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The input impedance of a cyl indri cal dipole in a homogeneo us anisotropic ionosphere is 
determined fo r arbi t rary values of the medium parameters a nd a rb itrary orienta tion of t he 
dipole with r espect to the earth's magnetic fi eld . A s inusoidal current dist ribution is 
ass um ed, as well as a low value of dipole excitation , so that the fi e ld equ ations may be 
ass um ed to be linear. The Gree n's function is expresscd as a Fourie r integra l in spherica l 
propagation-co ns tant coordinates. In perfor ming a r esidues evalu ation of the radial integral 
i n this coo rdinate syst em, it is found necessary to deform t he co ntour diffe rently in different 
angul a r regions. By an appropri ate rotation of the coordina tes, the boundarics of t hese 
angular regions a rc m ade to depend on a single a ngular variable . An ex pansion of the result 
in power seri es in t he small pa rameter E= (dipole l'adius/dipole half-length), in which onl.v 
t erms in 10g(I /E) a nd EO arc r etained , leads to co nsiderable s implification . It is fou nd th a t 
t he two dominant terms can be expressed as s ine a nd cosine integrals, as in the free-space 
case, plus two finite single integrals which need num eri cal evalu ation. The in tegrands of 
these latter integrals a re expressed in terms of rec urs ive rout ines. 

The numerical in tegrations a rc in te rm;; of the polar a ngle of the wave propagation 
vecto r with respect to the earth 's magnetic fi eld . Singularities of th e i ntegrand a re en­
coun tered in the collisionless case when the appli ed freq uency is below t he plas ma or gyro­
freq uencies . It is th en necessary to carry out t he num crica l in tegmtion in t he complex 
plane. Conscq ucntly the present num erical integratio n p roced ure is res tricted to cases 
where t his situ a t ion docs not occu r. Extens ions of the t reatme nt whi ch remo ve these 
res t ri ctions and methods of obtain ing a more accumte curre nt dist ribu tion a rc discussed 
briefl y, the detai ls bein g reserved for a late r pa,per. 

N um erical calcula tions of impedance [or selected valu es of thc para metcrs a rc exhibited 
in a set of curves. 

1. Introduction 

For several years, ionosphere probing by rocket-borne probes has u ed the technique of 
the antenna impedance probe [Jackson and Kane, 1959] . The impedance probe has the special 
merit that it is affected by the ionospheric parameters in the immediate vicinity of the probe­
roughly in the order of a wavelength or less of the probe excitation. Consequently, this type 
of probe gives local values of the parameters, rather than integrated values as in the Seddon 
[1953] type of experiment. It also can be operated at an excitation level low enough to avoid 
the creation of additional ionization in the medium by the rf field. 

The proper interpretation of the impedance measurement of an antenna probe requires a 
knowled ge of the input impedance as a function of the medium properties. The type of antenna 
used in rocket probing can be rather closely approximated as a cylindrical dipole. FortUllately 

" one is interested in the impedance change produced by the ionized medium, so that deviations 
from the ideal cylindrical form can be expected to playa secondary role. For this reason , 
the subj ect of this paper is the calculation of the input impedance of a cylindrical dipole in a 
magneto-ionic medium. 

Rocket experiments have shown that the antenna acquires a negative charge. This nega­
Live charge repels the electrons immediately around th e antenna, with the result that the antenna 
environment is rendered inhomogeneous. This effect is a very important one from the stand­
poin t of the application of the impedance probe technique to the ionosphere. If this type of 

1 The resea rch reported in this paper \,as supported by the National Aeronautics and Space Admlnlstration under Coutract NAS&-585. 
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probe is to be useful, the nature of the inhomogeneity produced, and its effect on the antenna 
impedance must be capable of determination. The former of these two problems appears to 
be the more formidable one at present. In any event, a solution for the homogeneous case is 
a necessary flrst step, both to develop an insight to the natme and magnitude of the effects 
produced by various values of the medium parameters as well as to serve as a basis for a possible 
pertmbation technique for the inhomogeneous distribution. The case of a homogeneous 
medium will be assumed in this paper. 

The calculation of input impedance of a dipole is a straightforward problem when the 
distribution of current over the dipole is known. The current distribution is not arbitrary, 
however, since, in principle, it can be derived from Maxwell's equations and the known boundary 
conditions at the dipole smface. The key difficulty arises when one attempts to determine this 
current distribution from Maxwell's equations, since one is confronted with the problem of 
solving an integral equation [King, 1956]. Various iterative methods have been employed, but 
the accuracy of the result, as judged by comparison with experiment, is sensitive to the technique 
used. 

Tn first approximation the current distribution along the dipole is sinusoidal. This ap­
proximation is quite good for very thin dipoles. The sinusoidal distribution may be considered 
to be the result of guided waves propagating in the medium along the outside of the conductor, 
at a velocity appropriate to the external medium, and perfectly reflected at the open ends, the 
in tel'ference between the two oppositely directed wave trains resulting in a standing wave with 
zero current at the outer ends. 

Fortunately, as already mentioned, in the case of a dipole used as an impedance probe we 
are not interested in the exact calculation of the dipole impedance, but rather in the impedance 
change upon entry in to the ionosphere. This change is thus a difference quantity, so that small 
deviations in the nature of end effects which are occasioned by the use of only an approximate 
current distribution can be expected to largely cancel out when the difference, or change, from 
the free-space value is formed. Furthermore, the results obtained on the basis of a sinusoidal 
current distribution may be made the basis for a variational procedure whereby the current dis­
tribution is optimized, so that the initial impedances values can be refined. In this paper we 
assume a sinusoidal current distribution , resen-ing the variational treatment for a subsequent 
communication. 

A further assumption is made that the amplitude of the motion of the free electrons in the 
medium in response to the electric fi eld of the dipole is so small that the refracti,re index is giyen 
by the standard Appleton-Hartree formula. This assumption makes the field equations linear, 
so that Fourier resolutions are admissible. 

J n the treatment given in this paper, the input impedance will be obtained by equating the 
complex power passing from the surface of the dipole into the medium to the complex power 
supplied to the dipole at its input terminals. In this formulation the Green's function is ex­
pressed as a Fourier integral in spherical propagation-constant coordinates. In performing a 
residues evaluation of the radial integral in this coordinate system, it is found necessary to de­
form the contour differently in different angular regions. By an appropriate rotation of the co­
ordinates, the boundaries of these angular regions are made to depend on a single angular 
variable. An expansion of the resul t in power series in the small parameter E = (dipole radius/ 
dipole half-length), in which only terms in log (l iE) and EO are retained, leads to considerable 
simplification. It is found that the two dominant terms can be expressed as sine and cosine 
integrals, as in the free-space case, plus two finite single integrals which require numerical 
evaluation. The integrands of these latter integrals are expressed in terms of recursi,~e routines. 

The numerical integrations are in terms of the polar angle of the wave propagation vector 
with respect to the earth's magnetic field. Singular points of the integrand are encountered 
in the collisionless case when the applied frequency is below the plasma or gYl'ofrequencies. It 
is then necessary to carry out the numerical integration in the complex plane. Calculations 
given in this paper are restricted to cases where this situation does not occur.2 The closed-

, This restriction will be removed in a subsequent paper. 
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form terms, howeyer , are valid in all parameter ranges. 
N umeri ct,l cttlculations of impedance for selected values of the parameters are exhibited in a 

set of cur ves . 

