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Many electromagnetic problems involving more than one dielectric medium are not
susceptible of an exact solution, when the appropriate boundary conditions are considered .
The purpose of the present paper is to formulate a new boundary condition, which is capa-
ble of leading to mathematically tractable problems, with limited sacrifices in accuracy.

1. Introduction

The lheowti('(ll treatments of mixed-path propa-
cation [Wait, 1962a] ])101)10111\ usually depend upon
the 111110(1uc11011 01 a Leontovich, or impedance type
boundary condition which specifies the ratio of

> -
tangential /£ and H to characterize ground conduc-
tivity. Otherwise, if one attempts to match tangen-

- -

tial /£ and H across an interface, as required by the
rigorous theory, then intractable boundary value
problems usually arise. As a result, the use of linear
boundary conditions to model the physics at an inter-
face is virtually required, if numerical results are
desired. However, the Leontovich boundary condi-
tion is known to represent the phenomena well only
if the ground conductivity is high, in which case the
surface impedance is reasonably independent of the
angle of incidence. That is, it the eround has low
losses, or is a fairly good dielectric, then there is
significant penetration into this medium, and higher
order boundary conditions are required if the physics
at the interface is to be modeled accurately. 1t is the
purpose of this note to introduce a more accu-
rate version of the Leontovich boundary condition
for use in propagation problems involving dielectric
interfaces.

2. Construction of the Boundary Condition

In our search for a boundary condition that repro-
duces the phenomenology of transition conditions at
dielectric interfaces we have been motivated by the
form of solutions to some radiation problems. The
standard two-media problem of a radiating line source
above a dielectric interface yields a secondary field or
diffraction contribution, represented by an integral
of the form

f R(g) e =¥ g,
C
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in addition to the free space Green’s function. In
the integral £2(¢) is the appropriate Fresnel re-
flection coefficient for the dielectric interface, and
the contour (Jis the familiar path defining the Hankel
function. The diffracted field has the mtolpmduon
of a summation of plane waves, traveling in all
directions, real and imz wginary, which have as a
weight factor the Fresnel reflection coefficient extended
to the complex ¢-plane. This suggests that the
scattered field in the dielectric half space contain-
ing the source is characterized by the interface’s
reflection properties.
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Frcure 1. The reflected fields for both the two-media problem
and its reformulated coun terpart have the same functional
form and differ only in the value of the reflection coeflicient R.

When medium ks is almost conducting it is known
that an impedance type boundary condition of the
form [Grunberg, 1943; Leontovich, 1944]

g%/[—l—)\ui(), (1)

represents the phenomena fairly well. Therefore,
for a more involved situation we seek to construct a
higher order boundary condition with additional co-
eflicients so as to mateh the Fresnel reflection coeffi-

cient. We start by noting that the boundary condition
1 ou B o*u

= 2

,Aafrlﬂa y=0, 2)

303



imposed upon the wave equation

Vautku=0,  y20, k="’ (3)

implies plane wave solutions of the form (fig. 1)

u=uinc+RA (g)uref;

k1 (x cos §—y sin 6,
U e’t ]( 0—v )

Upeg= eikl (z cos §+v sin ) ,

provided that the reflection coefficient 12,(6) is chosen
as
cos 0—(A—B sin® 6)

cos 0+ (A—B sin” ) ()

R4(0)=

An approximation procedure is evident: find A
and B such that R,(#) is a suitable approximation
to the Fresnel reflection coefficient appropriate for
the polarization of the excitation field. We em-
phasize that the reflection coeflicient in (4) is an

L
2

cos 0—n I:l—l2 sin? 0]
s

cos 0-+n l:l—nl2 sin? 6]7

Ri1x (0) = (5)

The geometry is that of figure 1, and n=*k/ky, is the
index of refraction where £k, is the propagation
constant in the lower half space. For transverse
magnetic excitation u(z, y)=H, H,—H,=0; the
reflection coefficient is

cos oL |:1—~15 sin® OT
n 7

S
cos 0+7—z [1—7? sin? 0:|

RTM(0> -

b

For convenience only, we have assumed the magnetic
permeabilities u; and w, of the two media to be
identical. A comparison of R1x(f) and Ry (0) with
(4) shows that we can approximate them for all
real angles of incidence by picking A and B properly.
To make this selection, we choose

approximating version of the Fresnel reflection Fey
coefficient by using the subscript A.  For transverse Arg= e
electric excitation u(x, y) represents K. E,=FE,=0; ! y (7
and the correct Fresnel coefficient is [Stratton, ATM:&.—:E
1941], Sk om
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Graru No. 1.

