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A study of the cold plasma cylindrical waves that may propagate in a specific type of
two-dimensional magnetic field is initiated in this paper. The plasma is assumed to be of
uniform density and collisionless, and a “spoke-wheel’”” magnetic field is considered which
is both anisotropic and inhomogeneous (varying as the inverse radius), as defined in the text.
Perturbation series solutions are obtained for the first Fourier component of the electric
field for the four extreme cases: large and small magnetic field; large and small plasma
densities.

1. Introduction

Interest in the analysis of wave propagation through magneto-active plasmas has, in the
recent past, received renewed stimulation due to the emergence of the problem of communica-
tion “‘black out” to or from reentry vehicles.

With regard to this problem, in the present paper, we shall initiate a study of the cylindrical
cold plasma [Allis, 1959 ; Auer et al., 1958; Mason and Gold, 1962; Gold, 1963] waves that may
propagate in a specific type of two-dimensional inhomogeneous magnetic field. The plasma
is assumed to be of uniform density, and collisions are neglected. A so-called “spoke-wheel”

magnetic field is considered which consists of two orthogonal (r, 6) components. The circular
A . o . . . . . A
6 component ? is the field generated by a straight wire, while the remaining r component may

may be approximated by the field generated at the end of a flattened solenoid of infinite radius.

Both the r and 8 fields dec: v as the inverse radius. The problems we shall investigate
pertain to a specific (i.e., only » dependent, for the first Fourier component) class of waves
which are sustained in a plasma that is situated in the region of two-dimensional symmetry of
these fields. The related field lines are depicted in ficure 1 (constant z).

The »~! dependence of the Bj field generated by a straight wire is classical. The similar
dependence of the B, field follows from simple geometrical consideration. If there are N B,
lines issuing from the source of radius 7, so that the B field there is aN/27r, (where « is a
constant), then at the radius 7, the value of the field is «/N/277r, since the same number of lines
cross all circles.

Br

Ficure 1. Spoke-wheel magnetic field.

1 Assistant Professor of Physics, New York University, University Heights, New York, N.Y.
2 The roof notation denotes a unit vector.
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. Similar studies of guided cylindrical waves in a cold plasma may be found in the litera ture
[Astrom, 1950; Buchsbaum et al., 1960]. However, for the most part, the steady B field in
these investigations is in the z-direction and is, of course, constant in space. The striking
dissimilarity between such a B. field and the B, 4 fields herein stated is that in the former case
the components of the related electric fields are decoupled, while in the latter case, even for
constant-in-space B, fields, the E, , . fields are severely coupled. A class of r-dependent
solutions is examined for the magnetic field (B,,0,0). In this case, the E, field is completely
decoupled from £, and is nontrivial only if the signal frequency is equal to the plasma fre-
quency. The (0,B55,0) problem is not of current interest although it is amenable to a similar
analysis.

In this introductory discourse, we shall generate perturbation series for the electric fields.
The two physical variables at our disposal are the plasma density and the steady magnetic
field intensity. Of the four extremes that are naturally suggested, only the one of large plasma
density prohibits perturbation analysis, since in that case the zero-order solution (infinite
plasma density) yields zero electric field. In the remaining cases, quadratures are obtained
for the first-order terms in the perturbation parameter.

2. Analysis
2.1. Equations

The defining characteristic of a cold plasma is that the constitutive particles suffer no
spread in velocity space, viz, the distribution function f(£) is a delta function 6(€—£&,). We
shall consider also a two-component plasma whose ion mass far exceeds the electron mass so
that in any subsequent perturbation from equilibrium, only the electronic motion contributes
to the current J. The related wave equation for the electric field E (MKS units) is,

(= @Ay X7 X)E=0 O

where wis the mode frequency, w, is the plasma frequency, and ¢ is the speed of light.
Let us consider the operator A in more detail. Two cases follow:

(1 0 0 J:
0 1L —p. {{Joyp
L() p, 1 J.

Z =%17 ) =7L=()
=gy PERREY

A=

where we have set

If @ is the magentic Larmor frequency [¢eB/m], and b is a unit vector B/B, then K is the magentic
wave number, defined through

e b
w Kr

In similar manner, there follows for A,

Agd=

( 1 0 ])31 J,
0 1 0 Jo |
L—])o 0 1 J
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For the inverses we obtain

1 0 0 ]
_ 1 P
1_ T

A= 0 1+p;  1+4p7p

0 —pr 1 J
QS EETCR W
1 0 =7k
1+pp 1+pj

Ast=ll @ 1 0o I

Do 0 1
\1-+p; 1+p;

Returning to the general analysis, we may write (1) in component form.
ence of the solution is absorbed into the circular harmonic form,

The 6 depend-
E—3" E/(r) e,
=0
For case 1 (p=1/K,r), (1) appears as

<ﬁ—ﬁ im

w’ n g oy O (BN
[<w2_1+)p >+ r bl > ol —c (=) 5(7' >~0,

[c‘ w§ w()]) E,
[ttt s )]”

oLo-o

wup

where F, o has been written for £! . 'The equations constituting case 2 (p=1/Kyr) are similar
in form but will not be considered in detail at the present time.

