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Atmospherics are assumed to be spike shaped with exponential upsurge and decay ;
their occurrence in time is Poisson-distributed. The distribution of the peak value is shown
to be lognormal. TUnder these conditions, the amplitude distribution of atmospherie noise
is derived; it may be well approximated by the distribution of the sum of a Rayleigh veetor
and a vector with lognormally distributed amplitude. The resulting distribution is uniquely
determined by three physically meaningful parameters and is in very good agreement with
measured distributions.

1. Introduction

The probability distribution of the amplitude of atmospheric radio noise is an important
basic factor for the design of radio systems; it may also be used as an effective instrument for
geophysical research of atmospheric discharges by which this noise is caused. The statistical
distribution of the amplitude of atmospheric radio noise is therefore being measured in observa-
tories all over the world; so far it has, however, not been possible to give a thorough and
practically useful theoretical explanation of this distribution.

[t has been found empirically that the distribution

P >R) (1.1)

where /7 is the instantaneous value of the envelope of the HE atmospheric noise and R is a
selected level of voltage or field strength at the receiving point, approaches a Rayleigh dis-
tribution for small amplitudes (high probabilities). This is evidently caused by the interference
of many mutually overlapping small atmospherics whose phase is uniformly distributed over a
basic phase cycle, for these atmospherics are emitted by independent sources at distances of
many wavelengths from the receiver and from each other. For large amplitudes (low proba-
bilities) the distribution deviates considerably from a Rayleigh distribution and may be well
represented by a lognormal distribution [Horner and Harwood, 1956; Foldés, 1960]. This
part of the distribution curve is evidently due to relatively rare, strong atmospherics that do
not overlap in time.

It has also been found empirically [Crichlow et al., 1960] that when the experimentally
measured distribution (1.1) is mapped on Rayleigch paper (cf, appendix), the lower portion of
the curve (small R) is a straight line with slope corresponding to the Rayleigh distribution and
the upper portion of the curve (large R, small P) may be adequately represented by a straight
line of larger slope than that corresponding to a Rayleich distribution. As shown in the
appendix (and fig. 1), a lognormal distribution will map on Rayleigh paper in this way. Between
the two straight lines there is a transition that has been approximated by Crichlow et al.
[1960] as a circular are.

The individual atmospherics that protrude from the permanent noise level are spike
shaped and decay rapidly, exceeding the permanent noise level only for some milliseconds
[Horner and Harwood, 1956]; this order of time is in agreement with the characteristics of
lightning discharges [Watt and Maxwell, 1957]. The decay is evidently exponential and has

1 On leave of absence from Institute of Radio Engineering and Electronics, Czechoslovak Academy of Sciences, Prague 8, Czechoslovakia.

723



0 \
30 N L
Ridt]

.\

o
\\\
~
M~
-10 _6-05
=]
-20
N &
-30
- ¢-2 \&5
-40
Qoaor gor o1 1 510 2 30405060 70 80 S0 95 98 99

£ o
P(fmm>R) (%]

Ficure 1. Lognormal distributions plolted on
Rayleigh paper.

a small time constant. The buildup is also exponential with a still shorter time constant.

The purpose of this paper is to derive the theoretical probability distribution (1.1). In
section 2 we shall first derive the probability distribution of the peak values of the individual
atmospherics. In section 3 we derive some general probabilistic relations, in particular the
distribution of the time interval separating a peak from the kth following or the kth preceding
peak assuming the number of peaks in a given time interval to be Poisson distributed. In
section 4 we derive the amplitude distribution of the decaying kth preceding atmospheric and
the rising £th future atmospheric; the time constants of rise and decay may be chosen indi-
vidually and arbitrarily, so that we are working with a very general spike-shaped atmospheric.
In section 5 the rms value of an individual atmospheric and of the entire atmospheric noise is
derived and the required distribution is then found by summing over all &; the resulting distri-
bution is the sum of a Rayleigh vector and a vector with lognormally distributed amplitude.
In section 6 this distribution is compared with the experimentally measured distribution; in
spite of some coarse approximations, the agreement is surprisingly good. As in the case of
the empirically graphical method of Crichlow et al. [1960], the resulting distribution is uniquely
given by three parameters; as one of these depends exclusively on the properties of atmospheric
discharges and one predominantly on propagation conditions (the third drops out in normalizing
to the rms value), the theoretical distribution derived in this paper should prove useful for
geophysical research.