The absolute percentage errors and the absolute errors that arise between the Fresnel reflection coeflicients (5) and (6),
and their approximations (4).

The curves are plotted as a function for 6 for the index of refraction n=1.6.

6.=0°, or normal incidence.

In this case B(6.) has been chosen to make the match exact for
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so that the approximation (4) will agree exactly
with either (5) or (6) for normal incidence (6=0).
For g¢lancing incidence (0= 4+/2), the expression
(4) will agree with (5) or (6) regardless of the choice
of A or B since the forms of (4), (5), and (6) are
such that all are equal to —1 for 6= 4 7/2.

Having motivated a choice of the constant A, we
shall devote the next few subsections to selection of
the remaining constant B, which can be chosen in
many useful ways.

2.1. General Angular Matching

The constant B in (4) above may be used to make
R, (0) exact for some additional angle 6, where
0<6,<m/2. For any choice of 6, the Bry ru(6,)’s
are determined by matching

1——~BT'51—TM sin? 0, with l:l—’%2 sin® 00] ’

ATV,. T™

where n=>Fk,/k, is the index of refraction; inverting
for I}TIC. ™ We Iill(l

Ao { 1 —[1 — ’}é sin? 0(:| }
— )

B'rlcflx\l(eu) o sin? 0;’

Observe that choosing 6, is equivalent to specifying
I}TE, TM -

D od 00O
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I
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INCIDENCE ©

(a)

2.2. Normal Matching

If n>1, we can expand the radical in (8) by the
binomial theorem, and use the A’s defined by (7)
to obtain

1 11 .
IS =it [—2711—2—— — sin? 6,4+ . . ]

Snt

171 11 . .
== [2n2—g i sin® 6,4 . . ]

These leading terms of By and By are independent
of 6, the fitting angle; for analytical purposes it may
be convenient to choose the B’s as

. (9)

Bri—y, |
(10)
BTM'

This selection of B will be referred to as normal
matching since it corresponds to improving the agree-
ment of the reflection coefficients in the neighbor-
hood of 6=0, or normal incidence. The accuracy

of this method is illustrated in graph la, where we
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Grara No. 2.

The absolute percentage errors and the absolute errors that arise between the Fresnel reflection coefficients (5), (6)
and their approximations (4) plotted as a function of 0 for the index of refraction n=1.6.

In this case_B(f.) has been chosen to make the match exact for Brewster’s angle 6.=05=arc tan n, or for this case 58°.
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plot the absolute percentage error ' PE(6)

R 4(6) — R, vm (0)
RTE, T™ (9)

PE (6)= X100 (11)

between the reflection coefficients (5) and (6) and
their approximations (4) with normal match coeffi-
cients for n=1.6. In the neighborhood of the
Brewster’s angle =arc tan n, for which Ry (6z) =0
the percentage error, but not the absolute error, for the
TM approximation is necessarily unbounded. In
oraph 1b, we inspect the absolute error AE(f) as a
function of # for the same fitting

AE(G):IRA(e)_RTE,TMwN (12>

and see that the absolute errors for both the TE and
TM approximations have about the same values.

2.3. Brewster's Angle Matching

The unbounded percentage errors for the TM
case in the vicinity of Brewster’s angle can be
eliminated by choosing Bru(6,) to \*191(1 a perfect
match at Brewster’s anole 8,05, and (S) becomes

{1_[ n+1]} e

Graphs 2a and 2b illustrate the percentage and
absolute errors for this choice of B(6z) for n=1.6.
Notice the appreciable reduction in error as compared
to the situation described by graph 1.

