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Changes in the propagation of a VLF signal due to the changes in phase velocity caused
by a small localized depression in the height of the ionosphere along or near the line joining
the transmitter and receiver are investigated using elementary diffraction theory. It is
shown that both the phase and amplitude of the received signal may be changed if the hori-
zontal extent of the depression is great enough and if it is sufficiently close to the path.
If the depression is at greater distances from the path, the amplitude and phase of the

received signal merely oscillates about the undisturbed values.

An account is given of

the use of Cornu’s spiral in estimating the effects of a particular disturbance.

1. Introduction

It is sometimes of interest to be able to estimate
how the phase and amplitude of a VLEF radio signal
will be altered if the height of a small area of the
ionosphere, along or near the path of the radio wave,
is altered. Such ionospheric height changes, in the
form of depressions, might be caused, for example,
by the localized “dumping” of electrons from the
radiation belts or by a small nuclear explosion at
heights such that the resulting prompt gamma and
x radiation produce ionization at limited ranges.

Now, in practice, the signal from a distant trans-
mitter is comprised of energy received over a finite
range of azimuth angles and not merely that received
along the line between receiver and transmitter.
Thus, a disturbance in the ionosphere must subtend
an angle at the receiver which is comparable with
the azimuthal sector in which the signal is received
in order to produce an appreciable effect on the
received signal. Otherwise energy will be diffracted
around the disturbance, and it will cause little effect.

Again, the width of the wavefront which makes
the significant contribution to the received signal
depends on its distance from the receiver and
transmitter and is a maximum when it is equidistant
from them. Thus, if the ionospheric disturbance is
sufficiently small and of fixed dimensions, the effects
it produces will depend on its location along the
path. It will be seen, therefore, that it is not
permissible, in general, to apply an earlier result
obtained by Wait [1961] for an infinitely wide
disturbance to a disturbance which is of limited
width (perpendicular to the path).

The situation is further complicated, since a dis-
turbance of the type outlined above, occurring at
random, is more likely to occur on one side or the
other of the path rather than on it. Nevertheless,
in such a case, the propagation of the signal is still
likely to be affected, although only slightly if the
disturbance is sufficiently remote from the path.

In this paper, these effects will be investigated by
using an approximate method based on Fresnel
diffraction theory. In order to eclarify the work,
several simplifying assumptions will be made.  First,
it will be supposed that propagation is two dimen-
sional (in the horizontal plane), and that the earth is
flat. Tt will also be assumed that all distances are
sufficiently large that only the first order waveguide
mode need be considered. The effect of a local
change in height of the ionosphere may then be
associated with a local change in phase velocity of
the single propagating mode [Wait, 1961]. This
assumption is reasonable if the slope in the ionosphere
is small.  In any case, it will be assumed that the
depression does not generate significant higher order
modes and that refraction can be ignored. Finally,
it will be assumed that even though the ionospheric
disturbance 1s of finite size, its effects can be repre-
sented by a “lumped” phase shift on that portion
of the wavefront which passes through the center
of the disturbance and which is bounded in the
transverse direction by the edges of the disturbance.

The value of the phase shift introduced by a par-
ticular change in the ionosphere depends of course on
the change in phase velocity which is produced.
This then depends on the size and shape of the iono-
spheric disturbance. In general there is an infinite
combination of sizes and shapes of disturbances
which could produce the same lumped phase shift.
The special case of a disturbance in which the height
of reflection of VLF radio waves cosinusoidally with
distance has been treated by Wait [1961]. Thus, in
this paper it will be assumed that the actual phase
change ¢ suffered by a ray of infinitesimal width in
passing under a particular ionospheric depression
has already been determined, by using methods such
as that discussed by Wait [1961]. This paper will
be solely concerned with investigating the effects of
changes in the width and the position of the dis-
turbance. In particular the effects of a disturbance
on the phase and amplitude of the received signal
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will be calculated for two specific cases: (1) when
the center of a disturbance of varying width is on
the great circle path, and (2) when a disturbance of
fixed width moves across the path. It will also be
shown that the effects of a small circular disturbance
tend to be proportional to the square of its diameter.
Thus small disturbances are much less likely to pro-
duce observable effects than an inappropriate or
naive application of Wait’s [1961] calculations would
indicate. Finally, a consequence of including the
effect of the earth’s curvature will be discussed.

