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Atmospherics are assumed to be spike shaped with cxpon cnt ial upsurge and decay; 
their occurrence in time is Poisson-distributed . Thc distribution of thc pcak valuc is s how n 
to be lognormal. Under these conditions, thc amplitude distribution of atmospheri c noise 
is derived; it may be well approximated by the distribution of thc sum of a Raylcigh v('cto r 
and a vector with lognormally distributed amplitude. Thc rcsultin g di str ibution is un iqucly 
determin ed by threc physically m caningful paramctcrs and is in vcry good agrccmcnt witll 
meas ured di stribution s. 

1. Introduction 

The probability distribution of the amplitude of atmospheric radio no ise is an irnportall t 
basic factor for the design of radio systems; it may ,LIso be used as an effective instrument for 
geophysical research of atmospheric discharges by wh ich this no ise is caused . The statistical 
distribution of the amplitude of atmospheric radio lloise is therefore b ein g measured in observa­
tories all over the world; so far it has, however , not been possible to give a thorough and 
practically useful theoretical explanation of this distribution. 

I t has been found empirically that the distribu tion 

P(E> H) (1.1) 

where E is the instantaneous value of the envelope of the I-IF atmospheric lloise and R is a 
selected level of voltage 01' field strength at the receiving point, approaches }1 Rayleigh d is­
tribution for small amplitudes (high probabilities) . This is evidently caused by the interference 
of many mutually overlapping small atmospherics whose phase is uniformly distributed over a 
basic phase cycle, for these atmospherics are emitted by independent sources at distances of 
many wavelengths from the receiver and from each other. For large amplitudes (low proba­
bilities) the distribution deviates considerably from a Rayleigh distribution and may be well 
represented by a lognormal distribution [Horner and Harwood, 1956; Foldes, 1960]. This 
part of the distribution curve is evidently due to relatively rare, strong atmospherics that do 
not overlap in time. 

It has also been found empirically [Crichlow et a1., 1960] that when the experimentally 
measured distribution (1.1) is mapped on Rayleigh paper (of, appendix), the lower portion of 
the curve (small R) is a straight line with slope corresponding to the Rayleigh distribution and 
the upper portion of the curve (large R, small P ) may be adequately represen ted by a straight 
line of larger slope than that corresponding to a Rayleigh distribution . As shown in the 
appendix (and fig. 1 ) , a lognormal distribution will map on Rayleigh paper in this way. Between 
the two straight lines there is a transition that has been approxim<1ted by Crichlow et a1. 
[1960] as a circular arc. 

The individual atmospherics that pro trude from the permanen t noise level are spike 
shaped and decay rapidly, exceeding the perm l1n en t noise level only for some milliseconds 
[Horner and H arwood, 1956]; this order of time is in agreement with the characteristics of 
lightning discharges [Wa tt and Ma)"lvell, 1957] . The decay is evidently exponential and has 

1 On leave of absence frotn Institute of R adio En gi neering and Electronics, C zecboslovak Academy of SCiences, Prague 8, Czechoslovakia. 
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FIG U 1m I. Lognormal distributions plotted on 
Rayleigh paper . 

a small time constant. The buildup is also exponential with a still shorter t ime constant. 
The purpose of this paper is to derive the theoretical probability distribution (l.1 ). In 

section 2 we shall first derive the probability distribution of the peak values of the individual 
atmospherics. I n section 3 we derive S0111.e general probabilistic relations, in particular the 
distribution of the time intervfLI separating a peak from the kth following or the kth preceding 
peak assuming t lte number of peaks in a given time interval to be Poisson distributed. III 
section 4 we derive the amplitude distribution of the decaying kth preceding atmospheric and 
the rising kth future atmosp heric; the time constan ts of rise and decay may be chosen indi­
vidually and arbitrarily , so that we are working with a very general spike-shaped atmospheric. 
In section 5 the nns value of an individual atmospheric and of the entire atmospheric noise is 
derived and the required distribution is then found by summing over allTe; the resulting distri­
bution is the sum of a Rayleigh vector and a vector with lognormally distributed amplitude. 
In section 6 this distribution is compared with the experimentally measured distribution; in 
spite of SOme coarse approximations, the fLgreement is surprisingly good. As in the case of 
the empirically graphical method of Crichlow et al. [1960], the resul ting distribu tion is uniquely 
given by three parameters; as one of these depends exclusively on the properties of atmospheric 
discharges and one predominantly on propagation conditions (the third drops out in normalizing 
to the rms value), the theoretical distribution derived in this paper should prove useful for 
geophysical research. 