n2-1

BTE, Tt\l(eb’):ATE, T™ 2

2.4. Chebyshev Matchings

Another choice for B is possible, at least for the
TE approximation; this selection (fie. 2a) is a value
of By so chosen as to minimize the maximum absolute
percentage error for the TE reflection coeflicient.
The magnitude of the error changes sien when the
match is exact, i.e., at =60, Suppose we vary
f, until we obtain a value §,=6, such that the maxi-
mum negative percentage error was the same mag-
nitude as the maximum positive error. This balance
will minimize the maximum absolute percentage error
over the interval —z/2<0<x/2, by the (heb\shev
criterion. 'The mathematical analysis to find the
optimum Chebyshev matching would be interesting.
Here we have done it by a trial and error process;

1 We inspect errors rather than compare actual and approximate curves since
the two graphs would appear to coincide if superimposed.
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Ficure 2. (a) A Chebeyshev fitting is obtained when the fitting

angle 6. is so chosen that the maximum positive error, + Eax,
equals the mazimum negative error, —E.x. (b)) A two- -point
Chebeyshev fitting can be obtained by sacrificing the demand
for a perfect match at 6=0.

In case (b) the maximum error emax would be less than the Emax of part (a).

the values of 6, required to afford this match for
the TE case are plotted in graph 3. The mazimum
associated errors for any real 6 in the approximate
reflection coefficient (4) are plotted in graph 4 as a
function of n. It is not possible to repeat this
procedure for the TM case due to the unbounded
nature of the percentage error in the vicinity of
Brewster’s angle. However, a Chebyshev matching
is feasible for both the TE and TM cases by minimiz-
ing the absolute error, but this was not analyzed.
Better Chebyshev fittings (fig. 2b) might arise by
relaxing the demand of a perfect fit at §=0; this per-
mits choosing both Arp and Byz to improve the
match. This procedure would yield a perfect fit
for siz values of 8 over the interval —x/2 <0< -+7/2.
This particular matching was not carried out
because of the labor involved in doing it empirically,
and the excellent fit of the initial approximations.

2.5. Improved Angular Matchings

For other problems a useful procedure is to im-
prove the approximation in the neighborhood of
a specified angle of incidence. An example of
situation that would motivate this procedure is
a transmitter 7" and distant receiver 1 both located
near the earth’s surface. The geometry is such
that much of the energy collected by the receiver is
associated with the arrival ef rays in the neighbor-
hood of grazing incidence. For this problem one
might choose a value of B to match the derivatives *
of the exact and the approximate reflections coeffi-
cient at grazing incidence; a simple calculation
yields the result

177%
BTE,TM(W/:Z):ATE,TM {]‘I:l_”ﬁ:l } (14)

o
2 The values of these reflection coefficients themselves already agree for =3
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The maltching angle 0+ required to afford a Chebyshev fitting as
Ky

a function of the index of refraction 11:}:"
K

The corresponding values of B(fr) are given by (8).

2.6. General Recommendations

Unless we wish to emphasize accuracy for a
specified direction, it is reasonable to use the bound-
ary condition (4) with Brewster’'s angle coefficients
for problems of transverse magnetic excitation. For
a problem of transverse electric excitation we would
use the values of 6, in curve (3) in formula (8) to
yield a Chebyshev fit. The maximum percentage
errors that arise for real angles of incidence for these
two approximations are plotted for reference in
eraph 4 as a function of 7, the index of refraction.

3. Generalizations

In addition to the above-mentioned methods, other
refinements are possible. For example, any desired
degree of accuracy can be obtained by adding addi-
tional terms to the boundary condition: an inclusion
of additional terms proportional to

L0t X1}
(,, —_— P—

ox! Oy

in the boundary condition (2) would have generated
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The mazximum absolute percentage errors that can arise in the
approximalte reflection coeflicient for any real angle of tncidence
when  the recommended maltchings (THE-Chebyshev, TM-
Brewster’s angle) are chosen.

R.4(6)- cos 0— (A+B sin® 4 C'sin* 64D sin® 64-. . .)
P 008 04 (A B sin? 0+ Csin® 0+D sin® 0+ . . .)

as the approximate reflection coefficient. The coeffi-
cients of these higher order terms would then be
available to match either as many terms in a series
expansion of the radical

1/2
I:l—ifz sin? Ojl —A-+Bsin?6-4+Csin*0-+Dsin® 04 . . .

as needed for extreme accuracy, or for use in more
refined Chebyshev approximations.

