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A variational expression for the admittance of a hollow cylindrical antenna fed at the

center has been obtained.

Contrary to normal practice, the integral equation and the re-

sulting variational expression have as the unknown function, the tangential electric field in

the tubular region extending from the antenna ends to 4.
and the relevant integrals are evaluated asymptotically for long, thin antennas.

A plausible trial field is chosen
Some

numerical results are given which show reasonable agreement with the experimental values
of Tizuka et al. [1963], and also with the theoretical results of Wu [1961].

1. Introduction

Recently there has been considerable interest
shown in the admittance of long cylindrical antennas.
Vainshtein [1959], by assuming that the current
consisted of incoming and outgoing waves with ampli-
tudes which were slowly varyving functions of posi-
tion, reduced the problem to the solution of Volterra
inteeral equations which could be solved exactly.
Another approach was used by Wu [1961] who
approximated a long antenna by a semiinfinite one.
The latter problem was then solved by Wiener-Hopf
techniques. Extensive tables of numerical values
were presented by Wu. Quite a different method
was used by Chen and Keller [1962], who assumed
the current to be composed of a wave emanating
from the feedpoint plus waves reflected from the
ends. The current reflection coefficient at the end
of a tube was known from previous work. With a
knowledge of this quantity the authors were able to
obtain the admittance without formally solving an
integral equation. KEssentially the same method
was used earlier by Hallén [1956, 1962]. Studies on
the infinite antenna were carried out by Hallén
[1948], Papas [1948], Duncan [1962], and Kunz [1963].
Measurements on long antennas have been made by
Tizuka et al. [1963], whose results agree quite well
with the theoretical values of Wu [1961]. Vari-
ational nethods were applied to the antenna prob-
lem by Storer [1950] and by Tai [1950], who obtained
variational expressions for the impedance in terms
of the unknown current distribution on the antenna.
Such a formulation is expected to be most accurate
for short antennas. To obtain an integral equation,
and from it a variational expression whose approxi-
mate solution is most accurate for long antennas,
one should use the tangential electric field in the

“aperture” as the unknown function.! Here the
aperture 1s understood to be the tubular extension
reaching to 4+ o from each end of the antenna. To
the writer’s knowledge an integral equation contain-
ing the electric field as unknown has never been
used, and this approach forms the substance of this
paper.

2. Integral Equation and Variational
Expression

The antenna is assumed to be a thin-walled,
perfectly conducting tube occupying the region
p=a, —h<z<h, of the (p, ¢, 2) cylindrical coor-
dinate system. At z=0 the antenna is driven by a
voltage V' applied across an infinitesimal circum-
ferential gap. The only electric field component in
the gap is given by

E.=—Vs(z)e!«". (1)

The space surrounding the antenna is divided into
two regions, denoted “1” for p<a and “2” for p >a.
Field components in these regions will henceforth
be distinguished by appropriate supersecripts.

It is assumed that all field components are deriva-
ble from the z-components of electric hertz vectors.
In either region, after dropping the time-dependence
[actor,

o — f " A0 Z(Br)eiida,

1 This seems a reasonable extension of a statement of Levine [1955] p. 38, who
was concerned with diffraction by a circular aperture. I am indebted to R. F.
Millar for supplying this reference, and for a helpful discussion of this point.
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where g?=Fk’—a?, the 4,(«) are amplitude functions,
and the Z; are Bessel functions appropriate to the
region. The contour of integration is assumed to be
indented downward around the branch point a=—#,
and upward at a=Fk. From (2), the tangential elec-
tric and magnetic field components are easily
obtained:

EO— f 824,(a) Z,(Bp) e da, 3)

HO = —iwe, f " BA(@)Zi(Bo)e ' da,  (4)

the dash on the Bessel function indicating derivative
with respect to the argument. At p==a, £, must be
continuous for all z, thus

Ay(a) Zi(Ba) =As(e) Z(Ba). (5)

Also £,=0 for p=a, —h<z<h, with the exception
of z=0; so that, upon taking the inverse Fourier
transform of (3) and using (1),