2 . Distribution of the Peak Value of Atmospherics 

The peak value Ep of an atmospheric is determined by the peak power Po of the atmos­
pheric discharge emitting it , the distance of the discharge from the receiving point , and the 
attenuation A in the propagation of the atmospheric (all at the considered frequency) ; therefore 

K ip ( n ) E p=_'_ o exp -:L; 0l lj 
cl j= l 

(2.1 ) 

where K is a constant determined by the system of units employed; the attenuation A is given 
by the sum of fLttenuations on the individual sections el j of the propagation path (whose total 
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length is d) ; OJ is the attenuation constant for the ,ith sectio n. vVe may thus write (2.1) as 

(2.2) 

which defines 1:::.. 
The first three terms of the exponent a re random; we may assume tJ lat the fluctuations 

(the variance) of Po and d will, on taking the logarithm of these quantities, be so much diminished 
that they will be small compared with the fluctuations (the variance) of the sum of attenuations 
as given by the first term of the exponent, which will thus predominate in determining tlle 
distribution of.<1. We further assume that the total propagation path cl can be split up into a 
large number of sections dJ on which the attenuations 0l l j may be consid ered independent with 
no section making a predominant contribu tion to the sum of attenuations. This assumption 
seems reasonable since most atmospherics are propagated from long distances via the ionosphere. 
Then I:::. will be distributed normally, i.e., its probability density will be 

p(I:::.)=_l _ exp [ _ (1:::. -:)2J 
~~ 2~ 

(2.3) 

where fJ. is the nlean value of I:::. and ~2 its variance. 
From (2.2) we have 

(2.4) 

which together with (2.3) yields the required distribution of E p: 

(2.5) 

and hence 

(2.6) 

The distribution (2.5) or (2.6 ) is the logarithmic-normal distribution , which has been found 
experimentally to apply to strong atmospherics [Horner and Harwood , 1956; Fold es, 1960] but 
was not e;..-plained theoretically. The mean and mean square values of E p are from (2.5) 

(Epl = exp (fJ.+~~) (2.7) 

(E/j=exp 2(JI +~2). (2.8) 

From (2.8) and (2.6) we then have 

P (~ >R)=~ [l_erf(ln R+ ~2)J ' 
Ep rrus 2 ~..f2 

(2.0) 

If we wish to express R in decibels, we obtain after elementary manipulations 

U. 10) 

where 

A = 20 10glO e= 8.686. (~ II ) 

C urves of (2.10) for various values of ~ are plotted on Rayleigh paper in figure I. 
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3 . Probabilistic Relations 

In order not to interrupt our development later, we now derive two general relations that 
we shall need. 

Since atmospherics are emitted by mutually independent sources and the reception of an 
atmospheric is equally probable at any time, their number in a given time interval will be 
Poisson distributed, i.e., the probability of receiving n atmospherics in a time interval of 
length T is 

(3.1) 

where N is the mean number of atmospherics received per unit time. 
To find the probabili ty density of the time interval Tk separating a given peak from the 

kth preceding peak, i.e., 
(3.2) 

we note that this probability equa,ls that of receiving k - 1 atmospherics during the time t k 
and one atmospheric during dh; since the two events are independent, we have 

(3.3) 

or substituting from (3. 1) , 

(3.4) 

which is the first r elation we shall require. 
The second concerns a random signal (vector) with independent amplitude and phase 