2. Distribution of the Peak Value of Atmospherics

The peak value [, of an atmospheric is determined by the peak power P, of the atmos-
pheric discharge emitting it, the distance of the discharge from the receiving point, and the
attenuation A in the propagation of the atmospheric (all at the considered frequency); therefore

Ep:¥ exp (—J:Zl a].(zj) (2.1)

where K is a constant determined by the system of units employed ; the attenuation A is given
by the sum of attenuations on the individual sections d; of the propagation path (whose total
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length is d); §; is the attenuation constant for the jth section. We may thus write (2.1) as

B, —ei=—¢exp Z bl + ~In P,—In Z d;+In Ix) (2.2)

which defines A.

The first three terms of the exponent are random; we may assume that the fluctuations
(the variance) of Pyand d will, on taking the logarithm of these quantities, be so much diminished
that they will be small compared with the fluctuations (the variance) of the sum of attenuations
as given by the first term of the exponent, which will thus predominate in determining the
distribution of A.  We further assume that the total propagation path ¢ can be split up into a
large number of sections d; on which the attenuations §,4; may be considered independent with
no section making a predominant contribution to the sum of attenuations. This assumption
seems reasonable since most atmospherics are propagated from long distances via the ionosphere.
Then A will be distributed normally, i.e., its probability density will be

‘17 exp I:—@;#))] (2.3)

p(A)zq 5

where g is the mean value of A and ¢ its variance.
From (2.2) we have
A=In E, (2.4)

which together with (2.3) yields the required distribution of 7,

(In E,—p)* ;
MNE,) — _exp| =00 28
ME) GL,,\ 27r 8 |: 2q* (2:5)
and hence
5 e 1 In R—pu 1;— o
P(E,>R)=A(R)= }\(\Ell)(]Eﬁ:a I—er (2.6)
J R e N

The distribution (2.5) or (2.6) is the logarithmic-normal distribution, which has been found
experimentally to apply to strong atmospherics [Horner and Harwood, 1906, Foldés, 1960] but
was not explained theoretically. The mean and mean square values of £, are from (2.5)

(E,)=exp <u+%f> (2.7)
(E,* =exp 2(p+d?). (2.8)

From (2.8) and (2.6) we then have

In R+4° )
P ( P) [1— )] 2.
Ep rms > 0'\ 2 ( )

It we wish to express £ in decibels, we obtain after elementary manipulations

_orf (Bt Ao ‘
(I{ P rms>Rdb> [1 erf < AO’\ § )] (2.1())

A=20 log;, e=8.686. (2.11)

where

Curves of (2.10) for various values of ¢ are plotted on Rayleigh paper in figure I.
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3. Probabilistic Relations

In order not to interrupt our development later, we now derive two general relations that
we shall need.

Since atmospherics are emitted by mutually independent sources and the reception of an
atmospheric is equally probable at any time, their number in a given time interval will be
Poisson distributed, i.e., the probability of receiving n atmospherics in a time interval of
length 7 1s

Pn; 'r):@:;)n e, (3.1)

where N is the mean number of atmospherics received per unit time.
To find the probability density of the time interval 7', separating a given peak from the
kth preceding peak, i.e.,
Pe(t) =Prt:< T <t,+dty) (3.2)

we note that this probability equals that of receiving £—1 atmospherics during the time ¢,
and one atmospheric during dt,; since the two events are independent, we have

pilte) =P(k—1; &) P(1; dty) (3.3)
or substituting from (3.1),
Nk )
pk(tk) (k' 1)' e—Z\tk (34)

which is the first relation we shall require.
The second concerns a random signal (vector) with independent amplitude and phase

fi=Eew, (3.5)

where we have suppressed the time factor exp (iwf). Let the phase be distributed uniformly
over an interval of length 27, or more generally let the probability density of the phase, p(¢),
be such that for all ¢ in the interval 0<¢<27

