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Formulas and tables are given for the mean and standard deviation of R=20 logy r
where the random variable r has the Nakagami-Rice distribution. This distribution is of
interest in connection with the short-term fading characteristics of some received radio fields.
A particularly simple formula for the mean of R is obtained in terms of the well-known
exponential integral function — Ei¢(—x). Additional information concerning the median and
interdecile range of R is also given.

1. Introduction

In certain radio propagation problems the field strength at a receiver may be approximated
by the vector sum of a constant vector and a Rayleigh-distributed vector [Norton, Vogler,
Mansfield, and Short, 1955].  If it is assumed that the Rayleigh-distributed vector has an rms
amplitude £ and that the constant vector has an rms amplitude of unity, then the probability
distribution of the resultant » of their sum as given by Nakagami [1940] and Rice [1944, 1945]
may be put in the form

Pa>n)= g exp (= (2R dr (1.1)
v T
where /y(x) 1s the modified Bessel function of first kind and order zero. If the Rayleigh distrib-
uted vector has an rms amplitude £, the constant vector has an rms amplitude k,, and the
resultant of their sum is 7, then (1.1) gives the distribution of »=r/k, as a function of k=#k,/k..
The primary purpose of this paper is the determination of the mean 72 and standard devia-
tion o of =20 log,, ». Additional information concerning the median 22(0.5) and interdecile
range [2(0.1)-12(0.9) of I is taken from the paper by Norton et al. [1955]. The phase ¢ of the
vector sum of a Rayleigh-distributed vector and a constant vector is discussed by Norton,
Shultz, and Yarbrough [1952].

2. Calculation of R and oy
We will determine o5 from the relation
f=T— (B,

where 227 is the mean of R Making use of (1.1), we find that

— ) o
R- /:f (20 logyy )7 exp [— (147)/k*|1,(2r/k?)dr (2.1)
L Jo
and
R /-‘"’f (20 logy, 7)%r exp [— (14+22)/k*|Lo(2r/k?)dr. (2.2)
L Jo

In appendix 1 of this paper, these two integrals are evaluated and the three equations which
follow are derived.

R=(10 logi ¢)[—Ei(—1/k)]. )
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For k> 1, use
., fﬂ_z ® (_1)n+1(1/l(.2)n+1 _1 —1(1/'[L2>n 2
2 __ & ) T 19 .
A=(10logw 0)* { G2 3 gy <} 1J> [ - :I} 2.4)
For k<1, use
1k _ Jps
o%=(10 logy ¢)?2 {—2Ei(—l/lc2)E*(l/lc2)+4f ydt
J1

12 i 5 (—
9 f LEtL(—‘ﬁ (i (— ) - 4E (— L)y +In (R)]4C b (2.5)
J1 7
In these equations,

o —t
—E?',(—x):f pét—dt, x>0,

where
o ()
— =lim
J—;r, >0 J -z +. €
with € >0; and (;=1.099019, a constant. The functions — Fi(—xz) and E*(z) are well-known

functions for which tables are available. See, for example, the book “Tables of Sine, Cosine,
and Exponential Integrals,” U.S. National Bureau of Standards [1940]. The integrals

[ = g
J1

t
1/k2
J

are evaluated in appendix 2 to six significant digits by numerical integration.
Letting K=20 log,, &, we can get the following asymptotic formulas from (2.3), (2.4),
and (2.5).