(3.5) 

where we have suppressed the time factor exp (iwt ) . Let the phase be distributed uniformly 
over an interval of length 27r, or more genemlly let the probability density of the phase, p(¢), 
be such that for all ¢ in the interval 0< ¢ < 27r 

(3.6) 

so that p(¢) is equivalent to a uniform distribution in the interval (0, 27r). A vector of the 
kind (3.5) , whose ph ase distribution satisfies (3.6), is met so often in wave propagation that it 
deserves a name; because of its Uniformly Distributed Phase we shall call it a UDP vector. 
(A Rayleigh vector is the special case of a UDP vector with Rayleigh-distributed ampli tude .) 
The sum of any number of UDP vectors 

A n " n 
U = U ei O= :6 E j=:6 E jei</>j 

j~ l j~ l 
(3.7) 

is obviously again a UDP vector. Consider now the mean square value of a UDP-vector sum 

AA In n \ n 
(U2 ) = (UU*)=\f;1 E jei</>i tjEke-i1>kl=j;t (E;)+j~ (E jE k) (e;(1>r</>k)) . (3.8) 

But for .i~k, 

(3.9) 

Substituting (3.7) and (3.9) in (3.8) we find 

(I n A 12\ ?1 :6 E j 1= ~ (E ]) 
J~ l J= l 

(3. 10) 
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regardless of th e distributions (possibly all different) of the amplitudes E j • Thus in the 
interference of waves that may be represen ted by UDP vectors, t he mean total power equals 
the sum of mean powers of each wave regardless of t he amplitude distributions of the latter. 

The phase of an atmospheri c is, among other factors, determined by the distance of the 
atmospheric discharge from t he receiver. Since this distance is random and varies over a 
range much larger th n, n one wavelength , (3 .6) is satisfied and any atmospheric may be repre­
sen ted by a UD P vector. 

4. Amplitude Distribution of the Signal Due to the kth Decaying Atmospheric 

We ass ume the shape of the envelope (ampli tude) of an individual n,tmospheric attaining 
its peak value E p at t ime to of the form 

(4.1) 

i.e., in the shape of a spike as shown in figure 2a with arbi trary t ime constants of decay and 
upsurge a and b. This shape eviden tly corresponds to the real shape of n,tmospherics better 
than rectangul n,l" impulses (cf, fast film r ecordings by Horner and H a rwood [1 956]) . 

H owever , in addition to this atmospheric uo(to) = (Ep) o there will be present also an infini te 
number of decaying atmospherics u ] , Uz, . .. Uk, ... , that lHLVe attained their peak 
value (Eph in the past, tk time uni ts ago (fig. 2b); the distribution of tk is given by (3.4) . The 
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FIG URE 2. Rando m sequence of atrnoS1Jherics. 
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amplitude of the kth (past) atmospheric at time to is therefore 

(4.2) 

where 

B = exp (~) (4.3) 

are independent random variables. The distribution of A is A(A ) as given by (2.5) . The 
distribution of B is found from (3.4) by transforming in accordance with (4.3 ) : 

N kak(ln B) k-l 
weB) = (k-l) !BaN+ l (4.4) 

The distribution of U is now found from (4.2) as the distribution of the ratio of two inde­
pendent random variables [Gnedenko, 1954]: 

p (Uk ) = f '" ZA(uz)w(z)clz. (4.5) 

Substituting In Z=X we find 

(4.6) 

The mean square value of Uk is 

(4.7) 

and may be found from (4.6) by interchanging the order of integration and the substitutions 
In u = y, (Na + 2 )x = t: 

(4.8) 

The integral equals r (k) = (Ie - I ) !, so that we obtain 2 

(4.9) 

Besides the decaying atmospherics U k, we have to consider also the upsurging atmospherics 
Sk attaining their peak value at a time to + tk • For the upsurging atmospherics the calculation 
is of course the same except that the time constant a must be replaced by b so that 

