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Many e lectromagnetic problems involving more t han one dielectric medium arc not 
susceptible of an exact solution, whe n the appropriate boundary condi t ions are considered. 
The purpose of the present paper is to formulate a ne lY boundary condition, whicll is capa­
ble of leading to mat llCmatically tractable problems, with limited sacrifices in a ccuracy. 

1. Introduction 

The Lheoreticnl trcatmcnLs of Jl1ixcd-paLh propa­
gation lvVait, 1962,1,] problems uSU1Llly depend upon 
the introduction of a Leontoyich, or impedance Lype 
boundary condiLio n which spccifLes Lhe ratio of 

..... ..... 
tangential E and H Lo chamcterize ground conduc­
tiv ity. Otherwise, if one atLelllpts to IlhLLch tangcn-

..... ..... 
tial E n,nd H across an in Led,Lce, n,s requi red by the 
rigorous theory, Lhen inLmctable boundary value 
problems usually arisc. As a resul t, the usc of lin ear 
boundary conditions Lo model Lil e physics aL ,Lll inLer­
fn,ce is virtually required, if llulllericnJ resulLs arc 
desired. However, Lite Leontol'ich bounchLry condi­
tion is known to represent Lhe phenomena well only 
if the ground conducLiyity is high, in which case the 
surface impedance is reasonably independent of t he 
angle of incidence. ThiLt is, if the ground has low 
losses, or is a fn.irly good dielectric, Lhen thcre is 
significant penetrn,tion inLo Lhis medium , and higher 
order boundary conditions are required if the physics 
at the interface is to be modeled accurately . It is the 
purpose of this note to introduce a more accu­
mLe I'ersion of Lhe Leon tovich boundary condition 
for use in propagation problems ilwohing dielecLric 
in terfaces. 

2. Construction of the Boundary Condition 

In our search for a boundary condition that repro­
duces the phenomenology of transition conditions at 
dielectric interfaces we have been motivated by the 
form of solutions to some radiation problems. The 
standard two-media problem of a radiating line source 
abo \'e a dielectric interface yields a secondary 1-ield or 
diffraction contribution, represented by an integral 
of the form 

1 U ni versity Of Rhode I sla nd , Kin oston, n .I. 
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in addition to the free space Green's function. In 
the inLegral H(</» is the appropriate Fresnel re­
flection coeffLCient for the dielectric in terface, and 
t he contour C is the familiar path defining the Hankel 
function. The dif:J'racted field has the interpretation 
of a swnmation of plane waves, traveling in all 
directions, real and imaginary, which have as a 
weight factor the Fresn el refleclion coefficient extended 
to the complex </>-plane. This suggests that the 
scattered fLeld in the dielectric half space contain­
ing the source is characterized by the interface's 
reflection propcrtics. 

FIGURE J. The Tejlected fi elds f or both the two-media problem 
and its TefoT1nu lated cou n terpart have the sam e funct'ional 
f orm and differ only in the value oJ the Tejlecti on coe.Uicient R. 

'1Vhen medium k2 is almost conducting it is known 
that an impedance type bouncl'1.ry condiLion of the 
form [Grunberg, 1943; Leontoyjch, 1944] 

au 
~+AU=O , 
uy 

(1) 

represents the phenomena fairly well. Therefore, 
for a more im'oh-ed situation we seek to construct a 
higher order boundary condit ion with addi.tional co­
efficicnts so as to match Lhe Fresnel reflectIOn COCffL­
cient. vVe stn,r t by noting that Lhe boundary condition 

] au B a2u 
7] ~+A'U+ 7 2 ~ u= O, 
UCI u y le 1 u X 

y= O, (2) 
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imposed upon the wave equation 
w 

V'2u+k~u=0, y?:. 0, k! = c' (3) 

implies plane wave solutions of the form (fig. 1) 

where 

Uref= eik1 (x cos 8+V sin 8) , 

provided that the reflec tion coefficient RA(8) is chosen 
as 

cos 8- (A - B sin2 8) 
cos 8+(A - B sin2 8) 

(4) 

An approximation procedure is evident: :find A 
and B such that RA (8) is a suitable approximation 
to the Fresnel reflection coefficient appropriate for 
the polarization of the excitation field. We em­
phasize that the reflection coefficient in (4) is an 
approximating version of the Fresnel reflection 
coefficient by using the subscript A. For transverse 
electric excitation u(x, y) represents E z, Ex = Ey= O; 
and the correct Fresnel coefficient is [Stratton, 
1941], 
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The geometry is that of figure 1, and n = k2/kl' is the 
index of refraction where k2 is the propagation 
constant in the lower half space. For transverse 
magnetic excitation u(x, y) = H z, H x= H y= O; the 
reflection coefficient is 

8 1 [ 1. 2 Jt cos -- 1- - sm 8 
n n2 

(ti ) 

For convenience only, we have assumed the magnetic 
permeabilities J..!! and J..!2 of the two media to be 
identical. A comparison of RTE(8) and RTM(8) with 
(4) shows that we can approximate them for all 
real angles of incidence by picking A and B properly. 
To make this selection, we choose 

(7) 
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GRAPH No. 1. 

