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The input impedance of a cylindrical dipole in a homogeneous anisotropic ionosphere is
determined for arbitrary values of the medium parameters and arbitrary orientation of the
dipole with respect to the earth’s magnetic field. A sinusoidal current distribution is
assumed, as well as a low value of dipole excitation, so that the field equations may be
assumed to be linear. The Green’s function is expressed as a Fourier integral in spherical
propagation-constant coordinates. In performing a residues evaluation of the radial integral
in this coordinate system, it is found necessary to deform the contour differently in different
angular regions. By an appropriate rotation of the coordinates, the boundaries of these
angular regions are made to depend on a single angular variable. An expansion of the result
in power series in the small parameter e= (dipole radius/dipole half-length), in which only
terms in log(1l/e) and € are retained, leads to considerable simplification. It is found that
the two dominant terms can be expressed as sine and cosine integrals, as in the free-space
case, plus two finite single integrals which need numerical evaluation. The integrands of
these latter integrals are expressed in terms of recursive routines.

The numerical integrations are in terms of the polar angle of the wave propagation
vector with respect to the earth’s magnetic field. Singularities of the integrand are en-
countered in the collisionless case when the applied frequency is below the plasma or gyro-
frequencies. It is then necessary to carry out the numerical integration in the complex
plane. Consequently the present numerical integration procedure is restricted to cases
where this situation does not occur. Extensions of the treatment which remove these
restrictions and methods of obtaining a more accurate current distribution are discussed
briefly, the details being reserved for a later paper.

Numerical calculations of impedance for selected values of the parameters are exhibited
in a set of curves.

1. Introduction

For several years, ionosphere probing by rocket-borne probes has used the technique of
the antenna impedance probe [Jackson and Kane, 1959]. The impedance probe has the special
merit that it is affected by the ionospheric parameters in the immediate vicinity of the probe—
roughly in the order of a wavelength or less of the probe excitation. Consequently, this type
of probe gives local values of the parameters, rather than integrated values as in the Seddon
[1953] type of experiment. It also can be operated at an excitation level low enough to avoid
the creation of additional ionization in the medium by the rf field.

The proper interpretation of the impedance measurement of an antenna probe requires a
knowledge of the input impedance as a function of the medium properties. The type of antenna
used in rocket probing can be rather closely approximated as a cylindrical dipole. Fortunately
one is interested in the impedance change produced by the ionized medium, so that deviations
from the ideal cylindrical form can be expected to play a secondary role. For this reason,
the subject of this paper is the calculation of the input impedance of a cylindrical dipole in a
magneto-ionic medium.

Rocket experiments have shown that the antenna acquires a negative charge. This nega-
tive charge repels the electrons immediately around the antenna, with the result that the antenna
environment is rendered inhomogeneous. This effect is a very important one from the stand-
point of the application of the impedance probe technique to the ionosphere. If this type of

1 The research reported in this paper was supported by the National Aeronautics and Space Administration under Contract N A S5-585.
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probe is to be useful, the nature of the inhomogeneity produced, and its effect on the antenna
impedance must be capable of determination. The former of these two problems appears to
be the more formidable one at present. In any event, a solution for the homogeneous case is
a necessary first step, both to develop an insight to the nature and magnitude of the effects
produced by various values of the medium parameters as well as to serve as a basis for a possible
perturbation technique for the inhomogeneous distribution. The case of a homogeneous
medium will be assumed in this paper.

The calculation of input impedance of a dipole is a straichtforward problem when the
distribution of current over the dipole is known. The current distribution is not arbitrary,
however, since, in principle, it can be derived from Maxwell’s equations and the known boundary
conditions at the dipole surface. The key difficulty arises when one attempts to determine this
current distribution from Maxwell’s equations, since one is confronted with the problem of
solving an integral equation [King, 1956]. Various iterative methods have been employed, but
the accuracy of the result, as judeed by comparison with experiment, is sensitive to the technique
used.

In first approximation the current distribution along the dipole is sinusoidal. This ap-
proximation is quite good for very thin dipoles. The sinusoidal distribution may be considered
to be the result of guided waves propagating in the medium along the outside of the conductor,
at a velocity appropriate to the external medium, and perfectly reflected at the open ends, the
interference between the two oppositely directed wave trains resulting in a standing wave with
zero current at the outer ends.

Fortunately, as already mentioned, in the case of a dipole used as an impedance probe we
are not interested in the exact calculation of the dipole impedance, but rather in the impedance
change upon entry into the ionosphere. This change is thus a difference quantity, so that small
deviations in the nature of end effects which are occasioned by the use of only an approximate
current distribution can be expected to largely cancel out when the difference, or change, from
the free-space value is formed. Furthermore, the results obtained on the basis of a sinusoidal
current distribution may be made the basis for a variational procedure whereby the current dis-
tribution is optimized, so that the initial impedances values can be refined. In this paper we
assume a sinusoidal current distribution, reserving the variational treatment for a subsequent
communication.

A further assumption is made that the amplitude of the motion of the free electrons in the
medium in response to the electric field of the dipole is so small that the refractive index is given
by the standard Appleton-Hartree formula. This assumption makes the field equations linear,
so that Fourier resolutions are admissible.

In the treatment given in this paper, the input impedance will be obtained by equating the
complex power passing from the surface of the dipole into the medium to the complex power
supplied to the dipole at its input terminals. In this formulation the Green’s function is ex-
pressed as a Fourier integral in spherical propagation-constant coordinates. In performing a
residues evaluation of the radial integral in this coordinate system, it is found necessary to de-
form the contour differently in different angular regions. By an appropriate rotation of the co-
ordinates, the boundaries of these angular regions are made to depend on a single angular
variable. An expansion of the result in power series in the small parameter e= (dipole radius/
dipole half-length), in which only terms in log (1/e) and € are retained, leads to considerable
simplification. It is found that the two dominant terms can be expressed as sine and cosine
integrals, as in the free-space case, plus two finite single integrals which require numerical
evaluation. The integrands of these latter integrals are expressed in terms of recursive routines.

The numerical integrations are in terms of the polar angle of the wave propagation vector
with respect to the earth’s magnetic field. Singular points of the integrand are encountered
in the collisionless case when the applied frequency is below the plasma or gyrofrequencies. It
is then necessary to carry out the numerical integration in the complex plane. Calculations
given in this paper are restricted to cases where this situation does not occur2 The closed-

2 This restriction will be removed in a subsequent paper.
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form terms, however, are valid in all parameter ranges.
Numerical calculations of impedance for selected values of the parameters are exhibited in a
set of curves.

2. Formulation of the Problem

In view of the preceding discussion, we now undertake the calculation of the input imped-
ance of a cylindrical dipole in an infinite homogeneous ionosphere having a constant super-
imposed magnetic field. This calculation is based on the following assumptions:

(a) The current distribution along the (center-fed) dipole is a sinusoidal function of dis-
tance along the dipole, being zero at the outer ends, and is uniform around the circumference
of the dipole.

(b) In the calculation of the field at a typical point in space, the current can be considered
as concentrated along the axis of the dipole.

(¢) The ambient ionosphere is homogeneous, and its refractive indices are given by the
Appleton-Hartree relations.

The dipole, of radius 7, and length 2/, is considered to be fed at its center, with a current
distribution as shown in figure 1.