2 N kbk exp [2 (CT 2+ J.L )] 
(Sk) (Nb + 2)k . (4.10) 

5 . Amplitude Distribution of Atmospheric Noise 

The total signal U at time to is 

(5.1) 

2 1'Vlore generall y, we find by the above method 

(u'!:)= Cv~~m) ' exp G m'u'+m,,) 
of whi ch (4.9) is a specia l case for m=2. 
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where tbe circumfiex accents again denote UDP vectors. Applying (3 .10), we therefore find 
from (2 .8), (4.9), and (4 .10) 

(U2)=exp [2((T2+ M)] { 1 +~ (N~~2)"+~ (~~!2)"} ' (5.2) 

Both series are geometric with sum Na/2 and N b/2 respectively. Introducing the average 
time co nstant of upsurge and decay 

a+ b 
c=- (5.3) 

2 
we t hen have 

(5.4) 

This is the mean square value of the field at a tim e to, the timc of arrival (peak) of an 
atmospheric. The probability distribut ion of the ampli tud e at tha.t time is s trongly depcnden t 
on the value of Nc. It is easily shown from (5.1) and (5.4) that for Nc> > 1, which correspond 
to the atmospherics overlapping in time at all but the highest levels, U is approximately Ray­
leigh dlstributed; this contr adicts the measured distribution. 

On the other hand, if NC« l, the two seri es in (5.2) will be much smaller Lhan unity; 
in this case the lognorm ally distributed quantity Uo will predominate and the overlapping 
decaying or upsurging fttmospherics Uk and Sk will affect the resulting distribution onl y whcn 
Uo (and hence U) is small . This is in agreemen t with the measured distribution ftn d we thcrefore 
henceforth assume Nc< <1. Also, we may safely assume b< < a, i.c ., that the t imc 
constan t of the upsurge is much smaller than that of th e clecfty (d , rccordings by Horner 
and Harwood [1956]). 'lYe thus aSS Llm e 

(5.5) 

A 

]t follows from (5. 1) that U is a UDP vector composed of infinitely many UDP vectors, 
of which one (uo) h as a mean square comparable to the mean square of tIl e s um , wh ereas t he 
mean squares of all the others are much smaller and thesc rcmaining vector terms will affect 
the distTibution of E only for small ampli tudes of Uo and hence of U. The sum of these remain­
ing vectors is that of a rapidly convcrging geometri c seri es and thus the conditions for it to be 
a pure Rayleigh vector are not strictly satisfied [Beckmann, 1962a), though its distribution 
curve will asymptotically approach a Rayleigh distribution for small ampli tudes and thus 
this sum may \"ell be approximated by a Rayleigh vector. Thus U as in (5.1) will equal the 
sum of a log-norm ally distributed vector and a Rayleigh vector. The distribution of the 
ampli tud e of the sum is then given by [Beckmann, 1962b] 

(5 .6) 

where M is the mean square value of the Rayleigh vector and 10 is the modified Bessel function. 
It can b e shown [Beckmann, 1962b] that for small values of U, (5.6) will approach a R ayleigh 
distribution , whilst for large values of U it will approach a lognormal distribution. 

However, it should be pointed out that (5.6) is the distribu tion of the amplitudc ftt time 
to, i.e., at the time of arrival (peak ) of an atmospheric . For any arbitrary time t (between two 
successive peaks) the amplitud e is 

(5. 7) 

(where the upsurge has been neglected since b< < a) and although U is random , once it has 
assumed a certain value, E is governed by the deterministic exponential la\" (5.7) between 

1\ 
two consecutive atmospherics. Thus E a,t 
Rayleigh vector (both are UDP vectors). 

ftny time is also the sum of a lognorm al and a 
If the time in terval separatin g two successive 
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atmospherics is r , then from (5 .7) 

(E2[r)=(U2) ~ ( r e- 2l ladt= !!.... (U2)( 1_e-2rla) 
r Jo 2r 

(5.8) 

or using (5.5) , 

(E 2[r)=(U2) 9.. (l- e- TlC) . 
r 

(5.9) 

Now r is itself a random quantity with probability density N e-NT, i.e. , (3.4) for k= 1 ; 
applying the Theorem of Total Probability to (5 .9) we therefore have 

(E 2) = (U2)Ne fo '" r - I (1-e-T/C) e-Nrdr= (U2)Ncln 1 t~c 

or from (5.4) and (5.5) 
2 l + Ne 2 (E 2) = (1 + Ne )Nee 2(u +~) In ~""'Nee2(u +~) In (l iNe ). 