The absolute percentage errors and the absolute errors that arise between the Fresnel reflection coeffICients (5) and (6), 
and their approximations (4). 

The curves are plotted as a function for 8 for the index of refraction n= 1.6. In this case RW .) has been chosen to make the match cxact for 
Oe=Oo, or normal incidence. 
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so that the approximation (4) will agree exactly 
with either (5) or (6) for normal incidence (0 = 0). 
For glancing incidence (0=± 7T) 2), the expression 
(4) will agree with (5) or (6) regardless of the choice 
of A or B since the forms of (4), (5), and (6) are 
such that all are equal to - 1 for 0= ± 7r/2. 

Having motivated a choice of the constant A, we 
shall de\Tote th e next few subsections to selection of 
the remaining constant B, which can be chosen in 
many useful ways. 

2 .1. General Angular Matching 

The constant B in (4) above may be used to make 
R A (0) exact for some additional angle Oe, where 
0 ':S:. Oe':S:. 7r/2 . For any choice of 0., the BTlvl,TE(Oe)'S 
are determined by matching 

B '. 1'M .? . [ 1. JI1 l-A~. . Slll" Oe wlth 1-2 sm2 Oe 
TJ';.TM n 

where n = k2/1c1 is the index of refraction ; inverting 
for BT E . TM we find 

A rE. TH { 1- [ 1- ~2 si n2 0]1} 
BTIT• TM (Oe) = . 20 . (8) . ' sin e 

Obse1'l"e that choosing Oe is equi vn.lent to specifying 
B·m .TM . 
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2.2. Normal Matching 

If n> 1, we can expand the radical in (8) by the 
binomial theorem, and use the A's defined by (7) 
to obtain 

(9) 

These leading terms of Bm and BTM are independent 
of Oe the fitting angle; for analytical purposes it may 
be convenient to choose the B's as 

(10) 

This selection of B will be referred to as normal 
matching since it corresponds to improving the agree­
ment of the reflection coefficients in the neighbor­
hood of 0= 0, or normal incidence. The accuracy 
of this method is illustrated in gmph la, where we 
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GRAPH No.2. 

The absolute percentage errors and the absolute errOl'S that arise between the FI'esnel reflection coefficients (5), (6) 
and their approximations (4) ploUed as a f llnction of () for the index of refmction n = 1.6. 

In this case_H(O,) has been chosen to make the match exact for Brewster's angle 0,=0, =arc tan n, or for this case 58°. 
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plot the absolute percentage error 1 PE (O) 

PE (0) = IRA (O) - R TE. 'I'M (0) I X 100 (11) 
R TE.TM(O) 

betw een the reflection coefficients (5) and (6) and 
their approximations (4) with normal match coeffi­
cients for n = 1.6. In the neighborhood of the 
Brewster's angle OB = arc tan n , for which RTM (OB) = 0, 
the percentage error, but not the absolute error, for the 
TM approximation is necessarily unbounded. In 
graph 1 b , we inspect the abs?lute error AE(O) as a 
function of 0 for the same fittmg 

AE(O) = IR A(O)-RTE.TM (O) I (12) 

and see that the absolute errors for both the TE and 
TJ\1 approximations have about the same yallles. 

2 .3. Brewster's Angle Matching 

The unbounded percentage errors for the TM 
case in the vicinity of Brewster's angle can be 
eliminated by choosing Bn1 (Oe) to yield a perfect 
match at Brewster's angle Oe= OB, and (8) becomes 

(13) 

Graphs 2a and 2b illustrate tbe percentage and 
absolute errors for this choice of B (OB) for n = 1.6. 
Notice the appreciable reduction in error as compared 
to the situation described by graph 1. 