and
l

(N

[—Ei(—t)]dt

= \

4.3429
For K >20, R~ K+- ——2.5068 (2.6)
TaBLE 1

K R(0.5) R R—R(0.5) ok
—40 0.000 0.000 —0.000 0.061
—35 .001 .000 —. 001 . 109
—30 1002 2000 —.002 194
—925 -007 2000 —.007 -346
—20 1022 -000 = 022 -616
—18 034 000 | —.034 776
—16 L0354 2000 —.054 ~980
—14 . 086 .000 —. 086 1.238
—12 136 .000 —. 136 1. 569
—10 .214 .000 —.214 1. 999
—8 .335 001 —.334 2,565
—6 . 524 .017 —. 507 3.279
—4 813 -107 —.706 4,036
—5) 1.249 383 —.866 4,667
0 1.894 1953 —. 041 5. 094
2 2,808 1.855 —.953 5.340
4 4.006 3064 —. 012 5. 465
6 5.448 1.519 —.929 5,525
8 7.077 6.155 =7 5. 551
10 8. 835 7.917 —. 918 5. 562
12 10. 679 9.763 —.916 5,567
14 12. 580 11.664 —. 916 5. 569
16 14. 517 13.602 —. 915 5. 570
18 16.477 15. 562 —. 915 5. 570
20 18, 452 17.537 —915 5.570
- = = —.915 5.570
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Ficure 1. K 7n decibels.

and
or~4.3429+/1.6449—1/(2k"). (2.7)
For K<< —20, R ~4.3429k2¢~'/* (2.8)
or~6.1418k1+k/2. (2.9)

The magnitude of the error in these four expressions is less than 5(10)~*.

Values of the median, the mean, the difference between the mean and the median, and the
standard deviation of 2 are given in table 1. These four quantities together with the inter-
decile range of R are shown as functions of K in figure 1. 'The median and interdecile range are
taken from the paper by Norton et al. [1955].

3. Appendix 1. Derivation of the Formulas for R and sk

If we change to natural logarithms and make the substitution r=Fky in (2.1) and (2.2),
we get

R=2(20 logyy €)e~"¥[(In k) A(k)+B (&), (3.1)

and
R2=2(20 logy, ¢)%~"¥[(In k)2A (k) +2(n k) B(k) +O(®)]. (32)

Here

A= f " e L2y k) dy- [ f ’ ym—le-vzlo@y/k)dy] :
0 0 1

a=

B (/f):f (In y)z/e‘”210(2y/k>(/y:|:2 . fm Z/?“‘le‘”zfo@y//c)(/y] ’
0 oa 2 Jo =1
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and

© 5 2 ©
i [ anpryerneumay-| oy [T vte Ly |
Jo o4 ),

Using the Maclaurin series expansion for /;(2y/k) and integrating term by term, we find that

fw ¢ ~Viy- U2y lk)dy=—5— ( 1Fi(a; 15 1/k),
0

where T'(z) is the gamma function and ,/(a; ¢; ) is a confluent hypergeometric function
[Rainville, 1960].

In order to complete the evaluation of A(k), B(k), and C(k), we make use of the known
series expansion for —Fi(—xz) and of the series transformation

@ > (1,Z Z b,l -z \\helc = N (3.3)

n= U 7- n=0

is the nth forward difference of a,; i.e., Aay=a,, Alay=a,—a,, etc. Omitting any further
details, we find that R is given by (2.3), and that

=10 Togiue)* { 40 1"+ 4 lIn ()~ Bi(—1/8)+

n+1 Zn+l n
+H 2t In (U — i1k 33 T (3 1>} B4

Combining (2.3) and (3.4), we get (2.4) for oz.
In order to prove (2.5), we derive a different expression for the series in (3.4). Observe

that
o —1)"+I(T n+1l / n ]) J‘ [ _l)n-Htu 1 >]
S e/ S /S C
,,Z=, (n+1)(n+1) \5=1 9 e

(*f—[i =)t (o ]):l —0.1827580.
S D)+ 1) \=7J

where

Omitting any further details, except to note that use is made of the series expansions for
— Fi(—x) and E*(z), and that we again use the series transformation (3.3), we find that

])n+l n+1

> (L s ])z—]‘]i(——x)[lf*(r)—v—lnx]+Ei(—1)[1€*(1)—y]

n=1 l)‘(’l+])
+ f ¢ Bi(—t)di—2 f D g
J1 J1

Using this expression together with (2.3) and (3.4), we arrive at (2.5).