We shall find it convenient to employ two coordinate systems, = and 2’.  Coordinate sys-
tem 2 has its z-axis along the earth’s magnetic field, 77,. For 2/, the z’-axis coincides with that
of the dipole, and makes an angle 0§ < 7/2 with z. The relative orientation of = and 2’ is chosen
so that the z’-axis lies in the yz-plane. Thus the z-axis of ¥ and the 2"-axis of ¥’ coincide. The
orientations of the two sets of axes are shown in figure 2.

We shall assume a time dependence of ¢’“* for all field quantities and sources. Rational-
ized mks units will be used throughout.

The impedance will be determined by equating the complex power (i.e., volt-amperes)
supplied to the antenna at its feed point to the complex power supplied by the dipole to the
external medium, where the latter is obtained by integrating the normal component of the
complex Poynting vector over the surface of the dipole. The result is
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distribution. while 27,y’,2" is oriented with the dipole axis along 2’.
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For the calculation of the integral in (1), we introduce cylindrical coordinates (7, ¢, 2”)
in 3/, where ¢’ is measured from the z’-axis. If we denote unit vectors by ¢, then

([S:(][i(s,'.

The actual current flows on the surface »’=#»,. However, for the calculation of the fields
we make the usual assumption that the current is a line source on the axis of the cylinder,
7’ =0, and directed along the axis.® Thus, if 7(z’) represents this line current

b (= ) .7 b

Hang(19, ¢, 2 )*——J(o )><e~=-—— J(2)e,. (2)

On inserting (2) into the integrand of (1), we obtain

1 . ’ ® ’ 7/
Z__Q—ﬂ_ﬁTi ff](z )(E, cos 0+ E, sin 0)de’dz’. (3)

The problem thus reduces to a determination of the electric field Z. Once this has been
found, the values of £, and . can be inserted in (3), and this then evaluated to find the input
impedance Z.

3. Calculation of E

We now turn to the problem of finding the electric field E. This obeys Maxwell’s equa-~
tions for the medium. In view of the free electrons and the superimposed static magnetic
field of the earth, the medium is characterized by a dielectric tensor, so that a given component
of field is due to current components in all three coordinate directions. On the assumption
that the field equations are linear (implying sufficiently small vibrations of the free charges),
Maxwell’s equations guarantee that a solution must exist for E(x) of the form

E,(x)— f Gy (x| %) T, (%)), @)

where @z, is a compact notation for dr,,dz,,dz,., and the convention of summing over repeated
indices 1s used.

In (4), G;;(x[x,) is the (7, j) component of the Green’s tensor. Physically, it represents
the electric field in the 7th direction at X due to the jth component of the source current density
J at x,. Thus G;;(x[x,) propagatos the effect of J at X, to the point x.

A derlvatlon of the Green’s function @;;(|xx,) has been given by a number of authors (see,
for example, Kogelnik [1960]). 'The result may be written in the form

o Twpoko 3 Aﬂ(q g—iu-p
Gu(x| ) =" f aE )
From (4) and (5), - »
T (x)— — Y | 3g Dail) —ia-p
JBH)= @) f(/ x f{] q AGQ) Ji(X))e (6)

In (5) and (6), p is a numerical distance which is defined by

p=h(x—x,) ™

ko being the free-space wave number.
In (5) and (6), A,; is the (7,7)th cofactor and A is the determinant of the following matrix:

QQ—Q?_KU — {192 K2 — 193 K13
M(q)= (21— Ko qz'_qg_Kzz — (203 Ks3 (8)
—3qi— K3 —Q3G2 K32 @ —G3—«Kss

3Tt can be shown that this leads to errors of order no higher than terms neglected in the present treatment.
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in which
C=g+g+g. (9)

The «;, are components of a tensor which, in the COOI'(lilltlt(} system X takes on the ar tiC—
1) ) ) V )
Uléll‘l_\' SllllplC form

(¢35} et /.(Xg 0
;:(: iag (631 0 (l())
0 0 oy
where|
xu
0{1:1 ’u,z—yz
y
a2:u2_y2 (11)
xr
a;;:l—;

which are interrelated through
o= (ay—ag) (;— 1)

z,y,z are the usual normalized (plasma frequency)?, gyrofrequency, and collision frequency,
respectively:

r = (wy/w)®
Y =wy/w
(12)
2 =vfw
and
u=1—12
Then
A(q) =det {M(q) } = —as(¢gi—0a}) (gi—0a3) (13)
where o} and o3 are the roots of the biquadratic
a0t —[ 20105 — (o +013)]’2]‘72+ (1)2_0‘3) (011])2—01?‘{‘0’:::) =0 (14)
with
P’=q+ g (15)
These roots thus are given by
. 1 . ; 200 2 211/2 .
0?,2:% {2a105— (a1 +ag)p*+ [(ag—a,)21)4—4a3a§1)'—}—4a;a§]”‘ }e (16)
3

Since (3) does not involve £, so that 7, is not required in (4), we need only four of the nine
matrix elements of G;;(z|x,) for the present problem. These are Gy, G, Gy, Gy Then from
(4) and j,=7. cos 0, j,=7. sin 6, (3) becomes

1 ! ’ . /7,9 ’ ! YNy . sl
Z:—Wf_ldz [, do’ 7%(2 ),ﬁl(lzlj(zl {sin? G (x"|x;")

+cos? 0Gy3(X7 X)) +sin 0 cos 0] Gay (X' |X{") 4 Gap(X"[x1")]} - (17)

4. Evaluation of Z
To evaluate 7, we introduce dimensionless variables by putting
N={lf}
(18)
=lh@
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where %, is the propagation constant associated with the current distribution. For generality,
we assume that the propagation constant k&, in the current distribution may be complex, so that
A likewise may be complex. Then (17) becomes

J—— mIE] ‘[z‘f d¢’ f de’ 7*(¢") f dey7(e") (Sin? 0 Gy +cos? Gy +-sin 6 cos 0(Gos+ Gsy) } -
0
(19)
Formally, the final step is to substitute the required values of G,;(x’[x’’) from (5) into (19)
and perform the integrations to obtain the value for Z. The quantity in braces in (19) involves
the ratio N(q)/A(q) where A(q) is given by (13), and N(q) by
N(q)=sin? 8] (¢*—a) (3—a3) +qi(s—a) | +c0s? O] (¢°—au) (G3— 1) —a3]+2 sin 0 cos O¢rq5(¢*—ay).

(20)
Consequently (19) becomes

(a3 @ [ aer [Casy [ atieie e (21)

in which ¢, and k,, respectively, are the free-space impedance and propagation constant.
We now are ready to introduce the assumption of a sinusoidal current distribution. We
express this distribution, which is illustrated in figure 1, in the form

lf'o "lfo
Z= (2m) 4‘[ &l [l

J(O=Isin (A—¢), 0<¢<A,)
(22)
=1y sin (A+¢), 02¢2>4A |

and use this form for both 7*(¢7) and 7(&") in (17).  As noted earlier, we assume that the
propagation constant £, in the current distribution may be complex.