21r,82/1i(a)74i(6a):f BV,

12|
In the region =>4, p=a, H, must be continuous,
hence from (4)

f_m Betes [ A, Z)(Ba)— Ao Zy(Ba)] da=0,  |2|>h. (7)

For |z|<h, p=a the total current 7, on the antenna
is given by [,=—2ra[H®—H], which from (4) is
I(z) =2miwew f Be'*[Ai(a) Zi(Ba) — Az(e) Zz(Ba) Jde,

o<k (®)

Use is made now of (5) and (6) to remove A;(«) and
As(a) from (7) and (8) with the result

f T e
o B*Jo(Ba) H§” (Ba)
3
{f €‘f'az’Ez(z’)a’z’—V):0, 2>k (9)
Jizi>h
_—rli(z)
o 20)60 ’
|z|<kh;  (10)

where Z; has been replaced by J; and Z, by H?,
and the Wronskian relation J ' —HPJy=
—2i/(wBa) has been used. Interchanging the order
of integration and writing K(z) for FE,(z) yields
the integral equation for £(z)

ﬁ'|>h E(")K(z—z")dz' =V K(z2), |z|>h, (11)

and the relation

f E(z)K(s—2")d2' =VE(z) =29, |2 <h;
Jiz>n 2we
(12)
where _
K(2)- i - (13)

J o B%Jo(Ba) H? (Ba)
To obtain a variational expression, (11) is first

multiplied by £(z) and integrated with respect to z
over |z| >h, to give

f f E(2)E(")K(z—2")dzdz"
JJ 2, 127 |1>h

=\ E(z2)K(z)dz.

J 12>k

(14)

If z 1s allowed to approach zero in (12) one obtains,
since K(—z2)=K(z),

fl ., EQEEE=VKO) —”’;?. (15)

2we

Equation (14) now is divided by [/ E(z)K(z)dz]?
and (15) used to introduce 7,(0), giving

[. . E(z)K(s)dzT

ff E()E(z")K(z—2")dzdz’
JJ 2l |2/ |>h
(16)

This is a variational expression for the quantity
on the left. The proof of this is omitted, but
follows the standard procedure. An interpretation
of the quantity K(0) is now required. This is
readily obtained from (12). If 4~ the integral on
the left tends to zero, so that

T1(0) _ rri0)——
2we)V =

Kz)=rI7(2)2weV, 17)

where 77 is the total current on an infinite antenna.
If z approaches zero, then

K(0)=nY7/2we, (18)

with Yy the total admittance at the feed point of an
infinite antenna. Then (16) becomes

2uey [SE()K(2)dz) '
r SSTEQRE@E)K(—2)dedz’

Y —Yr=— (19)

This is the variational expression in its final form.
It relates the admittance of a finite but long antenna
to that of the infinite one. The latter has been the
subject of considerable research, to which Papas
[1948], Hallén [1948], Duncan [1962], and Kunz [1963]
have all contributed.
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A remark about (19) is in order. Although the ad-
mittances given are total ones; thatis, they include the
effects of currents inside the tube, the expression (19)
is approximately true also for the external admit-
tances (called Y and Y*), when the tube diameter is
reasonably small. This follows because the interior
currents are excited by evanescent waveguide modes
which are rapidly attenuated by distance, and which
consequently are hardly affected by the antenna
ends. Thus the interior currents are almost equal for
infinite and long antennas and hence cancel in (19).

3. Evaluation of the Variational Expression

The problem now arises of choosing a suitable field
distribution (z) to use in (19). There are two ob-
vious requirements which this function should satisfy:

it must behave like e‘l” I/|z]> for large |z|, and it
should vary as [|z|—h]7"% near |z|=h. Both can be
achieved by taking

BE)=|e|~ (k) exp (—ik|2 (20)

A constant multiplier micht have been included in
(20), but was omitted because the variational expres-
sion is independent of this term.

When (20) is inserted in (19), integrals of the fol-
lowing kinds arise:

exp | —M |+l2/ DK (z—2)dzd2"
= I‘f\kbh —h2 )1/’(~ /z)l/w--u (21>

\ /~
]2:[ exp (—1 el (2)c
Jiz>h (““—/ ) 2|

The approximate evaluation of these integrals is car-
ried out in the appendix, under the assumptions that
the radius is small in terms of wavelength and that
the length of the antenna is great. The results are:

(22)

. .
[1¥—-mzexp( 4z,k/L)+k2/L;‘L0exp\ 2ikh), (23)

Lo~(m/lh3) LY exp (—2ikh—ir/4), (24)

where

Ly=In (}iTka)

Li=In (—2ih/Tka?)