Similarly, the mean square valu e of E i=Ui exp (-tla) is 

(ED=(u~)Ne In (l INe) , 
in particular, 

(5 .10) 

(5.11 ) 

(5.12) 

(5.13 ) 
1\ A 

It follows from (5. 11) and (5.12 ) that the predominant term in E is Eo, whilst the sum of 
all remaining terms 

which is Rayleigh distributed, has a mean square value of only 

To find the distribution of Eo we use Eo= Uoe- Ila where Uo is lognmmal , t is uniform 
from 0 to r and r is distribu ted according to (3.4) for k = l ; hence 

(E ) - l\Ti "'e -NTi\ (E Ila) Iia ltl _ Na i "'e - NT [ .(.(In Eo+ rla-J1-) £ (In E O-J1-)] l Po 10 - /\ oe e G Gr- 2E1 er ~ -e1' fC) Gr. 
o r o 0 0 r u-y2 u-y2 

(5.14) 

This integral cannot be evaluated in a closed form , but approximate calculations show 
that tb e distribution of Eo remains roughly lognormal , especially for large values of Eo (wher e 
the exponential decay distorts the dis tribut ion of Uo less than for low values attained after a 
longer time r). Thus if we replace the random variable r by i ts mean value (r)= l IN and 
use (5.5), we find 

(E) ~Nc . i' (In E O- J1-) Po 0 ~ E er c ~ 
o u-y2 

which for large values of the argument (i.e., large Eo) will asymptotically tend to 

2Neu2 1 [ E ~ . ex poe 0) ~ln E - E /2 P o J1- u !'o-v 7r 

thus retaining the character of a lognormal distribution. Alternatively, one may expand the 
square bracket in (5. 14) in powers of r ; this again yields a lognormal distl-jbution that may be 
factored out of the integral. Other approximations of (5.14) again retain a lognormal character. 

W e therefore approximate (5 .14) by a l ognormal distribution with m ean square (5.13). 
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Since (5.13) may be written as 

E~= exp { 2[0"2+ 1l+~ In Nc+~ lnln (l iNe)] } , 

the requ ired distribution may be taken as lognormal with parameters 0"' = 0" , and 

Il' =Il+~ In Ne+~ lnln (l iNe). 

Th e distribution of E will therefore be the suml\of this lognormall y distributed vector with 
amplitude Eo and the Ra,yleigh-distributed vector Z. 

Th e r equired dist ribution of E is therefore in analogy with (5.6) given by 

(5. 15) 

wl lere M = (Z 2) and Po (Eo) = A(Eo; 0", Il' ). 
Sin ce, in our case, E6 is much larger (l iNe times) tlmn i\![, (5.15) turns into Po(E o) for 

large Eo and into a Rayleigh distribution for small E o. Normalizing with respect to the root­
mean-square value of E, whi ch from (5.1 1) is 

(5. 16) 

these two distributions are therefore 

(5.17) 

for large fl , and 
R2 

P ( "IE > R)= e -Nc 
E rm s 

(5.18) 

for small R. 
For the intermediate (,wd all other) values of R we find by normali zing a nd in tegrating 

(5 .15): 

(5.19) 

Tbis is the formal solution of om problem ; the practically useful solution is gi ven by the 
asymptotic distributions (5.17) and (5.18). In comparing our results with the measured 
distribution (section 6) we have used (5 .17) and (5.18). For the intermediate region, which 
tmns out to be comparatively small, we have not gone to the trouble of computing the cumber­
some integral (5.19) , but have followed the example of Crichlow et aI. [1960] in joining th e 
curves of the two asymptotic distributions (5.17) and (5. 18) by a circular arc (dashed section 
of curves in figures 3 to 5). 