With the assumed form of current distribution (22), it is possible to carry out all the
inner integrations in (21). The quantity p in the exponent in (21) is the numerical distance
between the current element on the axis at ¢;" and the current element on the surface of the
cylinder at ¢’. Henee

qp=q. (' —&)+q,Rsin o' +¢. R cos ¢,
where

]g:k.()ro. (23)
When the exponent in (21) becomes

—ilg. (¢" =)+ R(ger cos ¢’ +q, sin ¢)].
By putting

¢r €08 ¢’ +qy sin ¢’ =+/g%+¢}s cos (¢'+7),
y=tan="'(q,/q."),

the innermost integral in (21) becomes, in view of the 2z-periodicity of the integrand
2
—iR(ay, ¢08 ¢'+ay, Sin o’ P
fo e 1z cos e tay Sin e ot — o J (RN g3+ 430)- (24)

In the 2 system the Bessel function in (24) becomes

Jo(R+/@2+(¢s cos 6—g, sin 6)2.

Although (24) has been evaluated in closed form, it will be necessary later on to revert to the
integral form in carrying out a residues integration.
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The evaluation of the remaining integrals in (21) is straightforward, so that we obtain

7o ([[Nora :
7 (I[I A dq,dqsdq; (25)

in which

(26)
and [
) F(q)=Jo( Ry + (g2 cos —q, sin 0)2) - GG*. (27)
In (27)
G- A cos Ay(q; cos 04 ¢s sin 0) —cos A (29)
Ay (g5 cos 0+ ¢, sin 0)2—(A/A,)? -
in which
Ao=kol. (29)

Study of (26) shows that a transformation from rectangular g-coordinates to spherical
coordinates is advantageous, since then the radicand in (18) does not pass through zero for
real angles. The radial integration in this spherical coordinate system is then carried out by
residues. One then gets analytically different results in different angular regions. In order to
simplify the division of these regions, transformations (rotations) of the spherical coordinates
are introduced in order that the regional boundaries depend on only one of the angular variables.
The analytic forms of the integrand are then written out in full for each region, and further
combinations of the component parts of the impedance expression can be made in order to
simplify the subsequent manipulations.

The integrands are then studied as power series in the parameter e= (dipole radius/dipole
half-length), which is a small number for practical dipoles. The dominant terms of these
series are examined as functions of the angular variables. Tt is found that the two dominant
terms can be expressed as sine and cosine integrals, as in the free-space case, plus two single
integrals which need numerical evaluation. The integrands of these latter integrals can be
evaluated recursively. It is believed that integrals similar to these are inescapable because of
the form of the propagation constants in the magneto-ionic medium, which contain the angular

rariable under a radical.

In sections 6 and 7, the consequences of assumptions (a) and (b) above are examined
briefly. With respect to (a), it is pointed out that variational procedures can be formulated
which lead to a determination of a more precise current distribution. With respect to (b), it is
reported that this assumption causes no error in the dominant terms in e, retained in the present
alculation.

Following the method of analysis outlined above, (25) is first transformed to spherical
q-coordinates by introducing the following transformations:

¢1=¢q sin u cos B
¢o=@ Sin u sin B
(30)

3= oS u

g=(g}+g3+g3)'"*

f[ft/(]l(/qz(/q;;f fﬁr (/[3{1r sin ;.L([,u,f q*dq.
JJ e JO JO JO

[t is evident from (3), (4), (11) and (12) that the integrand is an even function of g. Hence

we can write
fo - qzr/q;;fﬂn. .. qdg.
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This will facilitate an evaluation of the ¢g-integration by residues.

In the subsequent residues evaluation of the g-integration, it is necessary to expand the
function F(g) in (25) into a form containing exponentials. The Bessel function in #'(¢) can be
written as (see (24))

1 (2 )
WA ):-f o= iRt 31)
27". 0
where
d=sin p cos B cos o} (sin u sin B cos —cos u sin ) sin e. (32)

Using the transformations in (30), (28) becomes

G—gq 08 (Ag7q) —cos (AOQ)’

2¢—Q? (33)
where
7=00S & 0s -4sin u sin 6 sin B, (34)
e (35)
If the above changes are introduced into (25), it becomes

= (O [P 25 T > N .

Z:#—f (/qa[ (lﬁf sin ;ul,uf q>=— GG*e~*72%q. (36)
47[' 0 Jo Jo J—» A

The functions ® and GG* control the convergence of the integrand at |¢|—=«, and these
depend on the angles ¢, u, 8 through (28B and (30). In order to simplify this angular de-
pendence, we now make rotations of these coordinates in order that the boundaries of the
regions of convergence depend on only one angular variable. This is accomplished with the
transformations

coS p cos 0-sin u sin B sin 6=cos o 3

sin u cos B=sin ¢ cos ¥ (37)
sin u sin B cos —cos u sin 6=sin ¢ sin ¥
followed by the transformations:
cos u/ =sin o sin X
sin p’ cos B/ =sin g cos X p- (38)

sin u’ sin B'=cos o
In this process

2 T 27 LA
f (/Bf sin udu changes to r dp’ [ sin u'du’.
JO JO JO J 0

Then (28) and (30) become, respectively,
d=sin u’ cos B’ (39)
7=c0s o=sin u’ sin B’. (40)

From (39) and (40), it is seen that ® and 7 have the same u’-dependence, so that the convergence
of the ¢-integration will depend only on the angle B’.

The various coordinate transformations are depicted in figure 3.
Upon introducing (30) into (13), A may be written as

A=—[ar+(ag—an) cos’ u] (¢"—17) (¢*—13), (41)
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)

Ficure 3. Coordinate system showing the various angles used in transforming variables.
,Y,2 s a rectangular system oriented with the earth’s magnetic field o, and u,»,w is a rectangular system oriented with the dipole. Inset shows
numerical distance p.

where
20105+ (o —ay) sin* u - (R

2 ’
.2 20+ (az—ay) cos’ ,U] (4 )
R =l —a) (e —1) (4 cos? ut 5B sint ) 12
—
2 1/2

In (43), the z, y, u of (12) have been reintroduced for compression and in anticipation of
numerical calculation. It should be noted that, for u=1(z=0), the radicand is positive and
has no zeros for real u,0<u<w/2. For future reference we write down

2&1(13 + <C¥1 _(Xg) Sin2 M

P22 — . 44
v o+ (az—ay) €Os* (44)
P22 oy (oo —ay) (45)

-+ (ay—ay) cOS*
In a similar way, (20) for N becomes

N=Aq¢-Bd+C, (46)
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where
A =cos’ s=1* (47a)

B =a; cos® o+ (g —as) sin § sin? o cos® Y+ (ay cos* 0+ as sin )
=y 7+ (g —a3) sin® @ cos>Y(1— 7°) + (o cos? 0+ a3 sin? §) (47b)
C =5+ (ey—a3) cos? 6 (47c¢)

with the above transformations, (36) takes the form

T T T = ’ ’ © 2 %
Z:—Q 2 a fz ([B’f sin u’du f *NGG ~ R4 q. (48)
4r)o " Jo 0

-+ (as—ay) cos? ) —, (P—12)(F—r2)? €

In the u’, B’ variables,
€OS u="C0S ¢ COs f—sin ¢ sin fsiny
. . [« +« 9 7 = o ~7 . .
=sin u’ sin B’ cos f—+/1—sin® y’ sin’ B’ sin f sin ¢, (49)

in which the radical is nonnegative, since 0 <o <.
In order to perform a residues evaluation, it is necessary to split G and G* into exponentials.
For compactness, we write
£=R sin u’ cos B,

n=~A, sin u’ sin 8’,

rSZA/ny
7"4:—1\*/1]. (50)
Then -
_, Q? H(q)
*,—iRPg__ 17" | 5
G e ) oy
where

H(q)=21%[e 1%+ 4 ¢—10&=2 _1 (cos A-+cos A*)[e 106D 4 ¢~ 10E—D ]| (14 cos A cos A*)e %,

(52)
Then (48) becomes
7_£ 2x NN sin u'du’ )
2= 477'f0 (ML a J:) a+(az—ay) cos® u Q (53)
in which
2 @ 2
L ¢*N (@) H(q)dg (54)

™ ) o (@) (@) (@) (7))
The factor

oyt (az—ay) cos® u

in the denominator will be left in that form, since ultimately we shall return to the ¢, u, 8 coordi-
nates in making use of this factor. To facilitate the evaluation of the g¢-integral of (54) by
residues, we have written /(¢) in (52) in exponential form.