2.4. Chebyshev Matchings 

Another choice for B is possible, at least for the 
TE approximation; tbis selection (fig. 2a) is a value 
of B TE so chosen as to minimize the maximum absolute 
percentage error for the TE reflection coefficien t. 
The magnitude of the error changes sign wben the 
match is exact , i. e., at O= Oe' Suppose we vary 
Oe until we obtain a value Oe= OT such that the maxi­
mum negative percentftge error was tbe samo mag­
nitude as the maximum positi ITe error. This balance 
will minimize the maximum absolute percen tage error 
over the interval -7r/2 ~ 0 ~ 7r/2, by the Chebyshev 
criterion. The mathematical analysis to find the 
optimum Chebyshev matching would be interesting. 
Here we haye don e it by a trial and error process; 

1 W"c inspect errors rather than compare actual an d appro ximate curves since 
t he two graphs would appear to coincide if superimposed. 

G G) 
a: a: 

0 +e ma • 0 a: a: a: a: 
w w 

w ,,/, w "/, co co 
« « 
f- f- e z z w w u u a: a: w w 0- 0-
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FIGU RE 2. (a) A Chebeyshev fitting is obtained when the fitting 
angle ee is so chosen that the maximum positive error, + Ema " 

eqnals the maximum negative error, - Em". (b) A two-point 
Chebeyshev fitting can be obtained by sacrificing the demand 
for a pelject match at 0= O. 

In case (b) th e nlaximum error emu would be less than the E mu of part (a) . 

the values of OT required to afford this match for 
the TE case are plotted in graph 3. The maximum 
associated errors for any real 0 in the approximate 
reflection coefficient (4) are plotted in graph 4 as a 
funcLion of n . It is not possible to repeat this 
procedure for the TM case due to the unbounded 
nature of the percentage error in the yicinity of 
Brewster's angle. Howe\~er, a Chebyshev matching 
is feas ible for both the TE and TM cases by minimiz­
ing the absnlute error, but this was not analyzed . 

Better Chebyshev fittin gs (fig. 2b) might arise by 
relaxing the demand of a perfect fit at 0= 0; this per­
mits choosing both ATE and BTE to improve the 
match. This procedure would yield a perfect fit 
for six yalues of 0 oyer the interval - 7r/2 ~O ~ + 7['/2. 
This particular matching was not carried out 
because of the labor involved in doing it empirically, 
and the excellent fit of the initial approximations. 

2.5. Improved Angular Matchings 

For other problems a useful procedure is to im­
proYe the approximation in the neighborhood of 
a specified angle of incidence. An example of a 
situation that would motivate this procedure is 
a transmitter T and distant r eceiver R both located 
near the earth's surface. The geometry is such 
that much of the energy collected by the receiver is 
associated with Lhe arri \"al of rays in the neighbor­
hood of grazing incidence. For this problem one 
might choose a value of B to match the derivatives 2 

of the exact and the approximate reflection s coeffi­
cien t at grazin g incidence; a simple calculation 
yields the result 

2 The values of these rcncction coemcients t henl Se h"es a!l'cady agTec for O==~ , 
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Ti le corresponding values of 11(0,.) arr gil·en by (8) . 

2.6 . General Recommendations 

unless we wish to emphasize ,tCC llrIlCY for a 
specifled directio n, iL is r(,<1 so11<1ble Lo use the bound­
ary co ndition (4) with Brewster 's a ngle coeffrcients 
for problems of tntns \' el"se m ag-neLic excitlt Lioll. For 
fl, p roblem of t rans\'erse electric exci lrtLion we would 
usc thentlu es of OT in curve (:1) in formula (8) Lo 
yield a Chebyshey fit . The ma,ximum percentage 
errors that arise for real angles of in cidence for these 
t wo approximations are plotted for r eference in 
graph 4 as a function of n, t he index of refraction. 

3 . Generalizations 

J 11 addition to the abo\"e-m en tioned m ethod s, oth er 
refUlClllen ts are possible. For example, any desired 
degree of accuracy can be obtained by adding fiddi­
tional terms t o the boundary condition : lUl inclusion 
of additional Lerms proportional to 

1n th e boundary condi tion (2) would h :we generated 
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Th e lIIaxillllwl absolute percentage errors that can arise in the 
approximate re./leetion coeJlicientJor any real angle of incidence 
when the recomm ended lIIatchings ( TE-Chebyshev, T iVI­
Brewster's angle) are chosen . 

R (O) = cos B-- (/I + B sin 2 0+ 0 S111 '1 O+ D S11[6 0+ .. . ) 
A COS O+ (A+ B sin 2 0+ Osi11 4 O+ D sin6 0+ ... ) 

as Lhe approxi llMte reflection coemcient. The coeffi­
cients of these high er order Lerm s would Lhen be 
available to match either as many Lel'll1s ill a series 
expansion of t.he radical 

as needed for extreme accur,LCY, or for use 111 more 
r efi ned Ch ebyshey approximations. 