6. Comparison With Experiment and Applications 

Crichlow et al. [1960] have made an empirical analysis of more than 100 amplitude­
distribution cmves of atmospheric noise measured in Colorado, and further curves m easured 
in Alaska, Panama, Florida, and England. In all these cases they found t lla t wIlen the dis­
tribution curve (1.1) is plotted on Rayleigh paper, the measured points lie for small R on a 
straight line with Rayleigh slope , which is in a!<reement with (5.18), and on a straight line with 
larger slope for large R; this is again in agr eement with (5.17) for as shown in the appen dix, 
the lognormal distribution will for large R plot as a straigh t line on Rayleigh paper and its 
slope is determined by the p aram eter 0". 
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The position of t he Rayleigh line is determined by a single point (its slope IS already 
determined by the coordinate net). From (5.18) it follows that for 

R = , INc (6.1 ) 

Thus the parameter Nc determines the position of the Rayleigh line, 0- determines the 
slope of the high-voltage, low-probability line and the parameters 0- , Nc, and f.1 determine 
the rms value of the atmospheric noise E rm s . From the above it follows t hat t he distribution 
(5.17) to (5 .19) must always be in agremnent with the measured distribu tions analyzed by 
Crichlow et al. [1960] . Examples are shown in figures 3, 4, and 5. The distribution agrees 
equally well with the results measured by Watt and Maxwell [1957]. 

The distribution derived here is uniquely determined by three parameters: Nc, 0-, and f.1. 

The fil"st of these depends only on the properties of atmospheric discharges (N the number of 
discharges per unit time, a the time constant of decay) ; 0- is the standard deviation of the total 
attenuation, which in accordance with section 2 is almost exclusively determined by the proper­
ties of the propagation path ("almost" because to some small extent it depends on the standard 
deviation of the logarithm of the peak power of the discharge) ; f.1 is the mean value of t he total 
attenuation and is also predominantly determined by the propert ies of the propagation path 
(this parameter drops out in the normalization " ' jth respect to the rIm; valu e) . 
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3 This point is usually not marked on tbe P scale; a better policy is thcrefore to determine tbe point corresponding to P~99 percent, whi ch . 
as may be verifi ed from (5.1S), lies almost exactly 20 db below the rill S n lue of the Ra yleigh componen t (6.1) . 
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Applications to geophysical research are C\-ident: a change of Lhe above parllmeters \vill 
cause a change iu the amplitude-distribution cunrcs as measured at diHerenL receiviug points, 
times , and und er di{l'crent conditions. Comparison of the measured curves with the theoretical 
curves should permit the assessment of the causes resulLing in th e particular measured 
distribution. 

Among ot her applicntions of the theoreL ical distribution, the follo,,-ing one seems hopeful : 
the variations of the level of atmospheric noise may be caused by a chan ge in propagation 
co nditions or ligh tning activity or both, and it has been an obstacle to geophysical research that 
the two causes are difficult to separate. The theoretical distribution derived above should 
enable t he two causes to be separated: if there is an increase in lightning activity, the parameter 
Nc will increase, which will prolong the R ayleigh portion of tbe curve and raise it with respect 
to the rms value. If propagation conditions change, this will affect the pm'ametel' (J and hence 
the slope of the high-voltage, low-probability portion of the curve, 

The problem of the amplitude distribution of radio signals scattered by ioni zed meteor 
trai ls is very simil ar to the problem treated here , since the OCCUlTence of meteor t rail s , like 
that of atmospherics, forms n Poisson process in time and the echo (often) decn,ys expo nentially. 
The method used here may therefore in principle be applied to improve the theory of that 
distribu tion [Beckmann, 1962c]. The main difficulty is that tbe distribution of tbe peak 
p"nlues (dependenL on the distribution of the mass of meteors) as used in <1S tl'OllOJ11 Y has no ]'ms 
\' alue. 