The poles 47; of (54) occur in pairs; the contour passes below —7; and above +7;; this
choice makes ¢~ 7P’ an outgoing wave for distance D’ >0, since the », have negative imaginary
parts for z>>0. Writing the integral so as to include all poles, the ¢-integration consequently
vields
|2 rN(ro) H(r,)

4
" B2 ) ()

Q=—2ri (55)

where j, I, [ with j#=k[, represent the three other subscripts possible after 7 is chosen. 7; is
chosen as that root of (42) which has negative imaginary part. H(r;), in view of the discussion

388



above, is given by
H(r)=%[e tralét2l - g—irilé=l]—L(cos A+cos A*)[eirilétnl 4 p—irslé=nl]
+(3+-cos A cos A¥)e~nlEl (56)

The absolute value signs in the exponents require that u” and g be real in the remaining
integrations.

The relative values of £ and n may be divided into three regions, in which the integration
over 8’ must be treated differently. We define these by

Region I:  [¢]>]24], (57a)
Region IT:  [29[>[£[>[x], (57h)
Region I11: |n]|>|g|. (57c)

From (56), we may write after some rearrangement:
in region I, H(r)=A(r,) =e¢ "' (cos nr;—cos A) (cos nr;—cos A*) (58a)

in region 11, H(r)=A(r;)+3ie il cos (ri&) —e~ il cos (2rm)]

— A(r)— sin [r:(|20] —[¢])]

=A(r)+B(ry) (58b)
in region I11,  H(r)=A(r)+ B(r)+i(cos A+fcos A*) sin [r,(|n|—|¢])]
51’1(/'1-)‘1[‘];(/'1‘) +(J(l)i). (SSC)

Symbolizing the angular integration over region I b_vf, ete., and the integrand by S(r)H (r;),
I
we have

7 Ao+ [ Braseods+ [ ceoseds
oJ I4+IT4I11 J IT4II1 J 11T

The boundaries of the regions I, 11, 111, which depend on g’, will be discussed in section 4.1.

4.1. Evaluation of Z;
Since the regional sum I+I1-+1II in Z, comprises the full range of angular variables of

integration, we may conveniently rotate back to the original ¢, u, 8 variables in (36) to take
advantage of the fact that the complication of the radical in (43) involves only u. Also we

4
note here that A(r;)S(r;) has no singularities for 1=3, 4, so that > in (55) may be replaced
i=1

2

by Y_‘, in evaluating Z,. Hence we obtain
sin udu

71—__(71 f ({¢ f ([6 f (X1+(a3_a1) COS2[.L

__{ N(r) (os 71/1 (os A> (cos nr—Cos A*) o=irild
1 n?_A*z Z

o N(r) (05T —C0s A A> <c0$ nry—cos A* e‘”iffl} (60)

P—AZ n 2_ A2
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in which
o _ miA3|A%C
1— 4

2

=—60({/N)* (61)

sin A

Naturally, this form for Z, is obtainable from (36) by treating the two factors G, G* as entire
functions whose growth far from the origin and from the poles is dominated by ¢~ for |&>0.

Now the roots 7, 7, of A are numbers of order unity, and are exactly unity in the free-
space case. The maximum value of |¢| is R, the dipole radius measured in free-space wave-
lengths, which is a small number for thin dipoles. In that case, then, we can expand in powers
of R and expect rapid convergence. The leading term in this expansion is obtained by setting
e~ "1,2/8l—=1. TFor this leading term, then, ¢ vanishes from the integrand, so that the g-integra-
tion yields a factor 2.

Since there are functions of u buried in the forms for 7, 7, no analytic p-integration is
in sight. Hence we resort to numerical integration for this, restricting u to real values.
Since the 7; do not involve B, only the u-integration needs to be done numerically.

In order to prevent the ( ) factors in (60) from assuming the form g at some point in
the B, u-range, we expand these factors in series. A typical factor may be written as

coS a—cos A i (=D a—A*
a’—A*? = (2n)! a*—A?

Then, after some manipulation, we obtain

cosa——oosA cos a—cos A* o,
(mgsms)(meen ) £ o,

n=0
where

D 1) n © © (___1)]4’791\2]")\*2]6
=D 2 2 X A D 2= m TR

(63)

D,, which involves only the constants A, A* can be calculated and tabulated against n in
advance of the main calculation. Since

a=rm=~Ag; cos o= Ay ;(cos u cos f+sin u sin B sin 6),
the a*" lead to terms containing integral powers of cos’ ¢. Furthermore, as can be seen from

(40) and (46), N(r;) involves ¢ and B in the forms cos® ¢ and cos’ 8. Hence in the g-integration
we need to evaluate

2T
Pn:% f cos™ adf, (64)
0
and
] 2
=y, f cos’ B cos™ adpB. (65)
JOo
These may be evaluated to obtain
L (2”)1 2(n—m) = = 2m
Pn:mzzj,o =) (cos u cos ) (sin u sin 6)*"z,, (66)

n 2n)! . .
(2n)  (cos p cos 6)**~™ (sin u sin 6)*"y,, (67)

Q":mzzo (2m)'[2(n—m)]!
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where

. ('Q'QL, S
T 2Emn m) "~ 2(m+1)
. . 271
(z, may be calculated recursively from z,=1, Tn="g = TN

With these results, we get from (60) on putting

e i =140(R)
and using (46) for N(r;),

Zi—9xC, f“dﬁf” sin udu ‘ _Zz:ﬂr—@l e "XH )2,
0

o art(as—ay) cos’u 524 rZ—r3 n=0

o e T sin udu
—or( f dﬁﬁ o

) i ‘% (,.?n+5_),§n+5)_ @ (l.fn»%r:£__‘],§7z—t3)_+_ e(l,gn rl_rgnJrl)T,Z”[)"'

— (68)
n=0 )‘f—l‘f_;
The summation contains terms of the form
2n+1 2n+1
—' S (69)
ri—r3 1+’z
where
Co=1, cy=ri+ 7 +13
— (2 2\ n 22 3
Co=(r1+73)Cn-1—71C0 2. (69a)

Hence, putting cos u=t, we obtain

v 6 It 1
Z,=8x°C f dt
' ' Jo a1+(as_a1)fz rire

Z ]) XZI { Cnt2—— 10y rl)l)n t l+[(a3_a1) (.Osz 04a3]('"><11)"
"J!’[ala.'}'_“ (013—0[1) Cosz 01(.111)n+(a.'s_al)()n+l Si” (1 _{ )(\)H \J( o (7())

It should be noted that the appearance of 8, both explicitly and implicitly in P,, @, is always
as an even power of cos @ or sin 6, so that

Zx(o):Zx(ﬂ'_e);

as is required physically. Equations (42), (63), (66), (67) and (69) permit the recursive evalua-
tion of the integrand of (70) for each . Thus what remains is a numerical integration over w.