F((

4. Appendix 2. Evaluation of the Integrals [ (=D 4 and

J1
1k2 pt
f C [—Ei(—t)dt
it
The values of the integrals

—FEi(=1)

,/(1/1,@'-’),—[ and h(1/k?)— f ﬁtf[—la‘a'(—z)],/t,

eiven in table 2 for various values of K, were obtained as follows. The ith entries of the
table were computed in terms of the preceding entries by means of the formula

J om0 ) s



TABLE 2

K 1/k2 | g(1/k 2) h(Q/k 2)
—0. 96910013 1. 2500000 ‘ 0.0404747 0. 123376
=2 | 1. 5848932 ] .0679414 | . 234919
—4 | 2. 5118864 . 0917103 . 402303
—6 | 3.9810716 . 0971504 ‘ . 518481
—6. 9897000 5.0000000 .0976706 | . 561387
—8 | 6.3095733 . 0978116 . 597259
—9. 0308999 8.0000000 . 0978393 . 626974
=1l 10. 000000 . 0978428 . 649645
—10. 791812 12. 000000 0978432 | . 665007
=il 15. 848932 . 0978432 | . 683943

|
—14 25. 118864 .0978432 | . 706139
=1l 39.810716 .0978432 | . 720383
=k 63. 095734 0978432 | . 729470
—20 | 100. 00000 .0978432 | . 735245
—25 | 316. 22776 . 0978432 ‘ . 742039
—30 1000. 0000 . 0978432 . 744196
—35 3162. 2776 . 0978432 . 744880
—40 10000. 000 . 0978432 ‘ . 745096
G | @ . 0978432 ‘ . 745196

where each of the integrals on the right-hand side of the equation was evaluated numerically
using a 16-point Gaussian quadrature formula. Kight significant digits were used in the
calculations and the results were rounded to six significant digits.

A different method for calculating the values of the integrals corresponding to K= —40
is presented here to check the values given in table 2.  Due to the technique used in preparing
the table, this will also be a check on the accuracy of the remaining tabular entries. First ob-
serve that

104 ¢ © ¢
f %[—IL'[(—i)Wt:f (t-[—Elz'(—t)](It—().0001+e
J1 J1 U

where [¢/<0.5(10)7%, and

R E ) = Ei—D)
fl — "“”fl ==

where [7|< 107", If we use the Maclaurin series for ¢', we get

n=1

© ,t © (- - ©
f ('—[—Ei(-—t)](/t:f ) ,1t+21f i1 —Ei(—1)]dt.
J1 t J1 t ]l!. 1

From Erdélyi et al. [1953], we find that

_T'(, 1)+E7'(—1):I‘(n,)—'y(n., 1)+Ei(—1)
n n

I‘mt"‘l[HEi(at)J(lt

where I'(n, z) and y(n, z) are the incomplete gamma functions, and from Le Caine [1948] we get

71'2

20 |
f”—Ei(—t)dt7+6 = (=1
1

t 2 _gn!(n—l—l)“'
Thus we find that
04 S —
f ' —M dt~0.097843199
. .

with an error less than 0.5(10)7 in magnitude. In the same way we may also show that
103 — T8 (=
f —L?t( ] dt =~ 0.0978432~
1

with an error less than 0.5(10)77 in magnitude. Omitting the details, we also get from the pre-
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ceding equations that

104 ot . 2 . @ y(n, 1)
f [ Ei(—1))dt~0.097843199+ T+ Fi (— [ E*(1) —v]— 3 1= —0.0001 ~0.74509596
J1 n=1 Uy

with an error less than 0.5(10)~% in magnitude. It is seen that six significant digit accuracy is
indicated for the values of the integrals given in table 2.

Thanks are due to R. E. Wilkerson for checking the mathematics in this paper, and to Mrs.
Gail J. Stifel for helping with the computations.
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