Ly=In (—4ih/Tka?),
and I'=1.781. . . . If the results (23) and (24) are used
in (19), the following expression for the admittance

Y—Y* is obtained

- 47I'YOL2

Y =Y = o BT /e L) exp i)

(25)

where Y= (1207)! mhos is the admittance of free
space.

Expression (25) closely resembles, in form, Hallén’
result [1962, p. 485].  Apart from a difference in the
argument in one of the logarithms, which is of the
same magnitude as higher order terms omitted in the
expansion of Y—7Y“ the only difference is the re-
placement of a factor 2/7 in the denominator of (25)
by a factor 3 in Hallén’s work. This difference has
quite a lalg)(, effect near resonance.

4. Discussion of Results

To compare (25) with the results of other workers,
an expression for Y* is needed. A difficulty is that
Y turns out to be infinite, as noted by Infeld [1947]
and others. This point has been discussed by Dun-
can [1962], who proposes a “smoothed” form of the
admittance for an infinite antenna. In the present
paper values interpolated from Duncan’s table 3 are
used. Two different radii are employed: a/x=0.0085
and a/A=0.001191. The values of Y* from Dun-
can’s paper corresponding to these were found to be
0.0030040.00187%2 and 0.00200 +0.000847 mhos, re-
spectively.

The results of the calculation based on (25) and
carried out for three different ranges of antenna
lengths are shown in figures 1, 2, and 3. Some ex-
perimental data for long antennas have been eiven
by lizuka et al. [1963], but owing to the smallness of
their graphs, it 1s not easy to compare their results
directly with calculations based on (25). However,
their curves follow closely Wu’s [1961] theoretical

values, which are (ll)lll.ll(‘(l, and which have been
111(,111(10(1 in figures 1, 2, and 3. It will be obsmvcd
that the present results for the range 51.0 <kh <52.6
(fig. 3) are displaced to the right of Wu's, whlch n
turn are on the right of the (\\p('lnnenld curves of
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Admittance of a cylindrical antenna, a/N=0.001191.
1.0<kh £2.0.

Dots indicate Wu'’s theoretical values,

Ficure 1.

313



003

.002!

001

-.001

-.002

006}

.005

004

.002|-

001

260 264 268 272 276

Admattance of a cylindrical antenna, a/\=0.001191,
26.0 <kh <27.6.
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Ficure 3. Admittance of a cylindrical antenna, a/\=0.0085,
51.0<kh <52.6.

Dots indicate Wu's theoretical values.

Tizuka et al. [1963]. In addition, the present Gy,
exceeds lizuka’s by about 20 percent. Figure 2, for
26.0<kh<27.6, reveals closer agreement between
Wu's and the present results. Somewhat surpris-
ingly the agreement over the range 1.0 <kh<2.0
(fig. 1) is not materially worse than for the longer
range. It is not possible to compare the last two
curves with experiment at the present time.

5. Conclusion

In conclusion, a simple variational solution for the
admittance of a cylindrical antenna has been ob-
tained, involving the longitudinal electric field in the
extension of the antenna as unknown. This formula-
tion is most accurate for long antennas, in contrast
with the wvariational method in terms of current,
which is more suitable for short antennas. For long
antennas it is easier to choose a plausible electric
field than a current, since the latter involves waves in
two directions with an unknown reflection coefficient.
Using a reasonable trial field, the first term of an
asymptotic series for the admittance is obtained.
This gives fairly good agreement with experiment
and with Wu’s theory [1961]. More accuracy will
be obtained if extra terms in the asymptotic develop-
ment are included, provided the antenna is suffi-
ciently long.

The author thanks Mrs. M. Steen for carefully
doing the calculations, and K. V. Jull for reading and
criticising the manuseript.