2. Formulation of the Problem 

In view of the precedin g discussion, we now undertake the calculation of the input imped­
ance of a cylindri cal dipol e in an infinite homogeneous ionosphere h aving a constant super­
imposed magnetic field . This calculation is bftsed on the followin g ftss umptions: 

(a) The current distribu tion along the (center-fed) dipole is a sinusoidal function of dis­
tance along the dipole, being zero at the outer ends, and is uniform around the circumference 
of the dipole. 

(b ) In the calculation of the field at a typical poin t ill spftce, t ile CLllTent can be consid ered 
as concentrated along the axis of the dipole. 

(c) The ambien t ionosphere is homogeneous, and its r efracti,"e indi ces are gi ven by the 
Appleto n-Hartree relations. 

The dipole, of radius To and length 2l, is considered to be fed at its cen ter, with a CLllTCnt 
distributio n as shown in figure 1. 

W" e shall fLnd it co n ,"eni en t to employ two coordinate sys tems, l; and l;'. Coordinate sys­
tem l; has its z-axis alon g the ettrth's magnetic field , IIo. For l;' , t he z' -axis coincides with tha t 
of the dipole, ftnd m akcs " n fI ngle 0 ::::: 11" /2 wi th z . The relfttiYe orientation of l; andl;' is cJlOsen 
so tha t the z'-ax is li es ill the yz-plane. Thus the x-axis of ~ a nd t ile x'-"xis or l;' coincid e. The 
orientation s of t ile two sets of ftxes are shown in fi gure 2. 

Wc shall f\,ss um e a tim e depelldence of eiwt for ftll field quantitics and so urces. R ational­
ized m ks Ull i ts will be used t llroughout. 

Tllc impedllllce will be determ i ned by eq Llftting th c co mplex power (i. e., vol t-ftmperes) 
suppli ed to t hc antcnn ll nt its Jeed point to the co mplex powcr supplicd by the dipole to the 
exter nal mcd iulll , where the latter is obtained by intcgratin g the )lormal component of the 
co mplex Poy ntillg ,"ccto r o\"cr t llC slll'fttce of t he dipole. Tile result is 

Z=11\ 1 .J. (EX H *) . ds. (1) 

z' =o 

z'=-JI. 
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F IG v im 1. Illustrating di pole coordinates and CWTent 
dis tribution . 
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FJ G URE 2. Coordinate systems. 
x y z is H rectangula r system oriented wit h the ea rth 's magnctic ficld, 
t, while x' ,y' ,z' is oriented with t he dipole axis along Zl. 



For the calculation of the integral in (1 ), we introduce cylindrical coordinates (r', I{) I , Zl) 

in ~/, where I{)' is measured from the x'-axis. If we denote unit vectors bye, then 

cls= clAe r , . 

The actual curren t flows on the surface r' = ro. However, for the calculation of the fields 
we Inake the usual assumption that the current is a line source on the axis of the cylinder, 
r' = 0, and directed along the axis.3 Thus, if j (x' ) represents this line current, 

1:,7 ( 0 I ' ) _ 1 '( ' ) " _ 1 .( ')" 
:Ltang 1 0, I{) , z - -2 J z X er'--2- J z e"," 7rro 7rro 

(2) 

On inserting (2) into the integrand of (1) , we obtain 

Z= -27r~J2 1 ffj(zl )(E z cos O+ E y sin O)dl{)'clz ' . (3) 

The problem thus reduces to a determination of the electric field E. Once this has been 
found, the values of E y and E z can be inserted in (3 ), and this then evaluated to find the input 
impedance Z. 

3. Calculation of E 

We now turn to the problem of finding the electric field E. This obeys Maxwell's equa­
tions for the medium. In view of the free electrons and the superimposed static magnetic 
field of the earth, the medium is characterized by a dielectric tensor, so that a given component 
of field is due to current components in all three coordinate directions. On the assumption 
that the field equations are linear (implying sufficiently small vibrations of the free charges), 
Maxwell's equations guarantee that a solution must exist for E(x) of the form 

(4) 

where c?x, is a compact notation for dxlXdx, ydx1Zl and the conyention of summing over repeated 
indices is used. 

In (4), Gij (x lx1) is the (i, j) component of the Green's tensor. Physically, it represents 
the electric field in the ith direction at x due to the jth component of the source current density 
J at Xl' Thus Giixlx, ) propagates the effect of J at x, to the point x. 

A derivation of the Green's function Gij( lxx l ) has been given by a number of authors (see, 
for example, Kogelnik [1960]) . The result may be written in the form 

(5) 

From (4) and (5), 

(6) 

In (5) and (6), p is a numerical distance which is defined by 

(7) 
1co being the free-space waye number. 

In (5) and (6), D. )i is the (7, i) th cofactor and D. is the determinant of the following matrix: r 2 2 - Q,q2- K'2 -q,q,-,,,] _ q - ql - Kl1 

M (Q)-l - q2q' - K2' q2_ q~- K22 - q2q3- K23 (8) 

- q3ql - K31 - ChQ2- K32 Q2- Q~-K33 

3 It can be shown tbat tbis Jeads to errors of order no bigher than terms neglected in tbe presen t treatment. 
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in which 
(9) 

The Ki) are compon ents of a tensor, whicb, in the coordinate system 1: , takes on the partic­
ularly simple 1'o1'm 

(10) 

o 
wherel 

xu 1 0'1 = 1-- 2--2 
U - y 

xy 
a?=-?--. u-_y2 

0'3 = 1 -; J 
(11 ) 

which are in ten'elated through 

x, y , z are the usual nOl'lllali7.ed (plasill a f/'equency)2, gyrofrequ ency, and colli sion frequency, 
respecti I-ely: 

(12) 
z= v/w 

and 
u= l -iz 

Then 
(1 3) 

where (j~ and <G are the roots of the biquadrati c 

(14) 
with 

(15) 
These roots thus are gi\'en by 

(16) 

Since (3) does not in vol ve E x, so that j x is not required in (4), we need only four of the nine 
matrix elements of G/j (x lxl) for the present problem, These are G22 , G23 , G32 , G33 , Then from 
(4) and j z=j z' cos 0, j y=j z' sin 0, (3) becomes 

Z= -27rtPI L: clz' i 2r dq/j*( z') L: clz;'j(z;') {sin2 OG22 (x' lx;') 

+ cos2 eG33 ( X' Ix;') + sin e cos O[ G23 (x' Ix;') + G32 ( X ' Ix;')]}, (17) 

4. Evaluation of Z 

To el'aluate Z, we introduce dimensionl ess variables by putting 

A = lc~ l l 

~=lcaz J 
383 
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where lea is the propagation constant associated with the current distribution. For generali ty, 
we flssume that the propagation constant lea in the current distribution may be complex, so that 
A likewise may be complex. Then (17) becomes 

Z= - 21l' Ikt l /PI r ,:rz( Soh cl,p' j*(() r: dt~'j(t~ ') {sin2 OG22 + COS2 OG33 + sin 0 cos 0(G23+G32 ) } · 

(UJ) 

Formally, the final step is to substitute the required values of Gij(x/ lx" ) from (5) into (19) 
and perform the integrations to obtain the value for Z. The quantity in braces in (19) involves 
the ratio N (q)j6 (q) where 6 (q) is given by (13 ), and N (q) by 

N (q) = sin2 O[ (q2_Q'j) ( q~-Q'3) + qY (Q'3-Q'j) J+cos2 O[ (q2 _ Q' j) (q5-Q'j ) -Q'~J + 2 sin 0 cos Oq2Q3(q2_ Q'j). 