4.2. Evaluation of Z,

In Z, (and later in Zj), we leave ¢, u/, 8’ as the angular integration variables in order
to have the boundaries of regions II and IIT determined by the single azimuthal variable 8.
Later, after introduction of suitable approximations, it will be possible to return to the original
variables ¢, u, 8.

The integral Z, is taken over the region 11111, which, from (57b), is given by

: [&1<|2q].
By defining
R r 1
STV 2*3—5 (70
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this can be written as
[tan B’ | >e. (72)

The result of the g-integration in (54) is given by (55). For Z;, we have to insert for
H(r;), in virtue of (58b, ¢).

H(r)=B(r)=— sin [ri(|21] —|¢ )=~ sin [2r[n] (1= cot §'])] (73)

It contributes to simplicity to write Z, in terms of the quantities

S;=rcos ¢|=rsin u" sin B’|. (74)
Then we have from (50)
Sy=A/Ay=8 ]
k- (75)
Si=—A%A=—0%

S; and S,, in view of the dependence of 7, and 7, on u (see (42)), and the explicit factor |sin g’
in (74), are functions of g8’, while S; and Sy are not. Then from (53), (55), and (58b, ¢), we

have 5 ad
Vl Y1O2 o r ’ 1 B, 7
ZZ*S G IJ; (MJ:) u .£I+III sin 3/% )

G= 1 5—\ ﬁs‘:_ @Si_e
U at(a—a) costu = (ST=8)(8T-SH(ST-8Y)

where

S; sin [2A4,S;(1—¢ cot 7)),  (77)

in which, with r=cos ¢ again,
A=A =1
@ = B =ay 7?4+ (a,—a) sin? 0 cos® Y(1—72) 4 (a; cos? 0+azsin? 6) } (78)
C =7 C =rlavas+ (1 —as) cos? 0]

\l

The term |cot 8’| in the argument of sin [ ] in (77) and the [sin 8’| in the denominator of
(76) are both symmetric about each of the principal axes in the g’-plane. As function of S,
the summand in (77) expands in even powers of S;, since S; sin [2A,S;(1— ¢|cot £/])] is an
even function of S; and the remaining terms are explicit in S7. Thus, in the summand, the
cos ¢ of (74) appears squared, and for this reason is symmetric about the principal axes in

the 8-plane. The same cos? ¢ symmetry appearsin the factors 4, @B, C asgivenin (78). There
remains the dependence of cos u on 8”; this appears both in the explicit factor 1/[a;+ (a5 ay)
cos’ u] and implicitly in S;, S, through their dependence on 7, 75, which in turn depend on u
through cos® u, as is seen in (42). Now we may regard the integrand of (76) as expanded in
powers of cos u or cos? u; one sees from (49) that such an expansion will involve odd powers
of cos o=sin p’ sin #’, but that such odd powers of cos o will be multiplied in turn by factors
odd in sin¢. Now ¢ appears otherwise only in the cos’ ¢ term in @ ; thus we may visualize
doing the y-integral first, and we see that all terms in the expansion of the integrand having
odd powers of sin ¢ give zero contribution to Z,. But these terms are exactly those which are
odd in cos o=sin ' sin 8’. Thus, in view of the y-integration, the terms in sin 8’ due to im-
plicit and explicit dependence on cos o are even, and therefore symmetric about each principal
axis in the g’-plane. Thus the entire integrand has this symmetry and we may henceforth
confine 8" to the first quadrant and drop the absolute value signs. Then in (76),

/2
f . (16':4f L dp, (79)
J IT+ 111 Jtan—1le;

392



The foregoing arcument has also shown that part of the integrand of (76) which depends
= £ i) (=
on the S; and on cos g, either explicitly or via 7, 7, can be expanded in power series in cos o=
sin u’ sin B8 and that this is a series in even powers of cos o, in view of the y-integration. Let
I ’ =
us now regard this expansion as having been made. The g’-dependence is then expressed in
a series giving the g’-integrals in the typical form

x/2 ’
[ cos” a(1—e¢; cot 7)™ - af (80)

tan"le; sin ﬁ’

Expanding (1— ¢ cot /)" to get a double series, we have the typical integral
x/2 ) . .
],,,,:f (sin B")* (e cot B”)7dB’[sin B’. (81)
tan—leq

Now we take advantage of the fact that we are dealing with a “thin” dipole, one in which
e=1/Ay1s asmall quantity. We wish to calculate terms of order log (1/¢;) and €, and to neglect
terms of order ¢ and ¢ log (1/¢) for n>1. By evaluating integrals of the type (81) with
these considerations in mind, it may be shown that terms of the retained order occur only
when n=0, or »=0, or both, the last alternative giving rise to a log (1/¢) term. We there-
fore write

ZZ:Z;+Z;,+()[61 101_1‘ (1/e)],

where Z; corresponds to n=0, and Z;" to =0, n0. Thus 7, has the integrand obtained
from (76) by putting cos ¢=0in S;,in cos u, and in A, B, C, but retaining ¢ cot 5’ finite.

From (78), we see that C is of order cos® ¢, and from (74) that ST and S2 are of this order.
From (76), however, S; and S; are independent of cos . Thus in the 2 of (77), for i=1, 2 the
numerator is of fourth order in cos ¢ and the denominator is of second order, so that the sum-
mands vanish for i=1, 2 on setting cos ¢=0. Thus we obtain

o e x du’ /2 dg’
PR T Y LS O 4
2 Jo ”P. o a1t (ag—a;) €OS™ gy Jtan—1¢ SIN B
S [((ASi— Q})] sin [24Si(1—e cot )], g,
= S5 (S7—8%) '
where, from (50),
cos® py=sin® @ sin’ ¢, (83)
and, from (78),
a )
7 1
" (84)

(BO:(aS—al) sin® 0 sin*y+ay=ay+ (a3— ) c0s? yy J

We note that the integrand in (82) is free of n’, and that the y-dependency, in virtue of
(75), (83), and (84), is of the form

J‘z" dy - f“ dy
Jo art(as—ay) sin? 0sin*y )y a; cos’ Y+ (a; cos? 8+ay sin® 0) sin® ¢

:27r[a1(a1 COSz 0"—03 Sin2 0)1_!’{3’

from Bierens de Haan [1957] table 47, No. 10. After integration over ¢ and u’, (82) therefore
becomes

3 S,(83—52)

T ey (. dp’ 4 oy (ay cos® 04 ag sin? 0)]—'4S73—1
/=20 Q2| . R ol

51 2 1A - 5 4 SH
Jn-te, sm B’ 1 sin [2A,S,(1—¢ cot B)].  (85)

Writing
g=e cot B/,
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we now expand
sin [2A,8:(1—g)]=sin (2A,S;) cos (2A,S:g9) —cos (2A,S;) sin (2A,S:¢)

and further expand cos (2A,8;9) and sin (2A,S;¢) in series. If we retain only terms of order
log (1/€;) and €, as before, we may sum the resulting series to give the result

, o < [ay(og cos? 0+ as sin? 0) 74487 —1
— 207 02 1
Zemm 2] 2 S.(S7— 89

1
verhAoS;

-{sin (2A40S5) [O@'(2A0Si)—|—log ]—cos (2A,S;)S7(240S5) }: (86)

where Si(xz) and (i(z) are the sine and cosine integrals [Jahnke and Emde, 1945], respectively,
and in which use has been made of (71). This gives a closed form expression for Z;.