The method of calculatin g the overlap of time-dependent (decaying) pJl enomena whose 
occurrence is Poisson distributed in time as introduced in sect ion 4 may have applications for 
queueing and in ven tor,)T processes. 
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The main points of this paper were worked out at the Institute of Radio Engineering and 
Electronics, Czechoslovak Academy of Sciences.4 It was rewritten in a revised form after 
A. D. Spaulding of the NBS Boulder laboratories had made a thorough study of the original 
version and pointed out some errors in it ; the author wishes to express llis sincere gratitude to 
A. D. Spaulding. The author is also grateful to Mrs. Charlotte Cranford , who typed the 
manuscript. 

7. Appendix. Mapping of Distribution Functions in Generalized 
Probability Coordinates 

Let the distribution of a random variable E be given by the relation 

P(E> R) = P (R). (A. l) 

We wish to map this distribution in Cartesian ( ~, 'I) coordinates with scales ~oHP), 'fIo'l) (R) 
chosen in such a way that (A.l) will be mapped in these coordinates as a straight line. The 
moduls or scaling constants ~o, 'flo convert ~ and 'fI to centimeters, inches , 01' other units of length 
and we set them equal to unity. 

Since (A.l) is always a nonincreasing function, the design of such coordinates is always 
possible. One of the two scales, usually 'fI(E), may be chosen arbitrarily (e.g., linear, logarith­
mic, etc.), the other is then determined by the requirement 

'fI (R ) = C+SHP ) (A.2) 

where C and S are choosable constants; S is the slope of the required straight line. 
Let R(P) be the inverse function to P (R) as given by (A. 1) ; then from (A.2) the required 

scale of the ~ axis is 

HP) - C-'fI[R (P)] 
- S 

which is the general solution of the problem. 
For the Rayleigh distribution 

( R2) P(E>R) = exp - E2 

the inverse function is 

R(P) = Erms-Jln (l iP). 
If we choose 

'fI (R ) =ll!lloglo R = ]'01[' In R 

(A.3) 

(A.4) 

(A.5) 

(A.6) 

(where the constants M or M' may be absorbed into the modul 770, so that we may set either 
equal to unity), we obtain the scale HP) of Rayleigh paper on which (A.4) will be mapped as a 
straight line with slope S, by substituting (A.5) in (A.6) and the result in (A.3): 

HP) =2~ log [111 (l IP )J+C[ (A.7) 

where 01 is a constant determining the position of the origin on the ~ axis; we set it equal to 
zer05• The slope S for Rayleigh paper is usually chosen as S= - 1 or S= -7f. The latter is 
used in figures 1 and 3 to 5 of this paper. 

, URE·CSA V Inst. Rept. No. 26, 1962. 
, Since either M or]vI' in (A.6) may be set equal to uuity, tbe sYJllbol " log" in (A.7) may mean eitber 10gJO or In . 
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It may be shown by elementary methods tlmt all functions of the kind 

P(R)= exp ( - kRIn) (A.8) 

and only these functions will map on Rayleigh paper (A.6) , (A.7) as straigh t lines. The slope 
of such a line is 

8' = 28. (A.9) 
m 

Th e curve that will result from mapping a general fun ction p eR) on R ayleigh paper is 
found by substi tuting p eR) in (A.7) and eliminating R from (A.7) and (A.6), so tbat the curve 
rJ = rJ W will be obtained. For example, for the lognormal distribut ioll normalized as in (2. 9) 
we have 

p eR) = ~ erfc x (A.10) 
where 

erIc x= l -erf x (A .l1) 

and 

(A.12) 

In the second expression of (A.12) we h ave s ubstituted from (A.6) for j\;[' = 1. The re­
lation between ~ and rJ is therefore 

~=2]8 In [In 2- ln erEc CT~;2)] (A.13) 