(20) 
Consequently (19) becomes 

(J ~ 0 0 3 ", 1'* I . " - i q .p 0' ;- [k 12f N (q) J" J A 12< 
Z (21l')4 !161 Fa cl q 6 (q) - A cit - A dt, 0 dcp J U" ).7 Ct, )e (21) 

in which t o and ko, respectively, are the free-space impedance and propagation constant. '1 

W e now are ready to introduce the assumption of a sinusoidal current distribution. We 
express this distribution, which is illustrated in figure 1, in the form 

,i W = losin (A - O, 

= 10 sin (A+ O , 

O,S t,SA , i 
O ~t~ A J (22) 

and use this form for both j* (t ;) and .j (t n in (17 ). As noted earlier, we assume that the 
propagation constan t lea in the curren t distribution may be complex. 

With the assumed form of current distribu tion (22), it is possible to carry out all the 
inner integrations in (21) . The quantity p in the exponent in (2 1) is the numerical distance 
between the current element on the axis at t~' and the current element on the surface of the 
cylind er at t'. H ence 

where 

(23) 

When the exponen tin (21) becomes 

By putting 

the innermost integral in (21) becomes, in view of the 21l'-periodicity of the inLegrand 

(24) 

In the ~ system the Bessel function in (24) becomes 

Although (24) has been evaluated in closed form, it will be necessary later on to revert to the 
integral form in carrying out a residues integration. 
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The evaluation of the remaining in tegrals in (21 ) is straightforward, so that we ob tain 

00 

Z = (Y q q dq dq dq J'f]' N( ) P( ) 
J • ~ (q) 1 2 1 

(25) 

in which 

(26) 

and 
(27) 

In (27) 
G-~ cos AO( Q3 cos 0+ q2 sin O)-cos A 

- Ao (q3 cos 0+ q2 sin 0)2- (A/Ao)2 
(28) 

in which 
Ao= kol. (29) 

Study of (26) shows that a tr ansforma tion from rectangular q-coordin ates to spherical 
coordina tes is advantageous, since then the r adicand in (18) does no t pass through zero for 
real angles. The radi al in tegration in this spherical coordin ate sys tem is then carried ou t by 
residues. On e then ge ts an alytically differen t res ults in differ en t angular regions. In order to 
simplify the division of these regions, transforma tion s (ro tations) of the spherical coordin a tes 
are in trod uced in order tha t the r egional bound aries depend on only on e of the angular variables. 
The analy ti c forms of th e in tegrand are then wri tten ou t in full for each region , and fur ther 
combin ations of t he component parts of the impedance expression can be made in order to 
simplify the subseq LLen t m anipula tions. 

The in tegntnds are then studied il.S power seri es in the p aram eter E= (dipol e radius/dipole 
half-length ), whi ch is a small number for practical dipole. The domin an t tenns of these 
seri es are examin ed as fun ctions o/' the angular vari ables. Jt is found that the t wo domin an t 
terms can be expressed as sine ;tIld cosine in tegrals, as in the free-space case, plus two siJlgle 
in tegrals which Jl eed num eri cal el'aluation. The in tegrands of these latter in tegrals can be 
evalua ted recLLrsi Irely. Jt is beli eved that in tegrals simila r to these are inescapable because of 
the form of the propagation constan ts in t he D1 1I.gneto-ionic medium , whi ch con tflin the angular 
\Tari able und er a r adical. 

In sections 6 and 7, the consequ ences of assump tions (a) and (b ) il bo\Te are examined 
bri efly. With respect to (a), it is poin ted ou t that varia tion al procedures Cil ll be formulated 
whi ch l e ~l.d to a determinatioll of a more precise CUl'l'en t distribu tion. With respect to (b ), i t is 
reported th at this assump tion causes no error in the dominan t term s in E, r etained in the presen t 
calculation . 

Following the method of analysis ou tlined above, (25) is first tl'flnsform ed to spheri cal 
q-coordinates by in troducing the followin g transformations: 

(30) 

00 

f f f dq1dq2dq3= ,r"" d{3 i "" Si11 fJ.dfJ. i oo 

q2dq. 

It is cI'id en t from (3), (4 ), (1 1) a.nd (12) that the in tegrand is an e\'en fun ction of q. H ence 
we can write 
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This will facilitate an evaluation of the q-integration by residues. 
Tn the subsequent residues evaluation of the q-integration, it is necessary to expand the 

fun ction F (q) in (25 ) into a form containing exponentials. The Bessel function in F (q) can be 
written flS (see (24)) 

where 
<1' = sin J..! cos (3 cos ip+ (sin J..! si n (3 cos 8- cos J..! sin 8) sin ip. 

Using the tmnsformations in (3 0), (28) becomes 

where 
T = cos 11 cos 8+ sin 11 sin 8 sin (3, 

Q= A/Ao. 

If the aboye changes are introduced into (25), it becomes 

Z = 2... ( z.. dip ( 2" d(3 ( " sin llelllJ '" q2N GG*e-iRNclq. 
471"Jo Jo Jo -'" l1 

(3 1) 

(32) 

(83) 

(34) 

(35) 

(36) 

The functions <I' and GG* control the convergence of the integrand at 1'1 1-3> 00, and these 
depend on the angles ip, 11, (3 through (28B and (30 ) . Tn order to simplify this angular de­
pendence, we now make rotations of these coordinates in order tbat the boundaries of the 
regions of con vergence depend on only one angular yariable. This is accomplished with the 
transformations 

cos 11 cos 8+ sin 11 sin (3 sin 8= cos ()" 'I 

sin 11 cos (3 = sin ()" cos t/; ~ 
sin 11 sin (3 cos 8- cos 11 sin 8= sin ()" sin t/; J 

followed by the transformations: 

cos 11' = sin (J" sin X } 

sin 11' cos (3' = sin ()" cos X . 

sin 11' sin (3' = cos ()" 
In this process 

1:2" S" £2" SO" el(3 sin llelJ..! changes to cl(3' sin 11' elJ..!'. 
o 0 • 0 0 

Then (28) and (30 ) become, respectively, 

<I' = sin 11' cos {3' 

T = COS (J" =sin 11' sin (3'. 

(37) 

(38) 

(39) 

(40) 

From (39) and (40 ), it is seen that <I' and T have the same Il'-dependence, so that the com"ergence 
of the q-integration will depend only on the angle {3' . 