S L 2km)—te(@);  |e(@)| << 3.6)
=—o 27!' 27[’

so that p(¢) is equivalent to a uniform distribution in the interval (0, 27). A vector of the
kind (3.5), whose phase distribution satisfies (3.6), is met so often in wave propagation that it
deserves a name; because of its Uniformly Distributed Phase we shall call it a UDP vector.
(A Rayleigh vector is the special case of a UDP vector with Rayleigh-distributed amplitude.)
The sum of any number of UDP vectors

n A n
U :LT619:Z EJ:Z Ejeid’j (37)
j=1 j=1
is obviously again a UDP vector. Consider now the mean square value of a UDP-vector sum
on =00 Z Bje91 33 Eye™ % ) =3 (B + 30 (B, ) (o' 0 o0)- (3.8)
—7 =i =i J#Ek
But for j#k,

: 1 (o
(eorw)—gs |," |, et wisdn=o (3.9)

Substituting (3.7) and (3.9) in (3.8) we find

/

n

2\*2 (E3) (3.10)
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regardless of the distributions (possibly all different) of the amplitudes £, Thus in the
interference of waves that may be represented by UDP vectors, the mean total power equals
the sum of mean powers of each wave regardless of the amplitude distributions of the latter.

The phase of an atmospheric is, among other factors, determined by the distance of the
atmospheric discharge from the receiver. Since this distance is random and varies over a
range much larger than one wavelength, (3.6) is satisfied and any atmospheric may be repre-
sented by a UDP vector.

4. Amplitude Distribution of the Signal Due to the kth Decaying Atmospheric

We assume the shape of the envelope (amplitude) of an individual atmospheric attaining
its peak value I2, at time ¢, of the form

BT (—t;t°> o
o) — . 4.1)
| (o exp ( > '°> fort< 1,

i.e., in the shape of a spike as shown in figure 2a with arbitrary time constants of decay and
upsurge a and 6. This shape evidently corresponds to the real shape of atmospherics better
than rectangular impulses (cf, fast film recordings by Horner and Harwood [1956]).

However, in addition to this atmospheric w,(t,) = (££,), there will be present also an infinite
number of decaying atmospherics w,, s, . . . U . . ., that have attained their peak
value (#£,), in the past, ¢, time units ago (fig. 2b); the distribution of t, is given by (3.4). The

b) (Eplk

(Ep)

tk

Fiaure 2. Random sequence of atmospherics.
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amplitude of the kth (past) atmospheric at time ¢, is therefore

t A
w=(E,); exp (—E’):E (4.2)
where
A=), B—exp (2) (4.3)
are independent random variables. The distribution of A is X(A) as given by (2.5). The

distribution of B is found from (3.4) by transforming in accordance with (4.3):

w(B):% (1<B< ). (4.4)

The distribution of % is now found from (4.2) as the distribution of the ratio of two inde-
pendent random variables [Gnedenko, 1954]:

plug)= I:m e uz)w(z)dz. (4.5)

Substituting In z=2 we find

’ - N*a* 2 I:_ _(n 71A+x u):l
p(uk)—u-—k(k—l)!ax/ﬂ I; 2~ exp Nazx dz. (4.6)

The mean square value of uy is

(uf)= f " ulp(us) dis 4.7)

and may be found from (4.6) by interchanging the order of integration and the substitutions

In u=y, (Na+2)z=t:

N¥a¥ exp [2(*+w)] ((© ., _, .
{hy= (]\T(I,—i—g)[’c(l(co—l)ﬁ; ]fo t"~tetdt. (4.8)
The integral equals I'(k)= (k—1)!, so that we obtain ?
kK 2
2:Na exp [2(a®+u)] 4.9)

L (Na+2)*

Besides the decaying atmospherics u;, we have to consider also the upsurging atmospherics
sy, attaining their peak value at a time #,+¢,. For the upsurging atmospherics the calculation
is of course the same except that the time constant @ must be replaced by b so that

N* exp [2 (a*+)],

2\
<‘Sk> - (A7b+2)k (410)
5. Amplitude Distribution of Atmospheric Noise
The total signal U at time ¢, is
A A e A i A

2 More generally, we find by the above method

/AN B 1
(up)= NG exp szaz-i-mp,

of which (4.9) is a special case for m=2.
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where the circumfiex accents again denote UDP vectors. Applying (3.10), we therefore find
from (2.8), (4.9), and (4.10)