A related problem has been discussed by Wait
[1961]. He was primarily concerned with the effects
of a disturbance which, while of finite dimensions
along the direction of propagation, was infinitely
large in the transverse direction. Wait was pri-
marily concerned with the change in phase delay
which would be expected as the longitudinal length
and depth of the depression were varied. He found,
anter alia, that the phase change produced by a de-
pression of this form was independent of its position
between the transmitter and receiver. Recently,
Wait [1964 a, b] has extended these results to cover
the case of a disturbance of finite width as it moves
across the path, and he has presented calculations for
a disturbance of both semi-infinite width and finite
width. In these later papers, he shows that the
effects on the received signal depend on the distance
of the disturbance from the receiver and transmitter.
This same subject is treated in this paper, using a
somewhat different approach.

2. Application of Fresnel Diffraction Theory

In this paper the approach is that used in text-
books on optics {e.g., Wood, 1934] in discussing dif-
fraction by a thin wire or other opaque object.
Here, however, the analogous diffracting object will
be transparent rather than opaque, and will intro-
duce a phase delay which differs from that which
would be obtained in its absence.

In this application, it will be assumed that each
elementary portion, ds, of the initially cylindrical
wavefront emitted by the transmitter reradiates
uniformly in all directions. Thus, the signal ob-
served at the receiver is the sum of the signals
reradiated by each element of the wavefront. The
effect of the disturbance is to cause a phase change
in that portion of the wavefront covered by the dis-
turbance. The first step is to determine the phase
of the signal reradiated by an element of the wave-
front, ds, situated at a distance, s, from the line
joining the transmitter to the receiver. The geom-
etry of the situation is shown in figure 1, in which
T and R are the transmitter and receiver, respec-
tively. The phase disturbance is centered at /7
and @ is a portion of the cylindrical wavefront from
the transmitter. Thus, 7P and 7@ are equal to a.
The distance QR is b, while PR is b+4. PU is a line
perpendicular to 7R drawn through 7.

The geometry of the figure shows that

PR’=UR’{-PU*

w/(S))

The geometry of the propagationof a wavefront VW
from the transmitter 'T to receiver R.

Ficure 1.

or
(b+s)*=(a+b—a cos a)*+(a sin «)>
Since
a>~sla,
0=s*(a+b)/2ab. (1)

Then the field at R, due to ds, is
. . 2w
E=FE, sin l:wt—T (a,+b+6)] ds,

where |/ is a constant relating the observed field to
the transmitted power, ete.

Thus, the total field due to the portion of the wave-
front between V and W, for which the distances, s,
from @) are s, and s,, is given by

—~
N
N/

3 “s2 2
El:EOJ sin I:wt_f (a+b+6):| s
.\’1

which on expanding the sine term can be written in
the form

E,=RE, sin [wt—%\lr (a+b)—0]) (3)
where
S9 D) 2 8¢ 2
R?:[ f sl (ls:l +[ J g (/.g] (4)
Js A o A
and
s2 2o
sin — ds
% A .
=tan™! ——-——- (5
2 )
J cos — ds
5 A

The integrals are Fresnel’s integrals and can be
evaluated from tables, as discussed later.

It should be pointed out that, for several reasons,
eq (2) is only approximate. First of all, the integral
should contain a coefficient 14/6, which is dependent
on s. Secondly, there should be an obliquity factor
of the form %(1-+cos TPR) [Longhurst, 1957] to
take account of the fact that the elements of the
wavefront do not radiate equally in all directions.
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For the type of applications for which this work is
intended, however, these details are unimportant
since the angle « in figure 1 will be relatively small.
One further objection to the present treatment might
be that the phase of the received signal is not given
correctly. This again is not important since it is
only changes in the phase that are required. How-
ever, the correct phase could be obtained by per-
mitting each element of the wavefront to reradiate

. ™ . o, . .
with a phase lead of 3 relative to the exciting signal.

These refinements are included in Kirchoff’s formula-
tion of Huygen’s principle [Longhurst, 1957].