The various coordinate transformations are depicted in figure 3. 
Upon introducing (30 ) into (13 ), Ll may be written as 
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FIGURE 3. Coordinate system showing the vwiolls angles used i n transforming vari ables . 
,1/, < is a rectangular sys tem oricnted with thc earth's magnetic fi eld I [ 0, and 'l/',v,w is a rectangular syste m orinntcd wiih the d ipole . Inset shows 

nu Illcrica I distance p . 

where 

l ' 2 
1,2 

2ala3+ (al - a3) sin' M± rR. 
2[a[ + (a3-al) cos2 Ml 

(42) 

(43) 

In (43), the x, y, u of (12) have been reintroduced for compression and in anticipation of 
numerical calculation. It should be noted that, for U= 1 (z= O), the radicand is positive and 
has no zeros for r eal M, 0< M< 7r/2. For future reference we write down 

Ti+ T~= 20:1a 3+ (al - a3) Si~ 2 M 

al + (a3-a,) cos- M 

a3(a2a3+ al- a3) 
al + (a3- al ) cos2 M" 

J n a similar way, (20) [01' N becomes 

N=5[ t- (B q2+ e, 
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where 

ill = al cos2 0- + (al-a3) sin2 0 sin2 0- COSz 1f+ (al COSZ 0+ a3 sinz 0) 

= al 7 2+ (al-a3) sinZ 0 cos2 1f(1- 7 2) + (al cos2 0+ a3 sin2 0) 

C = ala3+(al-a3) cos2 0 

with the a.bove transformations, (36) takes the form 

In the /1-' , {3' variables, 

cos /1- = cos 0- cos O-sin 0- sin 0 sin 1f 

= sin /1-' sin {3' cos O--Jl -sinz /1-' sin2 {3' sin 0 sin 1f, 

in which the radical is nonnegative, since o~ 0-~7r. 

(47a) 

(47b) 

(47c) 

(48) 

(49) 

In order to perform a residues evaluation, it is necessary to spli t G and G* into exponentials. 
For compactness, we write 

Then 

where 

~=R sin /1-' cos {3', 

1) = Ao sin /1-' sin (3', 

1'3 = A/"" 

1'4=-A */",. (50) 

(51) 

H (q) = t[e -iq(H2~) + e -i q (~-2~) - ! (cos A + cos A *) [ e-iq(~+ ~) +e-iq(~ -~) l+ (!+cos A cos A *)e-iq~ . 

(52) 
Then (48) becomes 

(53) 

in which 

(54) 

The factor 

in the denominator will be left in that form, since ultimately we shall return to the <p, /1-, (3 coordi­
nates in making use of this factor. To facilitate the evaluation of the q-integral of (54) by 
residues, we have written H (q) in (52) in exponential form. 

The poles ± 1'; of (54) occur in pairs; the contour passes below - 1'; and above + 1'i ; this 
choice makes e- iTiD' an outgoing wave for distance D'> O, since the 1'i have negative imaginary 
parts for z>O. Writing the integral so as to include all poles, the q-integration consequently 
yields 

(55) 

where j , k, l with j ~k~l, represent the three other subscripts possible after i is chosen. 1'i is 
chosen as that root of (42) which has negative imaginary part. H (1'i), in view of the discussion 
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abo\-e, is given by 

+ (t+cos A cos A *)e-iri l ~ l . (56) 

The absolute value s igns in the exponents require that Il' and (3' be real in the remaining 
in tegrations. 

The relative ·values of ~ and 'YJ may be divided into three regions , in which the integration 
over (3' must be treated differently. We define these by 

Region I: 1 ~1>1 2'YJ 1 , 

Region II: 1 2'YJ 1>1 ~ I >iTJ l , 

Region III: iTJl >I ~ I . 

From (56), we may write after some rearrangement: 

in region I , 

=A(ri)-~ sin [l' i(12'YJ 1-IWl 

=A(r;) + B (r j) 

in region III, H (ri )= A(l'i) + B (1' i) + i(cos A+ cos A *) sin [l' j(iTJ l- IW 1 

(57a) 

(57b) 

(57c) 

(58a) 

(58 b) 

= A (l' i)+ B (r i) + C(1' i). (58c) 

Symbolizin g the angular integration o\~er r egion I by .. C etc., and the integrand by S(ri )l-[(ri), 

we have 

2 = r A(1'i)S(ri)d(3' + r B (I';) S(I'J d(3' + r C(l'i)S(ri)d(3' 
J I+ n +III JIl+lll .JIll 

+ + (59) 

The boundaries of the regions I , H , III, which depend on (3', will be discussed in section 4.1. 

4.1. Evaluation of Z I 

Since the regional sum I + II + III in 21 comprises the full range of angular variables of 
integration, we lllay conveniently rotate back to the original 'P , Il , f3 variables in (36) to take 
adnntage of the fact that the complication of the radical in (43 ) involves only Il . Also we 

4 

note here that A (r;)S(r;) has no singularities for i=3, 4, so that 2:: in (55) may be replaced 
i= 1 

2 

by :z:; in evaluating 2 1, Hence we obtain 
i= 1 

_, N( , ) ( COS 'YJ1'2- Cos A) ( COS 'YJ1'2 - COS A *) -iT2 1~ 1 } 
12 12 2 A2 2 A*2 e 'YJ - 'YJ -

71G- 707- 64----4 389 

(60) 



in which 

(61) 

Naturally, this form for ZI is obtainable from (36) by treating the two factors G, G* as entire 
functions whose growth far from the origin and from the poles is dominated by e- iq< for I ~ I> O. 

Now the roots 1'],1'2 of Ll are numbers of order unity, and are exactly unity in the free­
space case. The maximum value of I ~ I is R, the dipole radius measured in free-space wave­
lengths, which is a small number for thin dipoles. In that case, then, we can expand in powers 
of R and expect rapid convergence. The leading term in this expansion is obtained by setting 
e- iT1 ,2 i<i = 1. For this leading term, then, cp vanishes from the integrand, so that the cp-integra­
tion yields a factor 27r. 

Since there are functions of p, buried in the forms for 1'1, 1'2, no analytic wintegration is 
in sight. Hence we resort to numerical integration for this, restricting p, to real values. 
Since the 1'i do not involve {3, only the wintegration needs to be done numerically. 

In order to prevent the ( ) factors in (60) from assuming the form ~ at some point in 

the (3, p,-range, we expand these factors in senes, A typical factor may be written as 

Then , after some manipulation, we obtain 

( COS a -cos A) (COS a-cos A *)= ~ 2nD 
a2- A 2 a2 - A *2 ,~ a n, (62) 

where 
n 00 00 ( - 1) j+k A 2j A *2k 

Dn=(-l)n ~ ~ ~. . 
m~O k~O j~ O [2(m + J+ 1) ]![2(n-m+k+ 1)]! 

(63) 

D n , which involl-es only the constants A, A *, can be calculated and tabula ted against n in 
advance of the main calcula tion . Since 

a = 1' i 'r/ = A o1'i cos O' = A01'i(cos p, cos 8+sin p, sin (3 sin 8), 

the a2n lead to terms containing in tegral powers of cos2 0'. Furthermore, as can be seen from 
(40) and (46) , N(1'i) invoh'es 0' and {3 in the forms cos2 0' and cos2 {3. Hence in the {3-integl'ation 
we need to evaluate 

1 r2~ 
P n = 27r J 0 cos2n O'd(3, (64) 

and 

(65) 

These may be e\'aluated to obtain 

P _ ...J!-,. (2n)! ( 8)2(n-ml(" 8)2"' 
n-~o(2m) ![2(n-m)] ! cos p, cos smp,sm Xm (66) 

Q _ ...J!-,. (2n) ! ( 8)2 (n-m) ( . . 8) 2m 
n- ~o (2m) ![2 (n- m)]! cos p, cos sm p, S111 Ym (67) 
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where 
Xm (2m)! 