(U?)=exp [2 (*+u)] { Z (N(l+2> —!—L_I ]\;\b/:r") } (5.2)

Both series are geometric with sum Na/2 and Nb/2 respectively. Introducing the average
time constant of upsurge and decay

+b
=2 : (5.3)
we then have
U?»=(1+Ne¢) exp [2 (a*+u)]. (5.4)

This is the mean square value of the field at a time ¢, the time of arrival (peak) of an
atmospheric. The probability distribution of the amplitude at that time is strongly dependent
on the value of Ne. It is easily shown from (5.1) and (5.4) that for Ne>>">>1, which corresponds
to the atmospherics overlapping in time at all but the highest levels, 7 is approximately Ray-
leigh distributed; this contradicts the measured distribution.

On the other hand, if Ne< <1, the two series in (5.2) will be much smaller than unity;
in this case the lognormally distributed quantity u, will predominate and the overlapping
decaying or upsurging ut‘mn%pheri(‘ s u, and s, will affect the resulting distribution only when
up (and hence 7)1s small.  This is in agreement with the measured distribution and we therefore
henceforth assume Ne<_<_1. Also, we may safely assume b<_<a, i.e., that the time
constant of the upsurge is much S]H(l]l(‘l than that of the decay (cf, recordings by Horner
and Harwood [1956]). We thus assume

Na
Ne= 5 < <1. (&

(2}
(%3]
=

A

It follows from (5.1) that U is a UDP vector composed of infinitely many UDP vectors,
of which one (#y) has a mean square comparable to the mean square of the sum, whereas tho
mean squares of all the others are much smaller and these remaining vector tmms will affect
the distribution of /£ only for small amplitudes of %, and hence of {/. 'The sum of these remain-
ing vectors is that of a rapidly converging geometric series and thus the conditions for it to be
a pure Rayleigh vector are not strictly satisfied [Beckmann, 1962a], though its distribution
curve will asymptotically approach a Rayleigh distribution for small amplitudes and thus
this sum may well be approximated by a Rayleigh vector. Thus U/ as in (5.1) will equal the
sum of a lognormally distributed vector and a Rayleich vector. The distribution of the
amplitude of the sum is then given by [Beckmann, 1962b]

2U

wlU)= i

e TUHM f Nug)e ™M [o(2uoU /M) dug (5.6)
0

where M is the mean square value of the Rayleigh vector and I, is the modified Bessel function.

It can be shown [Beckmann, 1962b] that for small values of U, (5.6) will approach a Rayleigh

distribution, whilst for large values of U it will approach a lognormal distribution.

However, it should be pointed out that (5.6) is the distribution of the amplitude at time
to, 1.e., at the time of arrival (peak) of an atmospheric. For any arbitrary time ¢ (between two
successive peaks) the amplitude is
E=Ue¢-'" (5.7)

(where the upsurge has been neglectod since b<_<a) and although U is random, once it has
assumed a certain value, /' is governed by the deterministic exponential law (5.7) between

. A L
two consecutive atmospherics. Thus £ at any time is also the sum of a lognormal and a
Rayleich vector (both are UDP vectors). If the time interval separating two successive
yleig g
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atmospherics is 7, then from (5.7)

<E;z[ T>4<er> fq— e 2 /adti a <l 72><] G—QT/H) (r.éw)
T 0 27
or llSiDg (5.5)7

(EF| =T % (1—e™""). (5.9)

Now r is itself a random quantity with probability density Ne ™7 i.e., (3.4) for k=1;
applying the Theorem of Total Probability to (5.9) we therefore have

(E)=O)Ne [ "+ (1= =)o~ @ Neln 15V (5.10)
0
or from (5.4) and (5.5)
(E*)=(1+Ne) Nee2 @+ In L}ggcheQ(ﬂﬂ) In (1/Nc). (5.11)
Similarly, the mean square value of E;=u; exp (—t/a) is
(EH={(u)NecIn(1/Ne), (5.12)
in particular,
(E3)=NeeX@™+» In (1/Ne). (5.13)

It follows from (5.11) and (5.12) that the predominant term in ﬁ is ﬁ’o, whilst the sum of
all remaining terms

—>Z,
i=1
which is Rayleigh distributed, has a mean square value of only

(Z8=(E*—(E3)=Ne(E3)=N?c’¢**+¥ In (1/Nc).