On the other hand, Z;" has the integrand obtained from (76) by setting €, cot /=0 in the
final sin [ ] factor, so that

//_»l 2 i J‘T ’ f‘”ﬂ Gﬂ (]B/ :
Z > 2l J; a¥ 0 2 tan=1 ¢ 01 (3—ay) cos? p sin @7 )
where . . .
& (ASi— B S C) 8, sin (24,S))
G (SIS (S—S) (S—S) L

G, now is to be expanded in a series in powers of cos® g, starting with the first power (since the
term in (cos? ¢)° already has been included in Z;). Thus in Z;’ the integrand has the leading
term cos® g=sin? u’ sin? 8’. This and all higher terms vanish like sin? 8’ or faster near 3’=0so
that, even with the 1/sin g’ factor, the 7, integrand vanishes at g’=0. This in turn permits
the replacement of tan~' ¢ by 0 as the lower limit of the g’-integral, since this introduces a
negligible error of order ¢f. Hence (87) becomes

II___l 2 o I‘ﬂ— IJ“”/2 GO ({B, .
2 O[Q I fo 4 Jo du o oqt(az—ay) cos® usin B’ (89)

After expansion of G in powers of cos? o=sin®u’ sin’ 8, we can make use of (38) and (37) to
rotate back to the original coordinates ¢, u, 8. 'This is desirable because then r,, 7, depend
only on u. The result is

27 2
oW 5 @G sin udu
7y=% 0|9|L dﬁfo cos s (90)

a;+(ag—au) cos®

G, in (89) is a symmetric function of the four S;. By expanding sin (24,S;) in a series,
@G, becomes

o (ASI= BSOS, sin 2408)_ S £ (1240 ASi— B8+ Cs:
CE (SI=S)(SI=SD(S=8D S @etl! (S8 (S-S (S—8)

ST

(91)

We can now make use of the results of symmetric function theory to obtain the desired expan-
2

sion of @, in terms of cos’s. When this is done, the 6—integrationﬁ ! |cos a|***1dB can be devel-

oped recursively, leaving only a g-integration to be performed numerically.
The expansion of a typical term of (91)

4 S%(ni—N)

& ST (S S5
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is expressed recursively in terms of the coefficients A, of appendix A as follows:

A0:113:1/14:0, Aﬁil,

(92)
4‘/1211:([14‘1271~2_([2[12n~-l+(/3112n—6_([4A2n78J
di=>" Si=py+p; cos’ @ h
dy=27 23" SiSi=pa+pop; c0s® o+ p3 cos' o
dy—32 53 S0 838382 =p1ps c0S® o+ pops cOS' 0 (93)
T T E
4
d,=TII S2=pyp; cos' o
=il J
where
p0:92+ Q*A’ (= 929*2:1 941’
p1=ri+73, ps="14r3.
[t is evident that the A,, will involve cos® o, in general.  We therefore write
/12n: Z[ Ay, n (OSZm (94)
n=0
Hence we have from (92) and (93)
iy 7=, 512y =10, for all m
aky =1l (T, 7 ={0) for m #0
(95)

1
(’m n p(l(’m n+1 p’”’m, n —2_1_p1(lm»1, n—1 _pnp]”'m—l, n—2
+p1p2“’m—],n—3 P3Wpm—2, n—’+p()p§((m—7 n—3""P2 p&am~’ n—4

Then (91), together with (78), becomes

G Sci\ i (ﬁ])]z( \”) 2n+1
0 = =0 (21L+])'

Uy, n+2(a1_a3) sin® 6 sin® o cos® \{/_(I‘mfl, 71+2a1+a‘m—l, n—H[alaS—l— (al_a3> cos’ 0]} . (96)

o2 , .
COS™ 0+ { U, nt3— @, ny2(cr COS* 0-+azsin’® 0)

In (96), the factor sin? ¢ cos’ ¥ has been retained in order to facilitate the rotation back to the
original (¢, u, B) coordinates. By the second equation of (37), this factor then becomes
sin’ u cos’ 8. Hence, upon rotation of coordinates, (89) becomes, in virtue of (90),

/ r__ 7!'0 2 sin u([p,
|Q |f dﬂf ar+ (a3—a) cos*

I (RAG) om—1 2 )
20) > ;1 (—=1)" @t |cos |1 {@p, ntr3—m, nt2(ey cOS® 04 sin® 0)
2= m+1)!

— U, pro(0y—as) SIN? 0SIN? 1 COS* B— 1, pto01+Am—1, nr1loncs+ (c1—az) cos? 0]} . (97)

Since from (34)
COS g=T7=C08 u €0s 0-}-sin x sin 0 sin S,

the g-integration involves integrals of the form
1 2T
Jo=5= f |a—-b sin g|"dB,
<mJo
] 27 R . )
In=oc— cos? Bla-b sin B|"dp.
.271'. 0
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These are evaluated in appendix B, again in terms of a recursive routine. Making use of the
results obtained there, and making the substitution cos u=t, (97) becomes

. 1 dt ® (24, >2n+1
0? f e 1)
| o art(azg—an)t? ngmg( ) (2n+1)!
Al @n, ny3—m, n12(0 €OS* O-+az SIN® 0) — @1, np201 Ty, 1 (105

+(011—Ol3) cos? 0)]f2m—l+am, n+2(013—011) Sin20(1—tz){/2m—1}- (98)

Zy=nC

The final step in the evaluation of Z" thus is a numerical integration over ¢.

4.3. Evaluation of Z,

The evaluation of Z, follows a procedure entirely parallel to that for Z,, it being only
necessary to use

€ :RO/AO

instead of ¢, and to use the appropriate value of Z(r;) from (59). It is easily seen that the
only changes required from the procedure of section 4.2 is to replace 2A, by A, everywhere,
and to multiply the result by the coefficient

—2(cos A-tcos A¥).
Hence, writing

ZSZZIII"—Z.‘QI)
we obtain from (86) and (98), respectively,

0+ sin? 0)]71/282—1
S.(S:—S)

-{sin (AoS5) I:C’i(AOSi)—I—log 'yeAl S :I—cos (AeS)Si(AoS)) } (99)
001

I ] \27I+1
Jo 011‘1‘(043 Oél)t “AV__/;WZ ( 2 ‘1‘1)
“A[@n. nt3—m, n+2(1 €OS® O+t SIN® 0) —@y—1, pt20ts

Ty, nr1(craz— (az—ay) €08* 0)] for—14Am, nt2(az—a) sin® 9(1_t2)!/2,71—1}- (100)

4 2
s=—2m*C| Q*| (cos A+cos A*) > [ailatica
=

2y =—27*C| Q| (cos A+cos A*)

5. Limitations of the Numerical Integration

The numerical integrations to be performed in (86), (98), (99), and (100) in the variable
t=cos u are carried along the real t-axis over the range 0 <t <1. From figure 3, it is seen that u
is the angle of propagation of the plane wave with respect to the earth’s magnetic field. In the
integrand, the term

D=+ (a5—ay )t
in the denominator vanishes, when #=1, at some value in the range 0 <t <1 when

a3 < 0.
This is equivalent to
P=(0—2)(0—¢)(1—2—17) <0. (101)

When D=0, the present numerical procedure does not give meaningful results. This is
due to the fact that when the quantity A of (41), which is the denominator of the Green’s
function in (36), vanishes, so that the Green’s function becomes singular at some point of the
integration path. This difficulty does not occur when the collision parameter z is substantial,
since then ) vanishes well off the real f-axis. For small z, or for P positive and small, a finer
integration grid will also give valid results.
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In order to avoid the singularity and obtain a single numerical process valid in all parameter
ranges, it is necessary to carry out the numerical integration essentially in the complex ¢-plane.*
This will be postponed to a later treatment.