From the preceding analysis, it is clear that the
modeling of an interface by a linear boundary condi-
tion need not be restricted to dielectrics. The pro-
cedure can be used whenever the reflection coeflicient
from some arbitrary medium is given. For example,
the reflection coefficient from an exponentially strati-
fied medium is known [Wait, 1962b], and the present
procedure can be repeated for that case. Such an
analysis would be very interesting, and might be
used, for example, to discuss lonospheric propagation
from a day to a night region.
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Ficure 3. The geometry of a test problem which serves to compare
the use of the new boundary condition (2) with the use of the
= -

conlinuity of tangential ¥ and H at a dielectric interface in
a problem involving a horizontal discontinuity.

4. Utility of the Boundary Condition in a
Problem Involving a Horizontal Discontinuity

We have lent plausibility to a procedure which
characterizes transition conditions at a dielectric
interface by a linear boundary condition. This
procedure is valid if the interface separates two half
spaces, but what is its utility in a more complex
geometry, say one for which there is a discontinuity
in the horizontal direction? To answer this question,
we have investigated a rigorously solvable test
problem of the WleneI—Hopf type (cf, fig. 3). A plane
wave is launched along a semi-infinite metallic screen
located at the interface of two diclectrics. The
termination of the sereen produces a diffracted field
that depends upon the physical parameters in a very
complex fashion. It will be very significant if the
new boundary condition implies results comparable
to that obtained by a rigorous matching of tangential

- —
E and H.

We obtain a reformulated version by removing the
lower medium £, and replauno it by the new bound—
ary condition (2) at y=0, z>>0. The coeflicients in
this boundary condition are chosen to characterize
the former transition conditions at the %k, —#%k, inter-
face. We have indicated that there exists some
flexibility in the choice of the parameters A and B;
consequently, we shall leave them unspecified to see
how various choices affect the diffracted field.

Let us specialize the discussion for the TM-case
for which H,=H,=0, since this polarization allows a
plane wave to propagate along a perfect conductor at
grazing incidence. The importance of this fact is
that if the plane wave travels in the positive z-direc-
tion, we can compare the diffracted fields for z— -+,
y=0 1in both problems without the necessity of
performing the explicit Wiener-Hopf decomposition.
It would be of value to compare the fields in other
directions, but that would involve a lengthy numeri-
cal program.

Let u(z,y)=IH,, then a standard approach [Kane
and Karp, 1960], using dual integral equations, and
Van der Waerden’s saddle point analysis leads to the
following asymptotic developments for z—+4o. For
the exact problem, using matching conditions at the
interface, we find for the far-field

+0(z"%)

() (&)
(15)

and likewise a corresponding result for the reformu-
lated counterpart wu,(z,7) using the linear boundary
condition (2) along the positive z-axis

1(k11—7r/4)

()2

limu(z,0)=
5+

— (2 )V/2 gillyz—n/1)
451—11)3 21(;x)1/2+0(x—3/2) (16)

lim e (x,0)=
Tyt

In both the ricorous (15) and the reformulated
(16) asymptotic developments, the leading term in
the diffracted field has canceled the incident plane
wave. This is of course a consequence of the fact
that the reflection coefficient for grazing incidence
is —1 for either problem. It is more important to
notice that for both problems, if a>>">1, the func-
tional form of the leading terms (15) and (16) agree,
and differ only by a numerical factor

@ 1 - 1
ki (kg_k%)li - k1 (Apvi—Brw)

or, if we choose Ary=1/n,

) )

The percentage error PE between these two coeffi-

clents 1s
(=)

1—n BT\I

X100, (17)

and, by (9), By 18 of the order 0(1/n*) for fitting at
any real angle, so that this error decreases with in-
creasing mn.

In line with the remarks in section 2.5, we observe
that if in the far-field, the preferred direction had
been chosen as grazing incidence, we would have
used (14) to select a Bry to match the derivative of
the reflection coefficient at grazing incidence, i.e.,

(18)

For this choice there would have been no error at all
m (15) as compared with (16) for any n.