To find the distribution of F, we use F,=Ue " where [/, is lognormal, ¢ is uniform
from 0 to 7 and 7 is distributed according to (3.4) for k=1; hence

_ wd: : t/ay ,t/a _7'JX(L fw /_Wl: <hl Ey+r/a— #) <111 Ey—p
pO(EO)——NJ; - J:))\(EOG )€ dtdr= 2E0 . ; UW/2 erf 7) dr.

(5.14)

This integral cannot be evaluated in a closed form, but approximate calculations show
that the distribution of Fj remains roughly lognormal, especially for large values of E, (where
the exponential decay distorts the distribution of U, less than for low values attained after a
longer time 7). Thus if we replace the random variable 7 by its mean value (r)=1/N and

use (5.5), we find
v Nc¢ . /In E—
wiey g e (%5

which for large values of the argument (i.e., large £) will asymptotically tend to

oNeo? 1 In Hy—p?
Po(Fp) ~ = L [_LETEZL):I

N
In Ey—p o llgy27

thus retaining the character of a lognormal distribution. Alternatively, one may expand the
square bracket in (5.14) in powers of 7; this again yields a lognormal distribution that may be
factored out of the integral. Other approximations of (5.14) again retain a lognormal character.

We therefore approximate (5.14) by a lognormal distribution with mean square (5.13).
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Since (5.13) may be written as
2 __ o of 2 ] T, 1
o=exp < 2[e’+ntg In Ne+3 Inln (1/Ne¢)] o>
the required distribution may be taken as lognormal with parameters ¢’=g¢, and
, 1 1
u :p,-|—§ In NC+§ Inln (1/Ne).

The distribution of £ will therefore be the sum of this lognormally distributed vector with
amplitude £, and the Rayleigh-distributed vector Z.
The required distribution of /7 is therefore in analogy with (5.6) given by

e o o
PE)y=57 ¢ B2/ M ﬁ (o) e B! M] (2 B /M) dE, (5.15)

where M= (/) and po(L£ (.)f)\(],“, o u).

Since, in our case, [§ is much larger (1/Ne times) than M, (5.15) turns into po(F,) for
large [7, and into a Rd\l(‘l“h distribution for small 7. Normalizing with respect to the root-
mean-square value of 7, which from (5.11) is

Ems=~+/Ne In (1/Ne)e” ™= (Ey) mms, (5.16)

these two distributions are therefore

In R
<er/l‘> "[]_ '(1 ’jq‘] (5.17)

R?

P(En) 619

~“rms

for large R, and

for small 7.
For the intermediate (and all other) values of /2 we find by normalizing and integrating

(5.15):

F)+1 In £ 2EE
Lm >1» Nw\"rf dE f dEEE " exp = o ( n] n+<7 ) :|]0< 2EE (1) (5.19)

This is the formal solution of our problem; the practically useful solution is given by the
asymptotic distributions (5.17) and (5.18). In comparing our results with the measured
distribution (section 6) we have used (5.17) and (5.18). For the intermediate region, which
turns out to be comparatively small, we have not gone to the trouble of computing the cumber-
some integral (5.19), but have followed the example of Crichlow et al. [1960] in joining the
curves of the two asymptotic distributions (5.17) and (5.18) by a circular arc (dashed section
of curves in figures 3 to 5).

6. Comparison With Experiment and Applications

Crichlow et al. [1960] have made an empirical analysis of more than 100 amplitude-
distribution curves of atmospheric noise measured in Colorado, and further curves measured
in Alaska, Panama, Florida, and England. In all these cases they found that when the dis-
tribution curve (1.1) is plotted on Rayleigh paper, the measured points lie for small 2 on a
straight line with Rayleigh slope, which is in agreement with (5.18), and on a straight line with
larger slope for large I2; this is again in agreement with (5.17) for as shown in the appendix,
the lognormal distribution will for large /2 plot as a straight line on Rayleigh paper and its
slope is determined by the parameter o.
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The position of the Rayleigh line is determined by a single point (its slope is already
determined by the coordinate net). From (5.18) it follows that for