Let us now consider an example in which the
wavefront extends from s, to s;. Between s,
and s, the height of the ionosphere is lowered so
that in this region the phase of the signal is advanced
by an (mmunt ¢ [Wait, 1961], but between so and
sy, and s, and s, 1t 1s 111\(‘]1(1110(‘(1 For brevity let

. 2w
F, sin I:wf—*}:- ((1,+b)]f Al

. 21
7 cos [wr—T (a +b)] B

ab\ .
\/2((1‘+b)' . ()

Then using eq (1) and the definitions

vy 2\2 ;
ﬁ cos <%> dv=C(v,),

01 5
[ sin (75 ) do=S ), @
JO =

for the two Fresnel integrals, eq (2) can be written
in the form,

and let

E,=A{C(v))—C(vy) +cos ¢[C(v;) —C(v,)]
~+sin ¢[S(2,) —S (1) 4 C(v3) —C (v2) }
—B{S () —S ) +cos ¢[S(v:) —S ()]
+sin ¢[C(v)) —C0) ] +8S(0) =S (2:)}  (8)
or
E,=AD—BF.
Thus,
S— 9
E,=+D*+F?. E,sin [wt—:;—r (a—H))——f)J: 9)
where

O=tan—'F/D.

The change of phase Af in the received signal is thus

™
since —- when o=0.

A0=0—T"
4 4

e s ow consider some special cases. First o
We can now consid 1 First of

i}l}l, let ¢ =0, which represents the undisturbed case.
‘hen,
:[*(V("u)‘*“('(”:s)];
F=[—8y) +8S(;)].

To include the whole wavefront, let s, and s; become
very large. Then,

vo—>—o and v;—>- .

Thus, D=1, F=1, and §="- Since

1
C(f=)==13, S(£o)==1.

This shows that the total field produced by the
unperturbed wavefront lags the ﬁeld due to the
portion of the wavefront at ¢ by T 1 and has a value
\ ‘) I(‘(] . . .

Secondly, consider the case in which »y=v,= —
and »,=v;= 4. This represents the case in which
the whole wavefront is advanced in phase by an
amount .

Then,

D=cos o+sin o,
F'=cos ¢—sin .
Thus,
o
I = .2,

9= Z—w, and A= — o,

which shows that the phase of the received signal
was advanced by an amount ¢, as might be expected.
Thirdly, we consider the more general case in which

Vo= —, V3=,
Then,

D={1—[C(v2) — C(v)](1—cos o)

+[S(22) —S(v)] sin ¢} (10)

and

F={1—[S(v)) —=S(0))](1—cos ¢)
—[C(;) — Cvy)] sin }.

These expressions for D and /', and consequently
for I and 6, can be evaluated numerically with the
aid of a table of Fresnel integrals, or graphically by
means of Cornu’s spiral, as shown in figure 2.  Con-
sider a disturbance which extends from s, to s,, where,
as in figure 1, s; and s, are the distances from the
edges of the disturbance to the line 7'%.  In this case,
however, 1t is assumed that tho entire disturbance is
on one sule only, of the line 77R. By means of (6),
the equlv(llent ralues p, and »,, of s; and s, are ob-
tained and marked on the Cornu spiral in figure 2.
The contribution to the received signal from »=—o
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Frcure 2.

Cornu spiral.

The received signal is represented in phase and amplitude by JiJ when the
wavefront is undisturbed. The effect of a phase advance ¢ on the wavefront

between»; and vy is to rotate vg to o', The received signal is now given by JoJ’
which is the vector sum of the unchanged components Jwi+v2 J=Jok, and the
altered component 29,

w RELATIVE AMPLITUDE
w o
>>5 0 ——
FE
< T
o o8
= = " 5000 km
06l VALUES FOR DISTURBANCE 30'-%—” AS2Okm |
B OF INFINITE WIDTH 50(:)0km
Lo PHASE ADVANCE R
o 1
0n =z —
za ACTUAL WIDTH, km
& 316 632 948
| | |
0704 08 12z 16 20 24 28 32 36 40 42

v = HALF WIDTH OF DEPRESSION

Fraure 3. The effects of a uniform disturbance (for which
0=30°) centered on the path.
The actual width, 2s, is obtained from eq (7); the numerical values shown refer
only to the specific case illustrated on the right.