Xm = 2'unm!m !' Yin 2(m + 1) 

(Xn may be calculated l'ccll1'si \rely from 20 = l , Xn = 2n2- 1 X II- I' ) 
n 

With these results , we get from (60 ) 011 putting 

and using (46) fo1' N(r;) , 

where 

Hence, putting cos J.L = t, we obtain 

'" 

r~ n+l_r~n+l =~ 

l~-r~ - 1'1 + 1'2 

. L:: DnA~ n { (Cn+2-alCn+r)P n+l + [ (a3-al ) cos2 O- ll'3]C " X IP n 
n=O 

(68) 

(69) 

(69a) 

It should be noted that the appearance of 0, both expli citly and implicitly in P,,, Qn, is always 
as an even power of cos 0 or sin 0, so tha.t 

as is required physically. Equations (42), (63), (66), (67) and (69) permit the recursive evalua­
tion of the integrand of (70 ) for each J.L . Thus what remains is a numerical integration over J.L. 

4.2 . Evaluation of Z2 

In Z2 (and later in Z3), we leave >/; , J..L' , (3' as the angular integration variables in order 
to have the boundaries of regions II and III determined by the single azimuthal variable (3'. 
Later, after introduction of suitable approximations, it will be possible to return to the original 
variables 'P, J..L , (3. 

The integral Z2 is taken oyer the region JI+III, which, from (57b ), is given by 

(71) 
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tlt is can be written as 

I tan 13' I:;::: E. (72) 

Tile result of the q-integration in (54) is given by (55). For Z3, we have to insert for 
!-IVi), in yirtue of (58b, c). 

It contributes to simplicity to write Z2 in terms of the quantities 

8 i= 1'il cos O' I= 1'ilsin jJ.' sin 13' 1. 
Then we han from (50) 

8 3= A/Ao= Q ") 

8 4=-A*I Ao= -fJ* r' 
,) 

(73) 

(74 ) 

(75) 

8 1 and 8 2 , in "iew of the dependence of 1'] and 1'2 on jJ. (see (42», and the explicit factor Isin 13' 1 
in (74 ), are functions of 13', while 8 3 and 8 4 are not. Then from (53), (55 ), and (58b, c), we 

(76) 

where 

G 1 ~ 5[ 8~- ill 8 7- C 8 ' [2 8 (1 t R')] 
] = + ( _ ) 2' --:-' (82 - 82)(82-82)(82- 82) i s In Ao i - E] co JJ , a] a3 a] cos jJ. ,= 1 i j i k i I 

(77) 

in which, witlt T = COS 0' again , 
"'I 

5[ = T- 2 5[ = 1 I 
ill = ill = a] T 2+ (a l - a3) sin2 e cos2 f ( l - T2) + ( al cos2 e+ a3 sin2 fJ) ~ . 

C =T2 C = T2[a,a3 + (a] - a3) cos2 e] J 
(78) 

The term Icot ,6' 1 in the argument of sin [ ] in (77 ) and the Isin 13' 1 in the denominator of 
(76 ) are both symmetric about each of the principal axes in the 13' -plane. As function of 8 i, 
the summand in (77 ) expands in even powers of 8 f , since 8 i sin [2Ao8 i (1 - E, lcot 13' 1)] is an 
e,-en function of 8 i and the remaining terms are explicit in 8 ; . Thus, in the summand, the 
cos 0' of (74 ) appears squared, and for this reason is symmetric abou t the principal axes in 

- --
the ,6-plane. The same cos2 0' symmetry appears in the factol'sJ[ ill, C as given in (78 ). There 
remains the dependence of cos jJ. on 13'; this appears both in the explicit factor 1/ [a, + (a3- al l 
cos2 J.L] and implicitly in 8" 8 2 through their dependence on 1'1 , 1'2 , which in tUI'll depend on jJ. 

through cos2 jJ. , as is seen in (42). Now we may regard the integrand of (76 ) as expanded in 
powers of cos jJ. or cos2 jJ.; one sees from (49 ) that such an expansion will involve odd powers 
of cos O' = sin jJ.' sin ,6' , but that such odd powers of cos 0' will be mul tiplied in tUI'll by factors 
odd in sin f. Now f appears otherwise only in the cos2 f term in ill ; thus we may visualize 
doing the f-in tegral first, and we see that all terms in the expansion of the integrand having 
odd powers of sin f giye zero contribution to Z2' But these terms are exactly those which are 
odd in cos O' = sin jJ. ' sin 13'. Thus, in view of the f-integration, the terms in sin 13' due to im­
plicit and explicit dependence on cos 0' are even, and therefore symmetric about each principal 
axis in the i3'-plane . Thus the entire integrand has this symmetry and we may henceforth 
confine ,6' to the first quadrant and drop the absolute valu e signs. Then in (76), 

f 1,, /2 
... cli3' = 4 ... cli3'. 

II+ III tan - I'I 
(79) 
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The foregoing argum ent has also shown that part of th e integrand of (76 ) which depends 
on t he S i and on cos Il , either explicitly or via 1'1, 1'2, can be expanded in power series in cos u= 
sin Il' sin (3' a nd that this is a seri es in even powers of cos u , in "iew of the ,p-integl'ation . Let 
us now r egard this exp a nsion as having been made. The (3 ' -dependen ce is then expressed in 
a series gi"ing the (3'-integrals in th e typ ical form 

ir~ d(3' 
cos2n u(l - E[ cot (3') '" - .--,' 

tan- I'I SIn (3 
(80) 

Expanding (1- EI cot (3 ' )'" to get a double seri es , we haye the typi cal integral 

i r / 2 I n.r= (sin {3') 2n (E[ cot (3, )rd{3' /sin (3'. 
tan - lEt 

(81) 

N ow we take advantage of the fact that we are dealing with 11 "thin" dipole, OJl e in wJliclt 
E= RIAo is a small quantity. IVe wish to calculate terms of order log (1/ El ) and E?, and to n eglecL 
terms of order E~ and E~' log (1/ EI) 1'01' n;::: 1. By evaluatin g integrals of the typ e (81) witlt 
th ese considerations in mind, it may be shown that terms of th e retained ord er occur only 
when n = O, or 1' = 0, or both, the last al tern ative g iving ri se to a log: (l / E[ ) te/'ll1 . IVe tlter e­
fore wri te 

where Z~ corresponds to n = O, and Z;' to 1' = 0, n;;e O. Thus Z~ has t he integrand obtained 

from (76 ) by putting cos u=~in S i, in cos Il , and ill 5[ ill, C , but r etaining EI cot (3' finit e. 