R=+/Nc (6.1)
we obtain P(E/E,>R)=e1=~37%,23

Thus the parameter Ne¢ determines the position of the Rayleigh line, ¢ determines the
slope of the high-voltage, low-probability line and the parameters o, Ne¢, and p determine
the rms value of the atmospheric noise ££,,,. From the above it follows that the distribution
(5.17) to (5.19) must always be in agreement with the measured distributions analyzed by
Crichlow et al. [1960]. Examples are shown in figures 3, 4, and 5. The distribution agrees
equally well with the results measured by Watt and Maxwell [1957].

The distribution derived here is uniquely determined by three parameters: Ne, o, and u.
The first of these depends only on the properties of atmospheric discharges (/N the number of
discharges per unit time, @ the time constant of decay); ¢ is the standard deviation of the total
attenuation, which in accordance with section 2 is almost exclusively determined by the proper-
ties of the propagation path (‘“almost’ because to some small extent it depends on the standard
deviation of the logarithm of the peak power of the discharge); u is the mean value of the total
attenuation and is also predominantly determined by the properties of the propagation path
(this parameter drops out in the normalization with respect to the rms value).
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Ficure 3. Amplitude-probability  distribution  of Ficure 4. Amplitude-probability — distribution  of
atmospheric radio noise. atmospheric radio noise.

Circles: values measured by Crichlow et al., [1960] on 13.3 k¢/s at Circles: values measured by Crichlow et al., [1960] on 10 Mc/s at
Boulder, Colo., October 6, 1958. Full curve: distribution computed Boulder, Colo., S_eptembe_'r 10, 1958. _I<ulvl curve: dlSvtrlbllllon
from (5.17) and (5.18) for o=1.67, Nc=0.01. Broken curve inter- gomputed from (5.17) and (5.18) for ¢=1.15, Nc=0.1. Broken curve
polated. interpolated.

3 This point is usually not marked on the P scale; a better policy is therefore to determine the point corresponding to P=99 percent, which,
as may be verified from (5.18), lies almost exactly 20 db below the rms value of the Rayleigh component (6.1).
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Circles: values measured by Crichlow et al., [1960] on 113 ke/s at
Boulder, Colo., September 12, 1958, Full curve: distribution
computed from (5.17) and (5.18) for o=1.74, Nc¢=0.008. Broken
curve interpolated.

Applications to geophysical research are evident: a change of the above parameters will
sause a change in the amplitude-distribution curves as measured at different receiving points,
times, and under different conditions. Comparison of the measured curves with the theoretical
curves should permit the assessment of the causes resulting in the particular measured
distribution.

Among other applications of the theoretical distribution, the following one seems hopeful:
the variations of the level of atmospheric noise may be caused by a change in propagation
conditions or lightning activity or both, and it has been an obstacle to geophysical research that
the two causes are difficult to separate. The theoretical distribution derived above should
enable the two causes to be separated: if there is an increase in lightning activity, the parameter
Ne will increase, which will prolong the Rayleigh portion of the curve and raise it with respect
to the rms value. If propagation conditions change, this will affect the parameter o and hence
the slope of the high-voltage, low-probability portion of the curve.

The problem of the amplitude distribution of radio signals scattered by ionized meteor
trails is very similar to the problem treated here, since the occurrence of meteor trails, like
that of atmospherics, forms a Poisson process in time and the echo (often) decays exponentially.
The method used here may therefore in principle be applied to improve the theory of that
distribution [Beckmann, 1962¢]. The main difficulty is that the distribution of the peak
ralues (dependent on the distribution of the mass of meteors) as used in astronomy has no rms
value.

The method of calculating the overlap of time-dependent (decaying) phenomena whose
oceurrence is Poisson distributed in time as introduced in section 4 may have applications for
queueing and inventory processes.
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The main points of this paper were worked out at the Institute of Radio Engineering and
Electronics, Czechoslovak Academy of Sciences.! It was rewritten in a revised form after
A. D. Spaulding of the NBS Boulder laboratories had made a thorough study of the original
version and pointed out some errors in it; the author wishes to express his sincere gratitude to
A. D. Spaulding. The author is also grateful to Mrs. Charlotte Cranford, who typed the
manuscript.