6. Appendix. Evaluation of the Integrals

The integral 7, of (21) is first considered. By

halving the ranges of mtegration and taking account
of the evenness of K(z), /, can be written in the form

da

= m“—“‘—‘—*—‘—
L f BT (6a) H (Ba)

{ va (6iaz+e—iuz)€—ikz(]2 } 2
Jn 2(22—h?)*

The term in braces can be expressed in terms of
Hankel functions through the relation

(26)

e~ "dz

5 2 (°
HY o= | e

giving approximately, for large 4

’77'2 “ ([a 2)
I=g0 |, FrEtrae (HElethH

2

FH[(k—a)h]} - (27)

For reasonably large h, H[(a-+k)k] can be replaced
by its asymptotic value. [t is desirable to approxi-
mate the other Hankel function the same way, but
it is not immediately clear that this can be done,
since its argument is small near a=Fk. However,
the contour can be deformed into the first quadrant
away from a=F without crossing any singularities,?
hence on the new contour the approximation is
valid if A& is sufficiently large. The final step con-
sists of deforming back to the original contour with

2 The poles of the integrand are the zeros of Jy(8a) which all lie on the contour
Im (8)=0. By virtue of the time dependence chosen these lie in the 2d and 4th
quadrants.
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the result
2iah

e’ 2

—+ ,—a+6

—2iah

I/(Y

, —2ikh o R
( Jn 6!](»({3(’)[[[” (Ba)
= (—mi/h*) e "Iy 411 +1 1]

—l

L= i

e
(28)

Integrals of the type 7, take their values mainly
from the neighbourhood of a=Fk; so that

¢ 2l o

In~1 | & arse)

(29)

where the Bessel functions have been replaced by
their small argument approximations. The integral
m (29) has for its leading term

2 ,—2ikh

™ €
]13

Ill:gk&

(30)

[Hallén 1948].

The integral 7,;, though of similar appearance,
takes quite a different form. Since ¢”*"—=0 for
Im (a)—>o, the contour can be moved one along the
positive imagmary axis:

’(}1(/( o
)7

[ [alk* "]
<.sl>

Watson’s lemma (see Jeffreys and Jeffreys [1962],
p. 501) can now be applied, with the result 7,=
0(1/h), so that [, to the first approximation, is
negligible compared with 7;;,. Strictly speaking, the
poles which lie near, and in the absence of loss on,
the path of integration should be accounted for,
but if @ 1s small, they occur for large values of ¢ and
thus contribute very little to /.

There remains /5. The contour of integration is
first changed to the positive imaginary axis, with the
result

f (k—i¢) (k*+ )JUI(I(A

/“:‘zifm S ag
o (B+)ETa(lP+ )4 HE [a(h>+ )%
(32)

The range of integration is now split at ¢ =b, so that
in (0,b) the small argcument approximation to the
Bessel function applies. The remaining integral on

(b, =), being of order 1/b* and hence 0(a?), is ne-
olected. Then

g d¢ .

le=m | ereys i miratetoyd O

In (33) the logarithmic term is a slowly varying
function, and without large error ¢ in it can be re-
placed by a constant lying in the range (0,5). The
value chosen is not very important since any error
is of the order of the terms omitted in the expansion.
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It 1s reasonable to take =0, however, since the term
(k*+¢*) is smallest there. The integration remaining
is elementary, giving

1y~ —ab[k> Ly (k>4 b2)1/2.

Recalling that b is large, approximately

[13:—7r/k2L0. (34)

When the terms are gathered together, the final
result is

—4ikh —2ikh

9.
e

kL,

—me
T Xy

(35)

The inteeral 7, given in (22) is now evaluated.
Following the course outlined for 7, the integral 7,
becomes

_im f
B Jn(ﬂ”

da

Ba)HP (Ba) *

I, (HP[(k+c)h]

+HP[(k—a)h])

(36)
which, as before, can be further simplified to

2 7r> ( —kh
e

) f 5Ju<,d”)ll ,)(‘3(’)

{(A ~a)

The terms in (37) are similar to /;;, and /,, in (28), and
may be handled in like manner, with the result

—iah

/\ +a)’

(37)

(e /lEh Sl 2ikh—ix/4). (38)

exp (—
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