RELATIVE
AMPLITUDE

’UNDISTURBED VALUES R |
Va-v= 2 _!
A = 20km

0,b=5000km |

PHASE

ACTUAL DISTANCE km
318 474 632

i | | 1 L
=, 0 1 -
& 0 10 20 30 40 50

v = DISTANCE OFF PATH

Fracure 4. The effects of a uniform disturbance (for which
©=230°) on the received signal as it moves across the path.
The disturbance is of fixed width, »;—21=2 which in the case illustrated is 316
km. The actual distances given refer only to the specific case illustrated on the
right.

to v=w, 1s given by the chord ;. The contribution
from the wavefront between », and », is given by »2,.
The effect of the phase advance, ¢, along the region
of the wavefront between », and », is obtained by
rotating »p, by the amount, ¢, to the position, ;.
(This follows from (8).) Since the remainder of the
wavefront between v=u, and + is given by ./,
this is added vectorially to Jw,, and J is moved
to J’. Then the final resultant is given by JyJ’,
both in amplitude and phase. In the absence of the
phase change between », and #,, the resultant signal
1s given by JiJ. Thus, the effect of the phase per-
turbation on amplitude is |JJ’|/|Jo]|, and the re-
sultant phase change i1s the angle A8 between J,.J
and JJ".

The results of some calculations made in this way
are shown in figures 3 and 4. The first of these
refers to a phase advance which is symmetrically
situated about the center of the path. The width of
the wavefront (v=2»,=—n,) suffering the phase ad-
vance 1s the variable. The calculations refer to the
case where a=>0=5000 km, »=20 km and ¢=230°.
[t will be seen that it is not until the width of the
disturbance (»,—»,) approaches about 1.5 that the
full effect is observed at the receiver. As the width
increases further, the phase and amplitude of the
signal at the receiver oscillate about the value which
it would have if the phase advance extended from
p=—oo to | o.

Figure 4 shows another example. In this case, a
phase advance (¢=30°) of fixed width, v,—» =2, is
considered, but its center is moved across the path.
The figure shows that as the center of the disturbance
moves away from the path, the initial perturbations
decrease from the value given in figure 3. At suffi-
cient distances from the path, the phase and ampli-
tude merely oscillate about the values which would
be observed in the absence of the ionospheric per-
turbation. The somewhat peculiar shape of the
oscillation is due to the fact that the Fresnel integrals
are not periodic for small values of ».

Figures 3 and 4 have been calculated for the case
in which the disturbance 1s equidistant from the ends
of the path so that a=b. Other cases in which
a#b are easily considered by merely decreasing the
value of s equivalent to a given value of », in accord-
ance with (6). Thus the width of a disturbed region
of the wavefront necessary to produce a given effect
is reduced as the disturbance approaches either the
transmitter or receiver. Furthermore, for off-path
disturbances, the distance from the path at which a
particular effect is produced is reduced as the dis-
turbance moves towards either end of the path.
Equation (6) also shows that a decrease in wave-
length has the same effect as moving the disturbance
towards one end of the path.

2.1. Effects of Circular Depressions

In the preceding sections, the profile of the dis-
turbance in height of the ionosphere has been speci-
fied by the phase change, ¢, that would be suffered
by a ray of infinitesimal width passing through it
[Wait, 1961]. The effect of varying the width of
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the disturbed region has then been discussed as
though the width (s;—s;) or (nn—wny), and ¢ were
independent.

As a first attempt to investigate a more realistic
case In which (s,—s;) and ¢ are not independent,
consider a depression which is a square with a side
length of d when viewed in plan. Then, since ¢
increases as the length of path Hlmlwh the dis-
turbance increases, ¢ “tends to be ])1()1)0111()]1(11 to d.
However, as the observed phase change, 6, also tends
to increase with d, the overall effect, when d is small,
is for 6 to increase approximately as d°.  If the depth
of the depression also increases with d, the depend-
ence is even stronger.

In the case of a circular disturbance, there is a
further complication since the phase change suffered
by a ray now depends on the distance from the center
at which it passes through the disturbance. It is
a maximum for the ray passing through the center,
but zero for the tangent ray. Furthermore, in most
cases, the depth of the depression will be a maximum
at the center and will smoothly decrease until it is
zero at the edges. Thus the dependence of phase
shift on distance from the center may become
marked, and under these circumstances, it might
be regarded that the “effective” diameter is much
less than the actual diameter. This effect will be
illustrated in the next paragraph.