From the preceding analysis, it is clear lha t the 
modeling of an interface by a linen,r bound'l.ry condi­
tion n eed not be r estricted to dielectrics. The pro­
cedure can be used whene,"er the r efl ection coefficient 
from some arbitrary medium is gi \Ten. For example, 
the r eflection coefficient from an exponentially strati­
fied m edium is known [Wait, 1962b], and the present 
procedure can be repeated for t hat case. Such an 
analysis would be very interesting, a nd might b e 
used , for example, to discuss ionospheric propagation 
from a day to a night region . 
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FIGURE 3. The geometry of a test problem which serves to compare 
the use of the new b01mdaTY condition (2) with the use of the --. --. 
continuity of tangential E and H at a dielectric interface in 
a pToblem involving a horizontal discontinuity. 

4. Utility of the Boundary Condition in a 
Problem Involving a Horizontal Discontinuity 

We have lent plausibility to a procedure which 
characterizes transition conditions at a dielec tric 
interface by a linear boundary condition. This 
procedure is valid if the interface separates two half 
spaces, but what is its utility in a more complex 
geometry, say one for which there is a discontinuity 
in the horizontal direction? To answer this question, 
we have inves tigated a rigorously solvable test 
problem of the Wiener-Hopf type (d, fig. 3). A plane 
wave is launched along a semi-infinite metallic screen 
located at the interface of two dielectrics. The 
termination of the screen produces a diffrac ted field 
that depends upon the physical parameters in a very 
complex fashion . It will be very significant if the 
new boundary condition implies results comparable 
to that obtained by a rigorous matching of tangential 
--. --. 
E and H. 

We obtain a reformulated version by removing the 
lower medium kz and replacing it by the new bound­
ary condition (2) at y = O, x> O. The coefficients in 
this boundary condi tion are chosen to chamcterize 
the former transition conditions at the kl- kz inter­
face. We have indicated that there exists some 
flexibility in the choice of the parameters A and B; 
consequently, we shall leave them unspecified to see 
how various choices affect the diffracted field . 

Let us specialize the discussion for the TM-case 
for which H x= H y= O, since this polarization allows a 
plane wave to propagate along a perfect conductor at 
grazing incidence. The importance of this fact is 
that if the plane wave travels in the positive x-direc­
tion, we can compare the diffracted fields for X--7+ 00, 

y = O in both problems without the necessity of 
performing the explicit Wiener-Hopf decomposition. 
It would be of value to compare the fields in other 
directions, but that would involve a lengthy numeri­
cal program. 

Let u(x, y) = H z, then a standard approach [Kane 
and Karp , 1960], using dual integral equations, and 
Van der Waerden's saddle point analysis leads to the 
following asymptotic developments for X--7+ 00. For 
the exact problem, using matching conditions at the 
interface, we find for the far-field 

( k )2 ( 2k ) 1/2 ei(k,x-,, / 4) 
limu (x, O)= - k2 l Z_lk2 ()1/2 +O(X- 3/ 2) 

x--.+ 00 1 ICZ 1 7r X 

(15) 

and likewise a corresponding result for the reformu­
lated counterpart UA (x, y) using the linear boundary 
condition (2) along the positive x-axis 

In both the rigorous (15) and the reformulated 
(16) asymptotic developments, the leading term in 
the diffracted field has canceled the incident plane 
wave. This is of course a consequence of the fact 
that the reflection coefficient for grazing incidence 
is - 1 for either problem. It is more important to 
notice that for both problems, if x» 1, the junc­
tional jorm of the leading terms (15) and (16) agree, 
and differ only by a numerical factor 

k~ 1 +--,- 1 
lei (k~ - lei) Yz "'-' k 1---'(;-A-:-T-M- - - B=-T-M"7) 

or, if we choose A TM = l /n, 

The percentage error PE b etween these two coeffi­
cients is 

(17) 

and, by (9), BTM is of the order ° (1/n3) for fitting at 
any ~'eal angle, so that this Cl'ror decreases with in­
creasmg n . 

In line with the remarks in section 2.5, we observe 
that if in the far-field , the preferred direction had 
been chosen as grazing incidence, we would have 
used (14) to select a B TM to match the derivative of 
the reflection coefficient at grazing incidence, i .e., 

11 ( 1 ) YzI BTM=n 1- l -rI}- . (18) 

For this choice there would have been no errol' at all 
in (15) as compared with (16) jar any n. 