2.2. Solution

In this analysis, we will restrict our considerations to the /=0 mode.
£, field is completely decoupled from I, and is nontrivial only for w=w,.
two equations for Fj , appear as:

[t o] e (25 (s )
[+ [ 2t () (B 1) @

2

02, - _
== y=Kr=p
o

In this case, the
The remaining

where we have set
w
L= ——
@
The L operators are

2 0 x(—[—
dx? de= "

L,=x

so that

(Lata?)[Ad () +BY ()=
where o, and Y, are nth order Bessel functions of the first and second kinds, respectively.

327



We will now consider four classes of perturbation solutions. The parameter of smallness
for the four cases is defined in the following table:

(a) y:kK D= TR Large B, field (k, > >K)
0

(b) y:%{ =TS Small B, field (k<< K)
0

(chai=¢: Rare plasma (w,<<<w)

(@) = Dense plasma (w, > >w).

Case a, large By field. In all of the following cases, the fields are expanded in powers of e:
E=i E®er,
n=0

In addition, all functions of e in the set (2) are expanded about e=0. For the case under
consideration, there results (y=ex),

(Q}'2+L1)ZE9(”)6”:O£262$4 (Z (_)nGanQn) <ZE§7L)E”+$ ZE;’”G")’

(@ Lo) SV E e —a?eat (3 (—) reira™) (ZEQ"’ ot ZEé">e")-

The recursive] equations for [E™; I£”] are obtained by equating the coefficients of equal
powers of e. The first two of these equations appear as (assuming that « is of order one)

(2*+L) E;”=0; (2°+Lo) E;”=0; (3a, b)
@*+L)EP =o*EY®; (i’ + L) EX =—d’2*E®. (4a, b)
These two equations determine the solution to 0(e), which, in turn, appears as

E=E©®+¢E?; e:%{ozﬁr; O=F %; JByrenr =,
The zeroth order solutions are the free space solutions, or, more accurately, the infinite
magnetic field solutions. The simulation of the free space case is due to the rigid ordering
of the particles by the B field, so that it becomes impossible for the electric fields to do work on
them. For E© we find,
EP=AJ,(x)+BY o(x) Ejo} 5)
EP—= CJy(2)+DY(2) =5,

where we recall z=Fk,r, and J, and Y, are Bessel functions.

The next order terms are composed of two parts: a particular integral and a complemen-
tary function. The complementary functions for (4a) through (4b) are all the same as the so-
lution to the zeroth order (3). A particular solution of (4b) is obtained by setting

Ez(l) :é) zj(]-

There results the following first-order equation for&.:

’ ’ d -9 ____Cﬁl_%
82 SRG d (In (x73)]= o ’
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where a prime denotes a derivative with respect to 2. Multiplying through by exp [In (273)]=
xjs gives

1 o R o2
(;7 (&:x58) =—a2josh=— 5 (,I ( )%, (6)

the last equality following if the constants of j, are set equal to those of j; since (d/dx) (zj,) =j,.
Integrating (6) twice gives the desired result in quadrature form:

t5i(1) . tj(t) )
&:(2)= f w0 0T [3&5 ‘2]10' (7)

In a similar manner, we obtain for &4 (where E9 = &gjy),

a212
80:—4' (7b)
To order e the fields now appear as:
E=E?(1+e8.),
Er=EQ® +eE"8s
with the zero order solutions given by (5) and the functions & () given by (7). It should be
noted first that the solutions to the first-order homogeneous equations have been absorbed in the
unity factor, and second that the constants of . are not the same as those of EY;
however, A=C, B=D for the 0(e) solutions. Reference to (5) indicates that four arbitrary

constants remain, two residing in /2, and two in /4.
Case b, small B, field. This case is characterized by setting

ko
K

=¢€.

Equations (2) then appear as

(@+L) Er=r'a’ [—1 - é%,)-] <E9+f L>

(L) Ey=t [fﬂi—/r—)] (5.~ En)

Expansion of the relevant functions about e=0 and ordering, results in a sequence of coupled
equations for the field components E™. The first two equations appear as [for «=0(1)]

[Li+(1—a)2?|EQ=0; [Li+ (1—a?) 2’| EL =0;
[Li+(Q—d) | EP =’ EQ; [Li+ (1—a®) P | EL =—o’cE.
The solutions to the zeroth order equations are given by

EP=AJd (') +BY (a’t) =j1; EX=CJ(a’x)+DY o(a’x) =7,
where
a'2:1—a2:1——%§'

The next order solutions are obtained in a manner exactly the same as for case a; viz, we set

EP=5,§ :; EP=5.8 o.
There results:

___‘i . o o’ ’ Io(a t) o
d 2! Inz; & o= 20’ S tjl(a t) i

_.70<a,t)
a’ty(a’t) |z,
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using the identity (d/dx)[jo(e’x)]= —a’ji(a’2z) and requiring that A=C, B=D. To within the
stated order, the solution now appears as

E=EY(1+¢§ ),
Ey=EP+eEP & o

Case ¢, rare plasma. Here, we set

In expanded form, (2) now appear as

($2+L1> 2 Eén)en:€< ) (Z E(n) n+y—1 Z E(") n)

1+

(124 Lo) S EMer—=e (17{:”1/) () Emen—y=1 S Emen).