7. Appendix. Mapping of Distribution Functions in Generalized
Probability Coordinates

Let the distribution of a random variable /£ be given by the relation
P(E>R)=P(R). (A.1)

We wish to map this distribution in Clartesian (&, ) coordinates with scales &E&(F), non(R)
chosen in such a way that (A.1) will be mapped in these coordinates as a straight line. The
moduls or scaling constants &, n, convert £ and 75 to centimeters, inches, or other units of length
and we set them equal to unity.

Since (A.1) is always a nonincreasing function, the design of such coordinates is always
possible.  One of the two scales, usually 7(/), may be chosen arbitrarily (e.g., linear, logarith-
mie, etc.), the other is then determined by the requirement

n(R)=C+S&(P) (A.2)

where (" and S are choosable constants; S is the slope of the required straight line.
Let R(P) be the inverse function to P(R) as given by (A.1); then from (A.2) the required
scale of the £ axis is

£(P) :%] (A.3)

which is the general solution of the problem.
For the Rayleigh distribution

2
P(E>R)—exp (-%) (A.4)
the inverse function is
R(P)=Emn/In (1/P). (A.5)
If we choose
n(R)=M log,, R=M"1n R (A.6)

(where the constants M or M’ may be absorbed into the modul 7,, so that we may set either
equal to unity), we obtain the scale £(F) of Rayleigh paper on which (A.4) will be mapped as a
straight line with slope S, by substituting (A.5) in (A.6) and the result in (A.3):

1 ;
5(P) =5 log [In (1P)1+C, (A7)
where (; is a constant determining the position of the origin on the £ axis; we set it equal to
zero’.  The slope S for Rayleigh paper is usually chosen as S=—1 or S=—%. The latter is

used in figures 1 and 3 to 5 of this paper.

4 URE-CSAV Inst. Rept. No. 26, 1962.
5 Since either M or M’ in (A.6) may be set equal to unity, the symbol “log” in (A.7) may mean either logio or In.
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It may be shown by elementary methods that all functions of the kind

P(R)=exp (—kR™) (A.8)

and only these functions will map on Rayleigh paper (A.6), (A.7) as straight lines. The slope
of such a line is

§r=25. (A.9)
m

The curve that will result from mapping a general function P(Z) on Rayleigh paper is
found by substituting P(R) in (A.7) and eliminating 72 from (A.7) and (A.6), so that the curve
n=mn(£) will be obtained. For example, for the lognormal distribution normalized as in (2.9)
we have

P(R)=3% erfc z (A.10)
where
erfc z=1—erf (A.11)
and
P N (A12)
av2 a2

In the second expression of (A.12) we have substituted from (A.6) for M’=1. The re-
lation between £ and 7 is therefore

1 n+o .
==l l:l 2—In erfc ( — —):l (A13
£ 5g | In n erfe o3 )

This (or any other) function will be mapped on Rayleigh paper as a straight line in those
regions where d¢/dn—=const. From (A.12) and (A.13)

dg_dgds e
dy drdy So\2x(In 2—erfe x) erfe x L)

This expression will be constant for  constant, i.e., from (A.12) for
In R|<<<o* (A.15)

making = ¢/y/2, which substituted in (A.14) yields 1/S’, where S’ is the slope of this straight
line. The ratio of S’ to S (where S is the slope for which the Rayleigch paper was designed),
is therefore

(S —a\‘%e"% [111 2—1In erfe [1_] erfe -Z- (A.16)
dn V2 V2

Thus the lognormal distribution will map on Rayleigh paper approximately as a straight
line in the region where (A.15) holds, i.e., in the region of small probabilities for ¢*>1 (cf,
fig. 1, p. 724).

One way of determining ¢ from a measured amplitude-distribution of atmospheric noise
is to plot the upper portion of the curve on Gaussian probability paper with the /2 axis given
in decibels. If this part of the curve is lognormal, the points will lie on a straight line and ¢’
may be determined, e.g., as the decibel difference between the 2.28 percent and 0.135 percent
levels. The parameter ¢ is then found from the relation

o’ =200 log,; ¢=8.6860.
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