. ©)

Tf (14-2¢f(y)) approaches constants U? and V? as y——o and y—-+ = respectively (I may or
may not equal V?), then
()~ Ce™ as y—>o, )
and B B
(uy ~Ae™+ Be=HU0 g5 p—>— o, (8)

In this case, the reflection and transmission coefficients are defined as

R—=A"'B )
and
M= (10)
respectively.
Case (a): (1+26f(l/)):1_1~;_ay' (11)
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In order to find the reflection coefficient, one has to find a solution of (6) which has the
form o
{(u) =constant - ¢*1-9% ag y—w . (12)
By introducing a new variable
p=—ec" (13)
and seeking a solution of the form
(uy=p=tHt=ta=ly (p) (14)

(where ¥(p) tends to a constant as p—0, i.e., y—=), one finds that ¥(p) satisfies the following
hypergeometric differential equation

p(1—p) ¥ +[1—2ik(1— )2 (1— ) ¥’ — 2 ¥ =0, (15)
which has as its solution the hypergeometric function
¥ =MF(i[1— (1—&) ko, —i[1+ (1 —e)2Jka!, — 2ik(1—¢) 214 1; p), (16)

where M is an arbitrary constant. This function satisfies the imposed condition, i.e., as
p—0, ¥—1. By using the asymptotic form of ¥ as p——ow, one obtains the asymptotic
form of (u) as y—>—o

()~ (—1)~#ka=0le™ Dy |- Do), an)
where
D T (=2ike )T (—2ika"'(1—¢)}+1) 18)
I[—ik(1+(1—e)N)a P [—ik(1+ (1 —e))a~"+1]
and
Dy DQika”)D(=2ika!(1—)+1) (19)

I[ik(1— 1 —e)Ha [kl — (1—e)Ha~141]
Onelfinally obtains
p Do T@ika™)T[—ik(1+(1—HaIT[—ik(1+1—eha~41] (20)
Dy p(—2Fa ) T[ik(1—1—e))a Tk (1 — (1—e)Ha—14-1] -

Since Im (k—Fk) >0 and Re k> (14 &€@?*)K)Re k [Keller, 1963], if one keeps away from the
poles and zeros of the gamma functions, the above reflection coefficient R is just an analytic
continuation of the reflection coefficient for this medium with randomness removed. For all
the practical cases, the arguments of the above gamma functions do not equal «, 0, —1, —2,

—3, . ... Thus, the small randomness of the medium only changes and shifts the amplitude
and phase of the reflection coeflicient respectively.

€
Case (b): (1+2€f(?/))—1—m—(y3_1)' (21)

In order to find the transmission coefficient, one has to find the solution of (6). By
making the substitution

(u) =[cosh (y8)]"¥(p), (22)
where
N=1[(1—4p%2%)'2—1] (23)
and
p=—sinh? (y87Y), (24)

one finds that W(p) satisfies the following hypergeometric differential equation

p(L—p) ¥ +[3— (1—2N) pl¥' — N+ 16757 W =0. (25)
745
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Thus
(uy = Cy[cosh (yﬁ‘l)]‘”F[—)\-%ilicﬁ,—)\—@zkﬁ,2, sinh? (y871)]
+ Oyleosh (y8~)] sinh (y8") Fl—\-+iki8+3%,—N—itkp+3,1%; —sinh? (y8)]. (26)

The coefficients ; and C, are determined from the condition that (u)~e™ as y—>+o.
Upon using the proper asymptotic forms of the hypergeometric functions, one obtains

(uy~ (—])2)\[(01J1_02J2)(_%)_izﬁe & | (O — CoK) (— 1) #8¢=11] g Yy—>—o, (27)

and
)y~ [(Cri Cao) (3)~ e B0+ (O + CoK) (3) e ) s >+ o, @28)
where
g T (—ikB) ’ @9)
I (—A—i3k8) T (\+§—i1k8)
Jue T (—ikB) 30)
9T (—N+3—i }EB) T (\+1—i 34p)
K— T (ikB) , (31)
I'(—A+i3k8) T (\+3+i 3kB)
and
Ko T (i) 32)