For this case, it is particularly simple to write the general nth order recursive equations for E,
which appear as [provided K/k,=0(1)]:

(12+L1)E,§"+1) < ?/l ) (r(n)+y—1E(7l))

(x2_|_L )F(n+1) < ) (E(n) —lE(n))

e
In exactly the same manner as with the previous two cases, we obtain for E, to 0(e)
=E"(1+¢8»),

E.=E®1E0E,
where

EP=j1(z); E=jo(x),

and the first-order contributions are the quadratures,

80=f1 dt (N[ d(2) o

0 tR(E) Jty 14-N222 Nzj1(2)
T dt f‘ N2hi(e) [ 7(2)

= = LI T — dz,
8 Jzo t55(t) Jo 142227 Nzjo(2)

where we have set A\=K/k,.
Case d, dense plasma. 'This final case is characterized by the statment

It is easily seen that this equality renders the perturbation series
E=EQ+EV 4 | ..

degenerate if X is of order one, inasmuch as the starting term vanishes, generating, in turn, a
null series. The physical significance is, of course, that electromagnetic waves cannot pass
through an infinitely dense plasma (e=0).
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3. Conclusions

We have presented an introductory discussion on the class of electromagnetic waves
which will pass through a specific type of eylindrical magnetic field embedded in a cold collision-
less plasma of uniform density. The magnetic field is both anisotropic and inhomogeneous
(varving as the inverse radius). The spoke-wheel magnetic field is defined in the text.

The most significant aspect of the analysis is the presentation of a formalism (i.e., well-
known Fourier expansion in the 6 variation together with subsequent perturbation expansion
of the Fourier components) that permits the analytic investigation ol these propagating fields.
Four distinet cases were examined for the lowest order Fourier components in the four extremes:
laree and small magnetic field; large and small plasma densities. These in turn were examined
to terms of first order in the parameter of smallness. The results are given in quadrature
form. Well-known facts, such as infinite magnetie field being equivalent to vanishing plasma
density, are recaptured in the lowest order expressions. The analysis differs from previous
similar studies of guided electromagnetic waves through cylindrical plasmas with embedded
B. fields insofar as the electric field components in the present work are severely coupled while
in the B. case they are not.

It remains to fit these solutions to specific geometries. The most physically relevant of
these is the class of annular geometries with the steady B, field zero in the region about the
origin, and of spoke-wheel type exterior to this circular region. The plasma density is either
zero or nonzero (finite) in the various annular regions.

The author wishes to express his deep appreciation to Bernard Wieder for his invaluable
assistance rendered in the preparation of this paper.

Much of the included analysis was completed under Clontract AF-04(695)169 for Aerospace
Corporation during the author’s stay there in the summer of 1962.

4. References

Allis, W. P. (1959), Electromagnetic waves in a plasma in a magnetic field and their relations to plasma,
Conference on Plasma Oscillations, Union Carbide Corp., McCormick Creek State Park, Ind., June 8-10.
The Proceedings on Plasma Oscillations (Linde Co., New York, N.Y.).

Auer, P. L., H. Hurwitz, Jr., and R. D. Miller (Nov.-Dee. 1958), Collective oscillations in a cold plasma,
Phys. Fluids 1, No. 6, 501-514.

Astrom, Ernst (1950), On waves in an ionized gas, Arkiv Fysik 2, 443-456.

Buchsbaum, S. J., Lyman Mower, and Sanborn C. Brown (Sept.—Oct. 1960), Interaction between cold plasmas
and guided eclectromagnetic waves, Phys. Fluids 3, No. 5, 806-819.

Gold, R. R. (1963), Reflection and transmission of electromagnetic waves from inhomogeneous magnetoactive
plasma slabs, Aerospace Corporation, Report No. TDR-169(3230-11)TN-12.

Mason, R., and R. R. Gold (1962), Electromagnetic wave propagation through magnetoactive plasmas,
Aerospace Corporation Report No. TDR-69(2119) TR-3.

(Paper 6813-349)

331



	jresv68Dn3p_325
	jresv68Dn3p_326
	jresv68Dn3p_327
	jresv68Dn3p_328
	jresv68Dn3p_329
	jresv68Dn3p_330
	jresv68Dn3p_331
	jresv68Dn3p_332