We emphasize that the functional form of the lead-
ing terms in the diffracted field are the same for
y=0, z>>1, but with differing coeflicients for var-
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ious choices of Bry. Forany selection of this parameter
we can compute the powull age error (17) between
the leading coeflicients of (15) and (16). In graph
5, we plot three curves: (A) represents the “normal

nnpod(mco or Leontovich type approximation
1/1 bu+ Armqu=0, obtained by setting Bpy=0; (B)
ity O

shows the error obtained by using the normal match
values for By eiven by (9). The smallness of the
error in this case is significant because we are looking
at the diffracted field in a direction perpendicular to
hat for which the coefficient By was selected.
The curve (C) illustrates the error if Bry is chosen
as indicated by (13) which is a matching at Brewster’s
angle. We obtain the expected improvement over
ase (B) since Brewster’s angle is closer to grazing
incidence than normal incidence. Notice that the
big improvement is from (A) to (B), a correction
which arises from the additional term in the boundary
condition.

5. Concluding Remarks
5.1. Reciprocity

A feature of the new boundary condition (2) is
that it involves a second derivative. This somewhat
surprising detail has been inserted to guarantee
reciprocity. A first derivative could have been
used, but 1t would not lead to reciprocal phenomena.
This’ point can be most easily established by an
inspection of the associated reflection coeflicient.
[f the boundary condition had been written with a
single z-derivative

1 Du
[/\1

.

its reflection coeflicient would have been

cos 0—(A—PB sin 0)

R4(0)= cos 0+ (A—B sin 6)

which is not the same for a wave reflected from the
left as compared to one reflected from the right since
sin @ changes sign with 6.

5.2. Existence and Uniqueness

That solutions of problems involving the new
boundary condition do exist can readily be shown by
construction [Kane and Karp, 1960; Jones, 1962].
In addition these references illustrate the use of the
boundary condition, and also its ability to reproduce
complex diffraction phenomena. In addition, the
uniqueness has also been established [Kane, 1961].

5.3. Limitations

The approximation procedure is limited by the
restriction ky, >k, or n>1. For, if k,<k,, there
arises a real angle of incidence corresponding to total
reflection at which the second radical in (5) and (6)

100

ABSOLUTE PERCENTAGE ERROR

(H] 1.2 1.3 1.4 1.5 1.6 137 1.8 1.9 20

INDEX OF REFRACTION n

Grarn No. 5.

A comparison of the errors that arise for x > >1,y=01in the total
field including diffraction effects of the test pu)bl( m involving
a horizontal discontinuity.

becomes imaginary. Since (4) involves constant
coefficients, the boundary condition is unable to
imitate a transition from a real reflection coefficient
to a complex one for real angles of incidence. This
is clear by inspection of the reflection coefficient (4);

so long as both A and B are real, the reflection
coefficient remains real for any real angle 6.

Observe, from graph 5, that the approximation
deteriorates for n~=1. Physically n~1 corresponds
to an interface with a vanishing reflection coefficient,
which is difficult to approximate on a percentage
basis.* However, the absolute errors remain small
and bounded. As a consequence the boundary
condition (4) specialized for n=1 may be useful
as a model of a perfect absorber since the reflection
coefficient it defines is so small. A curve of this
special I24(0) is drawn in graph 6. We see that
R()=~0 untll [60] =60°; it is unavoidable that 12(6)—

—1for |6|—
coefficient 1f n#l.

; this is so even for the exact reflection

4 However this fact allows one to use other approximate methods [Karp and
Sollfrey, 1950].

309



+4 T - {
) | :
e T
=0 I I B 7 SO
W \ ‘
: -
& 2 i ‘ | ! .
T
o 1 du,,,B o8 _
QoL T, @ A K2 ox 01 1 N |
Z |
5 _ef—1—A=10 — | ‘ ,,,,,, |
4 B= 06414 ‘
b SO —m— ‘ = 74\—* T T TS TS T
& | | | |

| | 1L | | | | |

0° 10° 20° 30° 40° 50° 60° 70° 80° $0°

ANGLE OF INCIDENCE &
Grara No. 6.

A special boundary condition which defines an almost vanishing
reflection coeflicient for 0 <|0| <60°, indicating that the boundary
condition may be used as a model of a perfect absorber. It
is unavoidable that R(8)— —1 for |9|=m/2; this is forced by
the form of the reflection coefficient (2.8).
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