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A method, suitable for investigation of ionospheric phenomena, is derived for computing
the amplitude and phase characteristies of an electromagnetic wave after it has been per-
turbed by a phase-distorting sereen. Kirchhoff’s integral for diffraction is used to evaluate
the Fresnel zone fields in terms of a field distribution which is assumed to exist over a plane
surface just inside the sereen. The perturbing scereen is assumed to distort the front of
constant phase in one dimension only. By approximating the actual curved wave front
with plane wave segments, and with the use of the approximations normally used in dif-
fraction pattern analysis, the fields are evaluated in terms of a sum involving the Fresnel
sine and cosine integrals. Several examples are given.

1. Introduction

Irregularities in the ionosphere have been the subject of considerable investigation. At
lower frequencies, the existence of non-uniformities has been known for many years by the
manifestations on ionogram records. More recently, it was by means of the same sounding
techniques that the first observations of large-scale moving irregularities were made by Munro
[1950, 1958], who was able to study the time and spatial variations of the irregularities by means
of spaced stations. Apparent tilts in the ionospheric layers were observed by Bramley [1953]
using direction-finding techniques. In both these investigations, the scale of the irregularities
was of the order of 100 km. Another example of anomalous behavior is the short-lived increases
in the amplitude of F-region reflections, which might be attributed to focusing [Whitehead,
1956].

At frequencies above the range covered by ionogram records, the ionosphere can be
studied by means of its transmission properties as observed by the perturbations on extra-
terrestrial radio waves and satellite signals. Scattering, absorption, focusing, and diffraction
are some of the anomalous effects one might expect to observe.

Small-scale diffraction effects of a statistical rature are particularly well suited to analytic
investigation. Booker, Ratcliffe, and Shinn [1950] showed how to relate the statistics of the
wave which emerges from the diffracting screen to the statistics of the wave which reaches the
ground, and this work has been extended by Hewish [1951], Fejer [1953], and others.

Transmission effects caused by large-scale irregularities are not so amenable to analysis,
although they are observed experimentally. Tsuchiya and Morimoto [1960] and Fokker
[1957] give evidence of anomalous scintillations of solar radio noise at meter wavelengths.
Little and Lawrence [1960] have reported large-scale disturbances with dimensions of the
order of 300 km, observed by means of satellite signals.

1t is felt that an analytic method to analyse these large-scale ionospheric diffraction and
focusing effects is needed. This paper is concerned with the development of such a procedure.

2. Analysis

Let the electromagnetic field vector be denoted by u.  An observation point x lies within
a source-free region enclosed by a surface S comprising S; and S, (fig. 1). The variable point
along the surface S is denoted by x’. Then the relationship between the field at x and the
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Figure 1. Geomelry indicating surface of integration.

fields along S(x”) can be expressed by the equation
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the outward vector differential of area along S. The integral over the surface S, can be
assumed to vanish. Equation (1) is a form of the Fresnel-Kirchhoff diffraction integral
[Jackson, 1962].

Let 2, and zj be two rectangular Cartesian coordinates on S;, such that dA=dz,dz;1,
Let us suppose that the term u (x’) in (1) depends on one of these coordinates only, z/, and that
on the plane S; the propagation vector k has an x, component only. Let us further sub-
divide the integral into segments along x,. Thus
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where z; is the second coordinate and 1, is the outward unit normal. The total integral is
given by the vector sum
u=>"u, (3)

(where it is to be noted that the quantities u; are in general complex).

Let us suppose that at any point on the surface S, the wave is a quasi-plane wave, with a
vector amplitude u(x’), an angular frequency w, and a propagation vector k which is a slowly
varying function of position. It will be assumed that the distortion is primarily phase dis-
tortion, and amplitude changes will be ignored, although these could be accounted for by
allowing the magnitude of u(x’) on S, to vary from segment to segment.

If the segments are chosen small enough such that the propagation direction is constant
over a segment, then the fields over that segment can be represented as

u(x’) =uge’~, 4)
With this notation, (2) becomes
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Fiaure 2. Diffraction at an irreqular screen.