The relations for the impedance components developed in this report, namely (60), (86),
(98), (99), and (100), have been programmed for the IBM 7090 computer. The program has
been satisfactorily checked against the free-space impedance in the high-frequency limit.
Numerical caleculations have been made for certain parameter values. These will be discussed
in section 8.

6. Propagation Constant k, and the Current Distribution

As mentioned in section 4, the propagation constant of the assumed sinusoidal distribution
of current along the dipole has been taken to be complex. This is reflected in the parameters

A=k,
and
Q=A/A,,

which, consequently, are complex, in general.

Our analysis tells us nothing about k,, since we have assumed the form of the current distri-
bution, which amounts to assuming that we know k,. For trial numerical calculations, we
have chosen values for &, near the average (over propagation direction) of the ordinary and
extraordinary wave propagation constants. The value actually used was k,—=~+/1—uk,.

In examining procedures for an optimum choice of %,, we have been led to a variational
formulation of the thin dipole impedance problem. This type of procedure, introduced by
Storer [1950] in the free-space case, leads to a method for finding optimum values for the current
distribution, which is then used to obtain an even more accurate impedance estimate. Further-
more, no major changes in the present analytical or numerical methods are required. These
developments will be given in a later paper.

7. Further Developments

Our formulation is based on a Fourier integral representation of the anisotropic Green’s
function. Considerable effort has been expended, both by us and others, toward obtaining a
closed-form representation of this Green’s function. We have been able to show, however,
that such attempts are in vain, and that a representation, such as the Fourier integral used here,
1S a necessity.

Because we use a Fourier representation for the Green’s function rather than a closed form
as in the free-space impedance calculation, we have been able to evaluate precisely the error
introduced by assumption (b) of section 4, namely, that the current can be considered as con-
centrated along the axis of the dipole in the calculation of the field at a typical point in space.
It turns out that the corrections for this assumption occur only in the neglected terms of order e
or e log (1/¢) or higher, so that this assumption causes no error in the dominant terms retained
in this paper.

Details of these developments will be given in a subsequent paper.

8. Numerical Calculations

In order to display the magnitude of the impedance as a function of the parameters, com-
putations of Z were made for several frequencies. These were calculated for frequencies of 10,
5, and 2 Mc/s and a set of ionospheric and antenna parameters supplied by Dr. R. G. Stone of
the National Aeronautics and Space Administration. Table 1 lists the ionospheric parameters
at the altitudes of interest. The corresponding values of z, y, z are plotted in figures 4 and 5 for
10 and 5 Me/s, respectively.  From these it is seen that in an altitude region around 300 km,
and of width increasing with decreasing frequency the parameter z becomes comparable with

*Note added in proof:

. . . . . > ! ! po » . ~ . . .
Suitable paths in the complex #-plane have been found for the numerical integrations Z;, Z,, and /;,'. With a 16-point Gaussian numerical inte-
gration procedure, calculations have been carried out at frequencies as low as about 2000 ¢/s without difficulty.
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TaBLE 1

Altitude Electron Mag. field Collision
density frequency
km | per cm? Gauss sec!
100 | 1.2X10% 0.52 1000
150 ik, 7/ .51 100
200 2.5 .49 500
250 3.5 .48 1000
300 5.2 47 920
350 4.3 46 840
400 2.7 .45 750
450 1.8 .44 70
500 1.3 .43 590
550 8.3X10¢ .42 510
600 I 5.7 41 430
650 | 4.0 40 350
700 2.9 39 260
750 2.2 39 180
800 i 117/ 38 100
850 | 1.3 .37 95
900 | 1L, 11 .36 80
950 | ossx1 136 75
1000 i 7.4 .35 70

o

04—
|
i
0.3 H‘
>-.
x
0.2
N
5
=
o.l 2
I
o | | I I — | | ]
200 400 600 800 1000 200 400 600 800 1000
HEIGHT , KILOMETERS HEIGHT , KILOMETERS
Ficure 4. Normalized ionosphere parameter versus Frcure 5. Normalized ionosphere parameter versus
altitude (based on data in table 1); frequency=10 altitude (based on dala in table 1); frequency=4
Mcls. Mec/s.

unity or larger, so that the product P in (101) is small or negative. For smaller and greater
altitudes than this region, computations of Z were made on the NASA 7090 computer. The
resulting impedance, plotted against 6, the angle of the dipole’s axis with respect to the earth’s
magnetic field, is plotted for a number of altitudes in figures 6 and 7 for 10 Mc¢/s, in figures 8, 9,
and 10 for 5 Mec/s, and for an altitude of 1000 km in figure 11 for 2 Mc/s.

The antenna in question is a half-wave dipole of radius-to-half-length ratio e=1/300. Thus
A=k, has the value 1.5708 (i.e., #/2). This corresponds to a situation where the length of the
dipole is varied with altitude so that it would always have near-zero reactance. That is, the
impedances calculated in figures 6 to 11 are based on the assumption of a sinusoidal current
distribution of the form sin k,(I—|z|)=cos (k,2), k, being a real constant having the value

v1—z ko, independent of 8, where the ionospheric parameter x is that corresponding to the partic-
ular altitude and frequency.
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Fraure 7.  Reactance of half-wave dipole versus angle
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Ficure 12. Dipole resistance versus A=Kkyl; fre-
quency=10 Mc[s, 6=/5°.
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Freure 11. Impedance of half-wave dipole versus
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Frcure 14. Dipole resistance versus A=Kk,l; fre- A
quency =25 Mcls, altitude=200 km. Ficure 15. Dipole reactance versus A=k,l; fre-
Tonosphere pacameters as in table 1. quency==5 Mc/s, altitude= 200 km.

Tonosphere parameters as in table 1.

In order to explore the magnitude of the change of impedance with physical length of the
dipole, curves were also computed for the reactance and resistance as function of dipole length,
for values of A=Fk,l near7/2. The results are plotted here in figures 12 to 15, for the special
conditions listed in the legends.

In summarizing these plots, we first note that for 10 Me/s and 1000 km altitude, where the
ionospheric conditions have small effect and free-space conditions are being approached, the
calculated impedance shown in figures 6 and 7 shows a negligible 6-dependence about a value
identical with that of a half-wave dipole in free space [Carter, 1932].

Next, it is obvious from the graphs that the impedance is markedly affected in the altitude
range where the ionospheric parameter z approaches unity. The impedance then becomes
markedly dependent on angle, more especially the reactive component. This is especially
noticeable in ficure 10 for an altitude of 400 km. When this curve was first obtained, it was
felt that these large values may have been the result of the approach of the parameter P of
(101) to a small value (about 0.01) so that the numerical integration may have become unreli-
able. To check this, the 16-point numerical integration was changed to 32-point, but the com-
puted results changed negligibly. Thisis highly encouraging as to the accuracy of the numerical
integration process.