FrO! n (78 ), we see that C is of ord er cos2 u, a nd from (74 ) t1lH t S~ a nd S~ are of Lhis ord cr. 
From (76 ), howe \'e1', S3 and S4 itre independ ent of cos u . Thus in the ~ of (77 ), for i = l , 2 th e 
numerator is of fourth ord er ill cos u and the denominator is of second order, so thft t the sum ­
m a nds yanish for i = ] , 2 on setting cos u= o. Thu s we obtain 

where, from (50), 
(83 ) 

and , from (78), 

(84) 

vVe note t hat the integrand in (82) is free of Il' , and that the ,p-dependency, in \'ir tu e of 
(75), (83) , and (84), is of the form 

f02r # f 2r # 
Jc Cl'1 + (Cl'3-Cl't) sin2 0 sin2 ,p Jo Cl'l coS2 ,p + (Cl'1 cos2 0+ Cl'3 sin2 0) sin2 ,p 

= 27l'[Cl't(Cl'1 cos2 0+ 03 sin2 0)] -14, 

from Bierens d e H aan [1957] tft ble 47, No. 10. After integration over,p andll', (82) ther efore 
becomes 

(85) 

Writing 

393 



we now expand 

and further expand cos (2AoSig) and sin (2 AoSig) in series. If we retain only terms of order 
log ( l /EI ) find Er, as before, we may sum the resulting series to give the result 

Z~= 7r2C I Q 2l ± [al(al cos2 O+ a; sin2
20)]-HS7- 1 

i=3 Si(Si-Sj) 

. ~ sin (2AoSi) [ Ci(2AoS i)+log - AI S J -cos (2AoSi)Si(2AoSi) } ' (86) 
\.. 'Y€I 0 i 

where Si(x) and Ci(x) are the sine and cosine integrals [Jahnke and Emde, 1945], respecti,"ely, 
and in which use has been made of (71). This gives a closed form expression for Z;. 

On the other hand, Z~' has the integrand obtained from (76 ) by setting €I cot,6' = O in the 
final sin [ 1 factor, so that 

(87) 

where 

(88) 

Go now is to be expanded in a series in powers of cos2 iT, starting with the first power (since the 
term in (cos2 iT)O already has been included in Z;). Thus in Z;' the integrand has the leading 
term cos2 iT = sin2 }J.' sin2 ,6'. This and all higher terms vanish like sin2 ,6' odaster near ,6' = 0 so 
that, even with the 1/sin ,6' factor, the Z;' integrand vanishes at ,6' = 0. This in turn permits 
the replacement of tan-1 El by 0 fiS the lower linlit of the ,6'-integral, since this introduces a 
negligible error of order €~. Hence (87) becomes 

(89) 

After expansion of Go in powers of cos2 iT = sin2 }J.' sin2 ,6', we can make use of (38) and (37) to 
rotate back to the original coordinates 'P , }J.,,6. This is desirable because then 1'1, 1'2 depend 
only on}J.. The result is 

(90) 

Go in (89) is a symmetric function of the four Si' By expanding sin (2AoSi) in a series, 
Go becomes 

4 (J2[St- 0S~+ C )Sisin (2AoSi) _ 4 '" (- 1)n(2AoFn+1 J2[s~- 0S~+ CS7 2n 

Go= t:t (S~-SD(S~-SD(S~-SD - t:t ~ (2n + 1)! (S~-S~)(m-SD(S~-SD S i . 
(91) 

We can now make use of the results of symmetric function theory to obtain the desired expan­
( 2" 

sion of Go in terms of cos2 iT. When this is done, the ,6-integration J o lcos iT I 2n+ld,6 can bedevel-

oped recursively, leaving only a }J.-integration to be performed numerically. 
The expansion of a typical term of (91 ) 

4 S2 (n+N) 

~ • A 2n+2N 
i= 1 (S~-SD(S7-SD(m-Sn 
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is expressed recursively in terms of the coefficients A 2n of appendix A as follows: 

where 

Ao = A 2=A4= 0 , A 6= 1 , "}-

A 2n=d 1A2n-2 - d2A 2n- 4+ d3A 2n-6- d4A2n-8 .J 

d1= L m = PO+ p1 cos2 IT 

d2= 22 ~' 8~8~= P2+ POP1 cos2 IT + P3 cos4 IT 

d '" "" "''' 8 28 28 2 2 + 4 3= L..J L..J L..J i j k= P1P2 cos IT POP3 cos IT 
i j k 

4 

d 4= II 8~= P2 P3 cos4 IT 
i= 1 

It is e"ident that the A 2n will in,'ol ve cos2 IT , in general. vVe therefore write 

'" 

(92) 

(93) 

A2"=~ am,,, cos2,. IT , (94) 
n= O 

H ence we have from (92) and (93) 

l. 
- I J a m, n- poa "" n+ l - PZa ln, n-21 P1am- 1, n- J - POPJa",- l, n-2 

+ PIPZa",- I, 11.-3- P3am-2, 11.-2+ POP3am-2, n-3- P2P3am-2, n-4 

for all m 

for m ~ O 
(95) 

Then (91) , together with (78), becom es 

In (96), the factor sin 2 IT COS2 if; h as been retained in order to facilitate th e rotation back to the 
origin al (<p, fJ. , (3) coordinates, By the second equa tion of (37), this factor then b ecomes 
sin2 fJ. cos2 {3 . H ence, upon rota tion of coordinates, (89) becomes, in virtue of (90 ), 

z ; ,= 7rC Ifl 21f 2" d(3f " sin fJ.dfJ. 2 

4 0 0 0'1 + (0'3-0'1) cos fJ. 

'" '" n (2A orn+ l ?m-1 ?' 2 
• ~ ~1 (- 1) (2n+ l ) ! Icos IT I - • {Om. n+3-a m. n+2(0'1 cos- 8+ 0'3 sm 8) 

- a m. n+2(0'1 - 0'3) sin2 8 sin2 fJ. cos" {3 - om-1, n+2a 1 + am-1, n+1[0'1a3+ (0'1 -a3) cos2 8J} . (97) 

Since from (34 ) 
cos IT = r = COS fJ. cos 8+ sin fJ. sin 8 sin (3, 

the (3-integr ation invohres in tegrals of the form 
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These are evaluated in appendix B, again in terms of a recursive routine. Making use of the 
results obtained there, and making the substitution cos Jl. = t, (97) becomes 

Z~'=7r2CJ Q 2 1 2'~ ~ (_ 1) n-,,-;-:::--,,-:-O---::--;-; i l dt <X> <X> (2A ) 21< +1 

o 0'1+ (0'3-0'1)t n=O m= 1 (2n+ l)! 

. { [am. n+3-am. n+2 (0'1 COSZ fJ + 0'3 sin2 fJ) - am- I. n+20'1 + am- I. n+l(ala'3 

+ (0'1 - 0'3) COS2 fJ) ]J2m - 1 + am• n+2 (0'3 - 0'1) sinz 8(I - t 2) gzm- I }' (98) 

The final step in the evaluation of Z;' thus is a numerical integration oyer t. 

4 .3. Evaluation of Z3 

The eyaluation of Z3 follows a procedure entirely parallel to that for Z z, it being only 
necessary to use 

E= Ro/Ao 

instead of Et, and to use the appropriate value of H (r;) from (59). It is easily seen that the 
only changes required from the procedure of section 4.2 is to replace 2Ao by Ao everywhere, 
and to multiply the result by the coefficient 

- 2(cos A + cos A *). 
Hence, writing 

we obtain from (86 ) and (98 ), respectively, 

Z :=-2 zOI (") Z[ ( A+ A*) ~ [0'1(0'1 cosz fJ + 0'3 sinz fJ)] -I /zS7- 1 
3 7r '" cos . cos ~ S .(S2_ S2) 

1=3 1 1. J 

. { sin (A oS;) [ O;(AoS i)+log 'YcLsJ-cos (AOS ,)S i( AoS i) } ' (99 ) 

5 . Limitations of the Numerical Integration 

The nnmerical integrations to be performed in (86), (98 ), (99 ), and (100) in the variable 
t = cos Jl. are carried along the real t-axis over the range O::;t::; 1. From figure 3, it is seen that Jl. 
is the angle of propagation of the plane wave with respect to the earth's mag netic field. In the 
in tegrand , the term 

in the denominator vanishes, when n = 1, at som e value in the range O::; t ::; 1 \\"hen 

This is equiyalen t to 
(101) 

When D = O, the present numerical procedure does not give meaningful results . This is 
due to the fact that when the quantity Ll of (41), which is the denominator of the Green's 
function in (36) , vanishes, so tha t the Green's function becomes singular a t some point of the 
integration path . This difficulty does no t occur when the collision parameter z is substantial, 
since then D vanishes well off the real t-axis. For small z, or for P positi\-e and small, a finer 
integration grid \vill also give valid results. 
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In order to ayoid t he singularity and obtain a single numerical process valid in all param eter 
ranges, i t is necessary to carry out the numerical integration essentially in the complex i-plane . * 
This will be postponed to a later treatment. 