Wait [1961] has given expressions which enable
the phase change produced by an infinitely wide
depression having a vertical profile of the form

h=h, for x>,
h=h,—Ah (*05( ) IO =2 L)

to be obtained. In this, % is the height of the un-
disturbed ionosphere, Ak is the maximum depression,
z 1s the distance from the center of the depression,
and 2r, is the width of the depression, both measured
in the direction of propagation.  Wait has calculated
that such a depression, for which ;=400 km,
Ah=20 km, h;=80 km, and N\=20 km, would ad-
vance the phase of an infinitesimally narrow ray by
+26°.  Consider now a circular depression whose
central cross section is of the same cosinusoidal form
as that just discussed, i.e., of diameter 2z, and
depth Ah. A chord dr awn h()I‘lZODthY through this
depression at a distance z from the center will now
have a height profile given by

h'=hy—Ah’" cos (*f L

25—

where 2’ is the distance from the center of the chord,
2+/xg—a* 1s the length of the chord and AA’=AL cos

G2y

To a first approximation A’ is a
function of z’.
[1961]

cosinusoidal
Thus the formulas given by Wait
an be used for obtaining the phase delay

through the disturbance, after calculating the ap-

propriate values of AA’ and +u5—2? for each value
of . The results of calculating in this way the
phase advance for a narrow ray passing thl()ll("ll the
circular disturbance discussed above are given in
table 1.

TaBrLe 1. Phase change through an 800 km diameter, 20 km

deep costnusoidal depression at varying distances from its
center

320
4.4°

240
11.4¢

160

7.79

0 km

26.2°

Distance from center . 400
Phase advance________ 08

By averaging these phase advances over the width
of this disturbance, it 1s found that the same average
phase advance would be produced by a depression
only 320 km wide, if its cross section along the
direction of propagation is everywhere the same as
the cross section through the center of the circular
depression.

The actual effects on the received signal produced
by a nonuniform disturbance, such as the one dis-
cussed above, can be determined by using, instead of
(10), the following expressions.

(ln+l) (~'Y (ﬂn> J

D {1—’[_ (Y Ul)_'( ([/m)_l_i COS n

n=2

+§_’:\4) Sill ¢n| S(”n+1) _S(F’u” }

ﬁ - < I+S(Dl)_S Dm)+2 cos ¢n AS(’n+1)

n=2

S(vn) J

m

_Z sin d),,l(,'({‘,H,])—(

n=2

N
()] - (1)
J
In these expressions, the disturbed portion of the
wavefront is divided into m small portions, and ¢,
is the phase delay produced by the section between
v, and v,y;.

2.2. Effects Due to the Curvature of the Earth

In calculating the phase anomaly caused by a
cosinusoidal depression in the ionosphere, Wait
[1961] included the effects of the earth’s curvature
on phase velocity. In the present case, however,
there is a further geometrical effect which follows
from the fact that in figure 1 the triangle TPR is
spherical. If the side lengths are expressed in
angular measure and denoted by a, b, ete., then it
is easily shown, using spherical trigonometry, that
(1) now becomes

5o A , (tan (H—mn b) (12)

2 tan 4 -tan b
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On substituting

A tan a; tan b): o (13)
2(tana+tan b)
. od  2md .
we again find that 46:—;\@:% and the remainder
A

of the formulas are unchanged. The consequence of

this is that s=5 - » (where 7 is the radius of the earth)
must be increased to obtain a particular value of ».

Indeed, as @ and b both approach 10,000 km <%:7§T>?

the value of s required for a finite » approaches
infinity. Under these conditions, the size of the
disturbance necessary to produce a given effect on
the received signal becomes very large. It is worth
noting, however, that @ or b separately may approach
10,000 km since (13) reduces to

/ A tan b
s= = — 0
\ 2(1-+tan a/tan b)
or
947,\/)\ tan b o
s=r\ Ty 0
AT 6. g T S
when a—3, and similarly for 6%5. Thus when

either the receiver or transmitter is about 10,000 km
from the ionospheric depressions, finite results will
be observed.