2T (—A+1-+ik38) T (\+1+ikB)

The condition that as y—>+ only the transmitted wave is present leads to the following
relation between C; and

01J1+ 02!]2:0- (33)
Finally,

p(CEACE) (12 (_4)’“*
(CTi—CoT)

i K Jy—J Ks
-2 3 .
=(—1)" *( i 20T, (34)

As in case (a), if one keeps away from the poles and zeros of the gamma functions, the above
transmission coefficient 7' is just an analytic continuation of the transmission coefficient for
this medium with the randomness removed. Hence, the small randomness of the medium
only changes the amplitude and shifts the phase of the transmission coefficient.

3. Reflection of a Plane Wave From Horizontally Stratified Random Media
of Large Inhomogeneity

Any stratified random medium of large inhomogeneity can be approximated by a sufficiently
large number of parallel homogeneous layers of random media to any degree of accuracy.
First, the same problem for the nonrandom media is formulated. For the time being, the
number of layers is taken to be M and they lie horizontally below the z—z plane (fig. 1), A

plane wayv e,
ikor sin 4+ ik cos 6§ -
ull ) ('55)

is incident at an angle 8 on the upper surface of the first layer. The wave motion in the mth
layer below the z—z plane is characterized by the solution of one of the following partial dif-
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Ficure 1. The structure of a stralified random
medium consists of N layers of homogeneous random
media.

ferential equations,

(V2+k2) u,=0, m=1,2,3,4,...,M, (36)

where £, is the propagation constant with nonnegative imaginary part, and the boundary
conditions at the interfaces y=0, y1, ¥, Y3, - « + Ya—1 (fig. 1) are expressed by

U’m -1 :Umy

o 53 O al Y=Ym-1 m=1,2,3,...,M, (37)
Bm—l a—u 71,,,_1—6m 5:17 WUy

where 8, is a constant determined solely by the properties of the mth layer.

Because of the randomness in these media, it is more convenient to discuss (u,,), the mean
of u,, than u,, itself. From Chen [1964], if one assumes (w,,)=0 and k,_y~k,, m=1,2,3, . .
M (this implies that the division of medium has to be very fine such that (R,) and (7%) of (85)
of Chen [1964] are negligible, one finds that up to and including terms of order ¢ (perturbation
parameter), away from the boundary surfaces (u,,) satisfies (2), (3), (4), and (5) with the sub-
seript m inserted for everything except ¢, 7, and 7, and at the boundary surfaces, (u,,) obeys (37).

Now we have the form of the general solution as

<um>:<a'm€is"'y+bme_igmy) ez‘)\’x, m=1,2,3,...,M, (38)

where k=587 -+X;, and \ can take any value. Upon imposing the outgoing wave condition on
(38) for m=M and inserting (35) into (38) for m=0, it follows that b,=0 and a,=1, 5=
ko cos 0, N=Fk, sin 6. Upon applying the boundary conditions (37) to (38), the coefficient b, is
obtained as
—1koBy cos 80—z,
by=—
—1koBy cos 04z,
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where
2o—813; tan $h, w

21=S8 — 7~ 7 )
' 18 $181+ 2. tan §i/

Y 23— 898 tan §2h2,
202 Byt 25 tan Suhy

....... } (39)

2 —g 6 2m+1—8m6m tan Smh/m
=g, ~ ’
" e 8mBm+ Cm+1 tan Smhm

SuBartSar—18x—1 tan gM—th—17
Sar—1Bar—171 SuBar tan §M—1hM—1 J

2a—1=— 18181

and £, is the thickness of the mth layer.

Since lém—sml is very small, if one keeps away from the singularities of tan (5,k,) and of
the denominator of z,, one would expect no drastic change in b,. It is also interesting to notice
that in this case b, is not an analytic continuation of the reflection coefficient for this medium
with randomness removed as in section 2.
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