The relations for the impedan ce components developed in this report, namely (60 ), (86), 
(98 ), (99 ), and (100), hayc been programm ed for the IBM 7090 computer. The program has 
been satisfactor ily checked agl1 inst the fr ee-space impedance in the high-frequency limit. 
N umerical calculations ha,'e been mad e for certain parameter values . These will be discussed 
in section 8. 

6. Propagation Constant ka and the Current Distribution 
As mentioned in section 4, the propagation constan t of the assumed sinusoid111 distribution 

of current along th e dipole has been taken to be complex. This is reflected in the parameters 

A= kal 
and 

which , consequently, are complex, in general. 
Our analysis tells us nothing about le ,!) since we have assumed the form of the current distri­

bution , which amounts to assuming that we know lea. For trial numerical calculations, we 
have chosen values for lea near the average (over propagation direction ) of the ordin ary and 
extraordinary waITe propagation constants. The value actually used was lca= ..j l -xlco. 

In examining procedures for an optimum choice of lea, we ha\'e been led to a vari ational 
formulation of the thin dipole impedan ce problem . This type of procedure, introduced by 
Storer [1950] in the free-space case, leads to it method for fi nding optimum nllues for the current 
distribu tion , which is then used to obtain an even more accura te impedan ce estim ate. Further­
more, no major ch anges in the presen t f),nalytical or num erical method s are r equired . These 
deyelopments will be gil-en in a later paper. 

7. Further Developments 
Our formula,tion is based on a Fourier in tegr al representa tion of the anisotropi c Green's 

fun ction. Considerable effort h as been expended , both by us and others, toward obtainingfa 
closed-form representation of this Green's fun ction . We ha\'e been able to show, however, 
that such attempts are in vain , and that a representation , such as the Fourier integral used here, 
is a necessity. 

Because we use a Fourier represen tation for the Green's function rather than a closed form 
as in the free-space impedance calculation , we have been able to evaluate precisely the error 
introduced by assumption (b) of section 4, namely, that the current can be considered as con­
centrated along the axis of the dipole in the calculation of the field at a typical point in space. 
It turns out that the corrections for this assumption occur only in the neglected terms of order E 

or E log (l /E) or higher, so that this assumption causes no error in the dominant terms retained 
in this paper. 

Details of these developments will be given in a subsequent paper. 

8 . Numerical Calculations 
In order to display the magnitude of the impedance as a function of the parameters, com­

putations of Z were mad e for several frequencies. These were calculated for frequencies of 10 , 
5, and 2 Mc/s and a set of ionosph eri c and antenna parameters supplied by Dr. R. G. Stone of 
the National Aeronautics and Space Administration. Table 1 lists the ionospheric parameters 
at the al titudes of interest. The correspondin g values of x, y , z are plotted in figures 4 and 5 for 
10 and 5 M c/s, respectively . From these it is seen that in an alti tude region around 300 km , 
and of wid th in creasin g with decreasing frequency the parameter x becomes comparable wi th 

'Note added in proof : 
Sui table paths in the com plex '·plalw hnn'l bee n found for the num erical integrations Zh z~', and Z;'. \ Vith a 16-point Gaussian num erical inte· 
gration procedure, ca lcu lat ions ha \"c been carried out at freq uencies as low as about 2000 cIs withou t difficu lty. 
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TABLE 1 

Altitude Electron 
density 

km per cm3 

100 1. 2XlO' 
150 l.7 
200 2.5 
250 3.5 
300 5. 2 

350 4.3 
400 2.7 
450 l.8 
500 1.3 
550 8.3XIO' 

600 5.7 
650 4.0 
700 2.9 
750 2.2 
800 1.7 

850 1.3 
900 l.1 
950 8.8X 103 

1000 7.4 

)0-

x 

N 

Y 0 
;; 
2 

FIGURE 4. Normalized ionosphere parameter versus 
altitude (based on data in table 1); frequency = 1 0 
Mc/s. 

Mag. field Collision 
frequency 

Gauss sect 
0.52 1000 

.51 100 

.49 500 

.48 1000 

.47 920 

.46 840 

.45 750 

.44 670 

.43 590 

.42 510 

. 41 430 

.40 350 

.39 260 

.39 180 

. 38 100 

.37 95 

.36 80 

.36 75 

. 35 70 

)o-

x Q 

4 

N 

1000 

FIGURE 5. Normalized ionosphere parameter versus 
altitude (based on dala in table 1); frequency = 5 
Mc/s. 

unity or larger, so that the product P in (101) is small or negative. For smaller and greater 
altitudes than this region, computations of Z were made on the NASA 7090 computer. The 
resulting impedance, plotted against fJ, the angle of the dipole' s axis with respect to the earth's 
magnetic field , is plotted for a number of altitudes in figures 6 and 7 for 10 Mc/s, in figures 8, 9, 
and 10 for 5 Mc/s, and for an altitude of 1000 km in figure 11 for 2 Mc/s. 

The antenna in question is a half-wave dipole of radius-to-half-Iength ratio € = 1/300. Thus 
A. = kal has the value 1.5708 (i.e., 7r/2). This corresponds to a situation where the length of the 
dipole is varied with altitude so that it would always have near-zero reactance. That is, the 
impedances calculated in figures 6 to 11 are based on the assumption of a sinusoidal current 
distribution of the form sin ka(l -Izi)= cos (kaz) , ka being a real constant having the value 
~1 x ko , independent of fJ , where the ionospheric parameter x is that corresponding to the partic­
ular altitude and frequency_ 
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FIGURE 6. R esistance 0/ half-wave di pole versus 
angle to magnetic field; frequency = 10 lIfc/s. 

260 

220 

(/) 

::;; 
:z: 
o 

180 

140 

Ionosphere parameters as in table 1. 

400 km 

A50 

100~=;;:-;;;:=====:::::s;======~ 
'100 , 

~OOO km 

60 

o· 15' 30' 45' 60' 75' 90' 
e 

FIGURE 8. R esistance of half-wave dipole ve1·SUS 
angle to magnetic field; /requency = 5 NIels. 

Ionosphere parameters as in table 1. 
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Ionosphere parameLers as in table 1. 

In order to explore the magnitude of the change of impedance with physical length of the 
dipole, curves were also computed for the reactance and resistance as function of dipole length , 
for values of A= kal near7r/2. The results are plotted here in figures 12 to 15, for the special 
conditions listed in the legends. 