For paths of moderate lengths, the effect of the
curvature of the earth is quite small. For example,
consider the case in which ¢a=5b6=5000 km, A=20
km, and »=6400 km. Then for a flat earth (6)
shows that s=158» km, while (13), for the curved
earth, gives s=180v km. The differences become
greater, of course, as @ and b increase.

3. Discussion

The main purpose of this paper is to enable
estimates to be made of the effects of a particular
disturbance as its position relative to the radio
path is changed. Such estimates are best given
by comparison with the effects which would be
observed in the hypothetical case of the received
signal consisting of an infinitely narrow ray passing
through the center of the disturbance. The total
signal at the receiver is the vector sum of two
portions: that portion which is not altered by the
disturbance, and that portion which is altered.
In figure 2, the vector sum J,K of Jyp, and v,J
comprises the undisturbed portion of the field,
while 2,0 is the portion which 1s modified by rotation
of v, to », through the angle ¢. As a general prin-
ciple, then, from an examination of the Cornu
spiral in figure 2, it would seem that for the phase
of the vector sum of the whole wave to differ from

that due to the wholly undisturbed wave by an
amount approaching ¢, the length »p,=KJ" must
be greater than Jw,+uv,J=J,K. This means, in
essence, that a disturbance centered on the path
must extend from »,=0.7 to »,>-+0.7, approxi-
mately, while the nearest edge of an off-path dis-
turbance must be close enough to the path that »,
be less than unity. These figures are, of course,
rough approximations and are given only as a
guide; in the case of off-path disturbances, in partic-
ular, estimates should be made from the Cornu
spiral for each special case.

It should be noted also that there is, in general,
no simple proportionality between the phase change
¢ of the disturbance, and the phase change Af
of the total signal. Examination of ficure 2 shows,
in fact, that the maximum possible phase change,
Af’, in the received signal is approximately Af'—=

—1 D109
tan™! —=

JoK.

It is perhaps also worthy of mention that if the
ionospheric disturbance introduces attenuation as
well as a change of phase, this can be readily taken
into account. Graphically, as in figure 2, for
example, the attenuation can be included by simply
reducing the length of the disturbed vector »; at
the same time as it is rotated.

and occurs when 3,7 is at right angles to
0

4. Conclusions

The effects of localized ionospheric depressions
on the phase and amplitude of a VLI signal have
been discussed in terms of elementary Fresnel
diffraction theory. This has been made possible
by two main simplifications: (1) by assuming that
only one waveguide mode is present and that the
only effect of the depression in the ionosphere is to
locally alter the phase velocity of the waveguide
mode, and (2) that the ionospheric depression is
sufficiently small that the change in phase velocity
caused by it can be represented as a ‘“lumped”
phase change in the wavefront where it passes
through the disturbance.

It has been shown that:

(1) Even when the center of the disturbance
lies along the path, it must be of finite dimensions
before the phase and amplitude of the received
signal are affected by it. A small circular dis-
turbance produces an effect which initially increases
about as the square of its diameter.

(2) When the center of the disturbance is not on
the path, its near edge must pass within a certain
distance of the path to produce significant effects.
Otherwise, as the distance of the disturbance from
the path increases, both the amplitude and phase
oscillate about their undisturbed values, and phase
retardations are as likely to be observed as phase
advances. Indeed, when the center of the dis-
turbance is at certain distances away from the
path, the phase of the received signal may show no
change at all. Under these circumstances, however,
the amplitude of the received signal will be changed.
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(3) A disturbance produces the smallest effects
when it is equidistant from the ends of the path.
As it is moved nearer one end or the other, its
effects on the received signal increase. An off-path
disturbance must, however, move nearer the path
as it moves towards either end of the path if it is
to maintain the same effect. It is also easily
shown that the effects of a given on-path disturb-
ance are greater at higher frequencies, but again,
off-path disturbances must be closer to the path
than at lower frequencies to produce the same effect.

(4) A geometrical effect due to the curvature of
of the earth causes the critical dimensions (diameter
and distance off-path) to be increased above those
which would be calculated on a flat earth basis to
produce a change of given magnitude. In particular,
a disturbance at the center of the path, which is
about 20,000 km long, will only produce very small
effects.

Most of these results seem to be in agreement
with those obtained independently by Wait [1964
a, bl.
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