With the definition of the angles 8 and 6 as shown in figure 2, and with the assumption that the
significant variation in the integrand occurs in the oscillation of the exponential term, (5)
reduces to

vkuy;(cos B+cos 8) [T (Faitt , .
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where 6 and 7, are evaluated at the point in the integrand where the angle between k and r is
smallest.
Let the magnitude of the exponent of (6) be called /| i.e.,

F=kr+k-x’, (7)

where the subscript is omitted. [ r, is restricted to be perpendicular to the zj axis, then
terms up to second order in the Taylor series expansion of / around x| are
0, 1

F(x')=a+b(Ax's+c)*+-d(Ax' o F-e)?, (8)
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The substitution of (8) into (6) results in an integral which can be evaluated in terms
of the Fresnel sine and cosine integrals. The result is
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and C(z) and S(z) are the Fresnel sine and cosine integrals, defined by

(*(;t):ﬂzcos (g r2> dr, (10)

S(a)— f i (’I 72) O (11)
Jo 2

To obtain the desired solution, these u,’s can then be substituted into (3).
In order to compute (9), uy; must be known. In general, the phase must be continuous
in crossing from one segment to the next. Thus

queiki'Xj:u()j+l(//iki+l Xi,

where X} is the point on S where the jth and the 74 1th segments meet, and 23=0. Thus
given uy;, the phase ol wug,; is computed from the equation
U, = Ug;eitki—kin) x;, 12y

On the other hand, it may be desired to introduce arbitrary ‘“step’” discontinuities in the
phase. Then (12) can be replaced by

i(kj—kj+1) - X 41041 -
Upj1=Ug;€ ’ ) (13)

where 6, is the desired phase discontinuity in crossing from the jth to the j+1th segment.

Equation (13), which determines the vector coefficients, (9), which determines the con-
tributions from each straight-line segment, and (3), which sums the various contributions,
are the equations from which a large variety of diffraction-focusing patterns can be calculated.

3. Some Computed Examples

These equations have been incorporated into a computer program for the purpose of
evaluating model diffraction patterns. These have been computed in a manner for comparison
with the data from a particular lobe-sweep interferometer system [Lansinger and Gagnon,
1961]. This interferometer is located approximately along an east-west baseline. The data
take the form of an amplitude plot, which is a measure of the product of the amplitudes at each
of the two interferometer antennas, and a phase plot, which is a measure of the phase difference
between the signals at the antennas.

Figure 3 is a curve showing the theoretical response of a system such as this to a sudden
phase discontinuity. The parameters are

Frequency 50 Mec/s.
Baseline 200 m.
Incident angle 45 deg.
Slant height () 420 km.
Phase discontinuity 30 deg.

The frequency and baseline chosen here for illustrative purpose are not the same as those of the
interferometer in question, but are lower and longer, respectively. These parameters are
easy to vary in the computations, and the values used here have been chosen as being of general
interest. The independent variable “distance” on the curve is distance along the ground.
The curve represents either the pattern as seen at a single point as the irregularity drifts by,
or the variation in intensity over the ground at a particular instant of time.
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Ficure 5. Diffraction paltern resulting from an
ionospheric lens.

Figure 4 is an example of the pattern caused by a “wedge.” The wedge is represented by
a single segment over which the refraction is constant, where the term refraction refers to the
angular deviation of the propagation vector from its undistorted orientation. The length of
the wedge is 5 km, and the refraction is 10 min. The other parameters are the same as before.

Figure 5 is a plot for the pattern resulting from a simple “lens.” An irregularity is
simulated using a sine-wave distribution, with 71 equal-length segments which total 5 km.
The refraction of the nth segment is given by

refraction=7 sin(5n) minutes.

The refraction has been chosen to place the interferometer roughly at the focus of the lens.

This particular curve took 25 min of IBM 7094 computer time to compute. However, the
same lens was approximated with only 15 equal-length segments with only a little difference
between the two curves. This corresponds to a minimum segment length of a few hundred
meters in this case. By also suitably reducing the point density, a time saving by a factor
of about 15 is possible. Curves such as the wedge shown in figure 4 take typically 15 to 30
sec on production runs.
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4. Summary and Conclusion

A method has been shown for computing the ionospheric diffraction-refraction patterns
resulting from an assumed field distribution in terms of tabulated functions. Although the
method is too involved for hand calculations, it has been found convenient for computer
applications.

Several examples have been shown. These include patterns resulting from a phase
discontinuity, a wedge, and a lens. The patterns shown are not to be considered typical of the
shapes of the irregularities causing them, as there is an almost endless variety of eround
patterns which occur as one varies the parameters in a given problem.

Although one can compute a ground pattern from the phase-distorted wave which gives
rise to it, one cannot conveniently deduce the phase-distorted wave from the ground pattern.
Thus the primary application is for hypothesis testing. With an idea as to the nature of a
particular disturbance, a way is provided to check upon and refine one’s estimate. It is hoped
that the method described here will prove to be a useful tool for this purpose.

The author acknowledges helpful discussions with H. E. Brandt, J. F. Kenney, and J. M.
Lansinger. Much of the programming was done by M. D. Gray.
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