In summarizin g these plots, we first no te thaL for 10 ),![c/s and 1000 km alti tud e, where the 
ionospheric condi tions luwe small effect and free-space condi tions are being approached, t he 
calculated impedan ce shown in figures 6 and 7 shows a negligible 8-dependence about a value 
identi cal with that of a half-wave dipol e in free space [Car ter , 1932]. 

Next, it is obvious from the graphs that the impedance is markedly affected in the al t itude 
range where the ionospheric parameter x approaches uni ty. The impedance then b ecomes 
markedly depend en t on angle, more especially the reactive componen t. This is especially 
noti ceable in figure 10 for an altitude of 400 km. When this ClU"ve was first obtained, it was 
fel t that these large values may h fLve b een the result of the approach of t he pammeter P of 
(101) to a small value (about 0.01 ) so that the numerical integration may Il ave b ecome unreli­
able. To check this, the 16-point numerical in tegration was changed to 32-poin t, but the com­
puted results chan ged negligibly . This is highly encouraging as to the accuracy of the numerical 
in tegra tion process. 

It should be pointed out that these curves are based on the assumptions stated previonsly, 
and therefore should not be taken as the best obtainable under the present theory. In par­
ticular, the ka-value used here is real and independent of orientation angle, whereas the varia­
tional estimates of ka referred to at. the end of section 6 would lead to a complex 8-dependent 
value. But this refinement will be handled in a later treatment. 

It should also he pointed out that the present theory assumes a homogeneous medium 
around the dipole. It therefore does not incorporate the effect of the plasma sheath which 
may be formed around t he dipole in an actual case. 

9. Summary 

In this paper , we have formul ated the problem of the impedance of a thin center-driven 
dipole in a magneto-ionic medium by expressing the Green's function as a Fourier integral in 
spherical propagation-constant coordinates. In performing a residues evalu ation of the 
radial in tegral in t.his coordinate sys tem , it is found necessary to deform the contour differently 
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in different angular regions. By an appropriate rotation of the coordinates, t,he boundaries 
of these angular regions are made to depend on a single angular variable. 

An expansion of the result in power series in the small parameter e= (dipole radius/dipole 
half-length), in which only terms in log (l /e) and eO are retained, leads to considerable simplifi­
cation. It is found that the two dominant terms can be expressed as sine and cosine integrals, 
as in the free-space case, plus two finite single integrals which need numerical evaluation. 
The integrands of these latter integrals are expressed in terms of recUTsive routines. 

The numerical integrations are in terms of the polar angle of the wave propagation vector 
with respect to the earth's magnetic field. Singularities of the integrand are encountered when 
the applied frequency is below the plasma or gyrofrequencies. It is then necessary to carry 
out the numerical integration in the complex plane. This has not been investigated in this 
paper . Consequently the presen t numerical integration procedure is restricted to cases where 
this situation does not occur. The closed-form terms, however, are valid in all parameter 
ranges. 

Numerical calculations of impedance for selected values of the parameters are exhibi ted in 
a set of curves. 

It is pointed out that the problem may be recast variationally so that the current distribu­
tion is computed rather than assumed. This approach, which requires no substantial changes 
in the present analytical and numerical procedures, will be given in a later paper. 
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11. Appendix A 
Evaluate 

(A l ) 

The m al e roots of 
(A2 ) 

where 

d3=S~S;S~+S~S~S!+S~S~S! 
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Consider the det.erminant 

4 StS~s~s: 
=(S~-S~) (m-SD(S~-SD ' (S~-SD(m- S~) (S5-SD. 

2 SimSaS~ 

This is an alternating function [Aitken, 193()] of the S i, i = l, . . . ,4. 

Let 

2n Sins~nS5nS!n 

4 S1 S~ S~ S: 
2 Si S~ S5 S! 

° S7 sg sg S~ 

(A3) 

(A4) 

The four terms of A 2n in (AI) may be gathered over a common denominator which may be 
wl'itte n in the form (A3). When this is done, it is seen that the resulting numerator is simply 
an expansion of the determinant in (A4). Thu 

2n 6 
4 4 

A2n = 2 2 
o 0 

(A5) 

For 2n = O, 2, or 4, two rows of the determinant in the numerator are identical and the 
determinant vanishes, so tha t 

(A6) 

For 2n = 6, numerator and denominator are identical: 

(A7) 

Rearranging (A2) and multiplying through by S;"-8, n;:::: 4, we have 

By (AI) or (A5) this implies 

(AS) 

Equat ions (A6) , (A7), (AS) provide the basis for recursive evaluation of the A2n encountered 
in the text. 

12. Appendix B 
Evaluation of 

I i2
< (b) gn= 2: cos2 J3 /a+ b sin J3 /ndJ3 . 

7r . 0 
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Define 

? (3 1 . ? (3 1 f(a+b sin (3)- af cos- = -snr = - b' . 

H ence 

(a) 1 12
" 1 1'" -1,,=,) /a+b sin (3 /"d(3=-2 /a+b sin (3 /"d(3 

~r 0 r 0 

where a= /a/, b= /b/. 
Case (i) : If a?:.b, then a+b sin (3 does not change sign in (0 , 2r), so that 

Hence from (Bl), 

Case (ii): If b>a, put 

Then 

c= sin- 1 ~. 
b 

= i " (a+b s in (3) "d(3 + i " /a- b sin (3 /nd(3 

(Bl ) 

(B2) 

= ( " (a+b sin (3 )"d(3+ ( C (a- b sin (3) nd(3+ f "-c (-a+b sin (3)nd(3 +J ~ Ca- b sin (3 )nd(3 Jo Jo c 7r -C 

wh ere 

2rUn=2In( 0, ~ /l a, b)+2In (O, e/I-a, b) 

2rVn=2In(c , ~ II - a, b} 
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Applying (Bl) to the right-hand side of (B3), we have for the last term of (Bl) 

- 6 cos i3(a+b sin /3) "-110+26 cos i3(a- 6 sin /3),, - 118- 26 cos i3( - 0,+6 sin /3) ,,-11; /2 sin /3),, - 11;/2 

= 0. 

H ence from (B3), (B4), and (Bl ) we obtain the recursion formula for jn in case (ii): 

In=l {(2n - l)aDn_I+(n- 1)(b2- a2)U,,_z} _l {(2n - l)iiT!n_I-(n- l )(b2-a2)V n_2} 
n n 

=l {(2n- l )0: (Un_l - V n- I) + (n-1) (62 - a2)Jn -2} ' (B5) 
n 

Also 

U n=~- [(n- l ) (b2-a2)Un _ Z+ (2n-l )aU n- I], 
n 

1 c 
Uo=-+ -2 7r 

1 c V o=- - -
2 7r 

(b) gn=2~ .f" cos2 i3 la+ b sin i3 l ndi3= 2~ i2
" cos2 i3 l a+6~sin i3 1"di3. 

Consider 

I n(X, ylla, b)= ru cos2 i3 (a+ b sin (3)ndi3= ru (l -sin2 i3)(a+ b sin i3)"di3 Jx Jx 

Then we have 

Case (i) a~b: 

= f: { b2-[(a+ bb~in i3)-aF} (a+ b sin i3) ndi3 

= ;2 [(62-a2) I n+2aln+ I- I n+21. 

Case (ii) b> a: 

gn= p [(b2-aZ) (Un+ I1n)+2a(Un +l - I1n+1)-(Un+2 + V n+2)]. 

(B6) 

(P aper 68D4-355) 
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