We emphasize that the functional form of the lead­
ing terms in the diffracted field are the same for 
y = O, x> > 1, but with differing coefficients for var-
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ious choices of B TM . For any selection of this pammeter 
we can compute the percentn,ge error (17) between 
the leading coefficienLs of (15) a,nd (16) . In graph 
5, we p lot three curves: (A) r epresents the "normal 
impedance" or Leontovich type approximation 

'k1 ~u +ATMU= O, obtained by setting BTM = O; (B) 
~ 1 uy 
shows the error obtain ed by using the normal match 
values for Bn..1 given by (9). The smallness of the 
elTor in this case is significant because we are looking 
at the diffracted field in a direction perpendicular to 
that for which the coefficient HrM was selected . 
The curve (0) illustrates the error if Bnr is chosen 
as indicated by (13) which is a matching at Brewster 's 
angle. We obtain the expected improvement over 
case (B) since Brewster's angle is closer to grazing 
incidence than normal incidence. Notice that the 
big improvement is from (A) to (B) , a correction 
which arises from the additional term in the boundary 
condition. 

5 . Concluding Remarks 

5. 1. Recip rocity 

A feature of the new boundary condition (2) is 
that it involyes a seco nd deri n l.tive. T11is somewhat 
surprising detail has been in serted Lo guara,ntee 
reciprocity. A first deri\'tl.tive could lHwe bee n 
used, but it would not lead to reciprocal phenomena. 
This point can be most ellsily es tablished by an 
inspection of Lhe associated reDecLion coefricient . 
1£ the boundm'y co ndi t ion had been 'HiLte n with I\' 

single x-derivll.li \'e 

iLs reflection coefficient would have been 

R (8) = cOS 8-(A - B sin 8) 
A cos 8+(A - B sin 8) 

which is not the same for a wave reflected from the 
left as compared to one reflected from the right since 
sin 8 changes sign with 8. 

5 .2 . Existence and Uniqueness 

That solutions of problems involving the new 
boundary condition do exist can readily be shown by 
construction [Kane and Karp, 1960; Jones, 1962]. 
Tn addition these references illustrate the use of the 
boundary condition, and also its ability to r eproduce 
co mplex diffraction phenomena. In addition , the 
uniqueness has also been established [Kane, 1961] . 

5 .3 . Limita tions 

The approximation procedure is l imi ted by the 
restriction k2> lc l , or n> 1. For, if lc2<lc1 , there 
arises a real angle of incidence corresponding to total 
reflection at which the second radical in (5) and (6) 
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GUAPII No. 5. 

A comparison oj the errors thatariseforx» ],~'= O in thetotat 
field 7'ncluding diffraction e.ffects oj the tes t problem in volving 
a horizontal discontinuit!J. 

becomes imaginary. Since (4) im'oll'es conslant 
coefficienLs, Lho boundary condiLion is una ble to 
imitate fL LransiLio n from :1 r ealrenection coefficient 
to a complex one for real angles of incidellce. This 
is clear by inspcction of th e ronecLion coefficiel1t (4); 
so long ,1S both A and B are real , the reflection 
coefficient remains real for any roal angle 8. 

Obsen Te, from graph 5, that Lhe approximation 
deteriorates for n~ 1. Physically n ~ 1 corresponds 
to an interface with a vanishing r eflection coefficient, 
which is difficult to approximate on a percentage 
basis.4 However, the absolute errors remain small 
and bounded. As a consequence the boundar~r 
condition (4) specialized for n = 1 may be useful 
as a model of a perfec t absorber since the reflection 
coefficient it defines is so small. A curve of this 
special R.4(8) is drawn in graph 6. W e see that 
R (8) ~ 0 until 181 = 60°; it is unavoidable that R(8)~ 

- 1 for 1 8 1---?~ ; this is so even for th e exact r eflection 

coefficien t if n r'" 1. 

4 However th is fact allmq; one to use ot her 9.pproxiJnatc methods [Karp and 
Sollfrcy , 1950]. 
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GRAPH Xo. 6. 

A special boundary condition which defines an alm.ost vanishing 
reflection coefficient for 0 ~ 101 ~ 60°, indicating that the bou ndary 
condition may be 1ised as a model of a pel/eel absorber. It 
is unavoidable that R (O)-' -l for 101= 71" /2; this is f orced by 
the form. of the reflection coe.Oicient (2.8). 
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