This (or any other) function will be mapped on R ayleigh paper as a straigh t line in those 
regions where d~/clTJ = co nst . From (A. 12) a nd (A.13) 

d~ cl~ dx e _x2 

drJ dx d7f 80".J2;(lll 2- 81·[C x) erfc x 
(A.14) 

This mq)ression wiJl be constant for x constant , i.e., from (A.12) for 

(A.15) 

making x"'" 01/2, which substituted in (A.14) yields 1/8', where 8' is the slope of this straight 
line. The ratio of 8' to 8 (where 8 is the slope for which the Rayleigh paper was designed), 
is therefore 

.---= 8 - = O"-y2rre.-!2 In 2- ln erfc - erfc - · 8' (d~)-. ~? [ r 0" ] 0" 
t8 drJ .f2 .f2 

(A.16) 

Thus the lognormal distribution will map on Rayleigh paper approximately as a straight 
line in the region where (A. 15) holds , i .e ., in the region of small probabilities for 0"2 > 1 (of, 
fig. 1, p. 724). 

One way of determining 0" from a measured amplitude-distribution of atmosp beric n oise 
is to plot the upper por tion of the curve on Gaussian probability paper wi th tbe R a).'is given 
in decibels . If this part of tIle curve is lognormal , the points will lie on a straight line a nd 0"' 
m ay be determined, e.g., as the decibel difI'erence between the 2.28 percent a nd 0.135 percent 
levels. The par ameter 0" is then found from the relation 

0"' = 200" 10glO e= 8.6860". 

735 



8 . References 

Beckmann, P. (1962a), D eviations from the R ayleigh distribution for a small and for a random number of 
interfering waves, Pnlce URE-CSAV No. 25. 

Beckmann, P. (1962b) , The probability distribut ion of ra ndom vector plus a Rayleigh-distributed vector and 
its applications, Prace URE- CSAV No. 23. 

Beckmann, P. (1962c), The amplitude distribution of r adio waves scattered by meteor trails. Bull. Astr. 
Cz. la, 232-236. 

Blanc-Lapierre, A., R . FOl·tet (1953), TheOl'ie des fon ctions aleatoires, Masson, Paris . 
Crichlow, W . Q., C. J. Roubique, A. D. Spaulding, W. M. Beery (1960), Determination of the amplitude­

probability distribution of atmospheric radio noise from statistical moments, J. R es NBS 6<1D (Radio 
Prop.), No.1, 49- 56. 

Foldes, G. (1960), The lognormal distribut ion and its applications t o atmospheric studies. Etatistical Methods 
in Radio 'Wave Propagation, ed. W. C. Hoffman, pp . 227- 232 (P ergamon Press, London-New York, Paris­
Los Angeles). 

Furutsu, K. , and T. I shida (1961), On the theory of amplitude distribution of impulsive random noise, J. 
App!. Phys. 32, 1206- 122l. 

Gnedenko, B. V. (1962), The t heory of probability (Chelsea Publishing Co., New York, N .Y .). 
Horner, F., and J . H arwood (1956), An investigation of atmospheric noise at very low frequencies, Proc. 

lEE lOan, 743- 751. 
Watt, A. D., and E. L. :vrax well (1957), Characteristics of atmos pheri c noise on 1- 100 kc/s, Pro c. IRE <15, 

787- 794. 
Wheelon, A. D. (1962), Amplitude di stribution for radio s ignals r ef-Iected by meteor trails, II, J. R es. NBS 

64D (Radio Prop. ) 241- 247. 
(Paper 68D6- 370) 

736 


	jresv68Dn6p_723
	jresv68Dn6p_724
	jresv68Dn6p_725
	jresv68Dn6p_726
	jresv68Dn6p_727
	jresv68Dn6p_728
	jresv68Dn6p_729
	jresv68Dn6p_730
	jresv68Dn6p_731
	jresv68Dn6p_732
	jresv68Dn6p_733
	jresv68Dn6p_734
	jresv68Dn6p_735
	jresv68Dn6p_736