It should be pointed out that these curves are based on the assumptions stated previously,
and therefore should not be taken as the best obtainable under the present theory. In par-
ticular, the k,-value used here is real and independent of orientation angle, whereas the varia-
tional estimates of k, referred to at the end of section 6 would lead to a complex #-dependent
value. But this refinement will be handled in a later treatment.

Tt should also be pointed out that the present theory assumes a homogeneous medium
around the dipole. It therefore does not incorporate the effect of the plasma sheath which
may be formed around the dipole in an actual case.

9. Summary

In this paper, we have formulated the problem of the impedance of a thin center-driven
dipole in a magneto-ionic medium by expressing the Green’s function as a Fourier integral in
spherical propagation-constant coordinates. In performing a residues evaluation of the
radial integral in this coordinate system, it is found necessary to deform the contour differently
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in different angular regions. By an appropriate rotation of the coordinates, the boundaries
of these angular regions are made to depend on a single angular variable.

An expansion of the result in power series in the small parameter e= (dipole radius/dipole
half-length), in which only terms in log (1/e) and € are retained, leads to considerable simplifi-
cation. It is found that the two dominant terms can be expressed as sine and cosine integrals,
as in the free-space case, plus two finite single integrals which need numerical evaluation.
The integrands of these latter integrals are expressed in terms of recursive routines.

The numerical integrations are in terms of the polar angle of the wave propagation vector
with respect to the earth’s magnetic field. Singularities of the integrand are encountered when
the applied frequency is below the plasma or gyrofrequencies. It is then necessary to carry
out the numerical integration in the complex plane. This has not been investigated in this
paper. Consequently the present numerical integration procedure is restricted to cases where
this situation does not occur. The closed-form terms, however, are valid in all parameter
ranges.

Numerical calculations of impedance for selected values of the parameters are exhibited in
a set of curves.

It is pointed out that the problem may be recast variationally so that the current distribu-
tion is computed rather than assumed. This approach, which requires no substantial changes
in the present analytical and numerical procedures, will be given in a later paper.
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11. Appendix A
Evaluate
4 S?n

A= =S (S—S) (5= (A1)

The S7 a1e roots of
S§—d,S¢+d,St—d,S3+d =0, (A2)
where

=81+ S3+ 83+ 8%
dy=8183+ 8183+ 818+ 83854 S285+ 8381
dy=S183834 818351+ 828584
d.=838:838:.
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Consider the determinant

6 [STS2SESE

4 |S18183S]
= = (ST—183) (81— 85) (81— 81)- (82— 15%) (83— 59 (85— 50). (A3)

2 |SISESESE

0 |S98985S%

This is an alternating function [Aitken, 1939] of the S;, i=1, . . ., 4.

Let
7 NN
4 [ST8:8: S
>SS S
0 [SY 82 S5 St (A4)

The four terms of A, in (A1) may be gathered over a common denominator which may be
written in the form (A3). When this is done, it is seen that the resulting numerator is simply
an expansion of the determinant in (A4). Thus

2n |6
fm:g+g (A5)
0 |0

For 2n=0, 2, or 4, two rows of the determinant in the numerator are identical and the
determinant vanishes, so that

Ag=A,= A,=0. (A6)
For 2n=6, numerator and denominator are identical:
Ag=1. (A7)
Rearranging (A2) and multiplying through by 87", n>4, we have
S =87"=d,S7"*—dy,S7" 4+ d3 S5 —d, ST 8, n>4.
By (A1) or (A5) this implies
Agpy=As,=d1Agy_2—ds A,y Fd3Asy_—dsAgy—s, N4 (AS8)

Equations (A6), (A7), (AS) provide the basis for recursive evaluation of the A,, encountered
in the text.

12. Appendix B
Evaluation of

(a) fnf-;’; fo la—-b sin 8|*d8

(Mgf:%;fjc%QMa+bﬁnMWm.
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Define
I(z,y| |a, b) Eﬁu (a-+b sin g)"dB=a Lj (a+b sin B)*~'dB-+-b f; sin B(a—+b sin B)"~'dB

=al,_1—b cos B(a—+0b sin B)" Y +b*(n—1) f; cos® B(a-+b sin B)"~%dB
[(a+b sin B)—af’

cos’ B=1—sin’p=1— b
Hence
Inzaln—l—b cos 6(a+b Sin B)n_llg_l_(n_1)(b21;~2—]n+2a/[n—1—(ﬁ[n~2)
:712 {@n—1)al i+ (n—1) (B2 —a?)I,_,—b cos Blat-b sin B)»~|1}. (B1)
1 (e : 1 (= 7 .
(a) fnzz— f la+b sin B|*dB=~- [ |a+b sin B|"dB
m™Jo 2r Jo
where a=|al, Z:ib\._
Case (1): If @>b, then a+b sin B does not change sign in (0, 27), so that
B cos B(@-+b sin )"~z =0.
Hence from (B1),
Fum 1@ 1)Tf sy (1—1) (@) .
(B2)

Case (ii): If b>a, put

c=sin!

U

Then
T — T — 27 _
D= fz [a+b sin BI"(IB:f (@b sin B)™dB-+ f la--b sin B|"dg
JO 0 AT

= f (@45 sin 3)n(15+f” G—5 sin |*dg
J O 0

— J‘T (E+5 sin B) "dﬁ—l—fﬂ (@—b sin B)"dB+ frc (—a—+b sin B)"dB+ fﬂ (@—b sin B)"dB
JO 0 Je J T—0¢

2" @t Bsin g2 | @—Fsin prag2 [ (< sing)ds
:21,,(0, " lla, Z>+21,L<o, o|[@, —B)+-2T.(c, /2| —a, ) (B3)
=2 (U, +V>)
G
27rUn:2I”<O, T, Z>+2[,L(o, A5
(B4)

27rvn:21,,<c, "3, Z)-
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Applying (B1) to the right-hand side of (B3), we have for the last term of (B1)

—b cos B(a+b sin B)" ! |I§+25 cos B(a—b sin g)»~! |5—25 cos B(—a+b sin g)*~1 |7/2 sin g)n~1|7/2
-+0

:2-5511—1 _2[)_(_L-n—l

=),
Hence from (B3), (B4), and (B1) we obtain the recursion formula for fn in case (ii)

—(n—1)(B*—a*)V, o}

Frm e (@0 1)aU 1+ (1) (B0} — {@n—1)aV sy
o (@ 1)TU 1~ Vot + (=) (B =)o} (B5)
Also
U= [(0=1) (0 —a)U ot (20— 1)),
[(n—l)(bz—a) —(2n—1)aV ,_i]
1 ¢
U=gts
(/7126U0+71_r (b2—(1/2)1/é
, 1 e
Vi=gr
Vie =Vt (b—at) (B6)
(b) (/,,:‘)i fﬂ cos? Bla+b sin B]"(IB:i I‘N cos? Bla-b sin B|"dB.
ar Jo 2T Jo
Consider

Tz, yla, b)= f " cos? Bla+-b sin B)"dB— f " (1—sin? B)(¢+b sin B)"dB

JXxX

f {bz (a+b sln B)—al } (a+b sin B)"dp

:% [(bz—a2)[n—|—2a]n+1—ln+2].

Then we have

Case (i) a>b:
:lz [(6°—a®) fot20fnt1—Fra

Case (ii) b>a:
[(bz_az) (lTn'+ T7 )+2a([]n+lhvn+l)_—( 7L+2+t n+2)]

Gn=

(Paper 68D4-355)
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