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Previous solutions by Rice and by Wait and Conda are combined and extended to pro-
vide more readily evaluated formulas for the diffraction of radio waves by the “‘rounded
obstacles” encountered in irregular terrain situations. A comparison with experimental
data is also provided.

1. Introduction

Schelleng, Burrows, and Ferrell [1933] were the first to successfully evaluate the diffrac-
tion of radio waves by isolated irregulated terrain features. They approximated a mountain
ridge by a semi-infinite knife edge and applied the Fresnel-Kirchhoff diffraction formula.
Since then, application of this formula has frequently provided usefully close approxima-
tions to the diffraction of radiowaves by hills, mountains, and mountain ridges [Selvidge,
1941; Bullington, 1947; Norton, Schulkin, and Kirby, 1949; Matsuo, 1950; {Dickson, Egli,
Herbstreit, and Wickizer, 1953; Kono, Uesugi, Hirai, Niwa, and Irie, 1954 ; Kirby, Dougherty,
and McQuate, 1955].

In some applications, however, it was demonstrated that the simple knife edge is not an
adequate model. Some provision must be incorporated into the model for the effect of the
broad crests often encountered in hills and mountain ridges. Solutions for just such an im-
proved model have been given by Rice [1954], Neugebauer and Bachynski [1958], and by Wait
and Conda [1959]. The application of these solutions to irregular terrain situations have not,
however, been too numerous to date [Crysdale, 1958; Barsis and Kirby, 1961]. This is due
perhaps to certain practical difficulties in their application. The purpose of this report is to
extend the work of Rice and of Wait and Conda so as to provide engineering formulas for their
application to irregular terrain situations. A comparison with experimental data is also given.

2. Diffraction Formula

For the application to radio propagation over irregular terrain, the effect of the terrain
may be estimated from the theoretical solutions of the wave equation. The theoretical solu-
tion chosen is usually that for some combination of simple geometrical models which approxi-
mate a modified terrain profile for the great circle plane containing the transmitting and
receiving points. The modified terrain profile is that required to provide for the effects of
atmospheric refraction [Norton, Rice, and Vogler, 1955]. Some simple geometrical models for
irregular terrain features are illustrated in figure 1. The effect of ground reflection is included
by determining equivalent reflecting planes, which then provide additive solutions for the
models of figure 1 [Schelleng, Burrows, and Ferrell, 1933].

In this section, the diffraction formula is presented, deferring its basis to the following
section and the appendix. It is convenient to express the diffraction effects of irregular terrain
in terms of a diffraction loss, the ratio (in decibels) of the magnitude of the free space field,
E,, to that of the diffracted field, £:

A(w, p)=20 logy, |Eo/E|=—20 log,, a(v, p) (1)
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Fraure 1. Models for irregular terrain features.

where
E/Ey=a(v, p) exp [—i®(v, p)]. (2)

The a(v, p) is the magnitude of the ratio £/, and ®(», p) is the phase by which the diffracted
field lags the free space field. The » is the usual dimensionless parameter of the Fresnel-
Kirchhoff diffraction formula, and p is a mathematically convenient dimensionless index of
curvature for the crest radius, », of the rounded knife edge. For the geometry of ficure 1,
for all heights, distances, etc., in the same units of length and for the diffraction angle, ¢, in
radians,

v=he[2d/(Adudy) F=|2d,dy) AD) I, (3)

akHH @

where X is the transmission wavelength. The diffraction loss and phase lag for diffraction
by a rounded knife edge may be expressed for irregular terrain applications as:

A, p)=A(@, 0)+A(0, p)+U (vp), (5)
P (v, p) =900*+¢(v, 0)+¢(0, p)+¢(vp). (6)
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DIFFRACTION LOSS A(v,p) IN DECIBELS

Fraure 2. Deffraction Loss, A(v,p), for a rounded
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Fraure 3. Knife-edge diffraction loss, A(v,0).

obstacle.

Equation (5) yields curves such as in figure 2, where expressions for » and p are given, which
are convenient for calculations. The leading terms, A(», 0) and 900°+ ¢(», 0), of (5) and (6)
are the diffraction loss and phase lag for the ideal knife-edge (r=0) model. Their values are
presented in figure 3 versus ». Note that only the ¢(», 0) part of the phase lag is plotted for
»>0. This form of the phase angle is that suggested by J. H. Crysdale [1955]. The terms
A0, p) and ¢(0, p) of (5) and (6) are the magnitude and phase of the intercepts (see fig. 2)
which are presented in figure 4 as a function of p. The final terms of (5) and (6), dependent
only upon the product of » and p, are presented in figure 5. The expressions for », p, and vp
[(3) and (4) above] are also presented in figures 3, 4, and 5 for the transmission frequency in
megacycles per second, all distances in kilometers, and the diffraction angle in radians.

The expressions for diffraction loss and phase lag given above may be associated with
models A, B, or C of figure 1 for either horizontal or vertical polarization when applied to
irregular terrain and provided the following conditions are met:

(1) the distances d, d,, 7, ete., are all large relative to the wavelength;

(2) the extent of the rounded knife edge, transverse to the propagation path, is of the
order of the radius for the first Fresnel zone width,

2d 27172
172 . L ¢
Ind/4] [1 ( : >] (7a)
where d, is the shorter of d, or d,;

(3) the components, « and B, of the diffraction angle ¢ are small (10° or less);
(4) the radius of curvature is sufficiently large so that

[wr/A]13>>>1.0. (7b)
3. Sources of the Diffraction Formula

Examination of (5) and (6) above shows that the diffraction loss for the rounded knife
edge is given by corrections to the results for an ideal (r=0) knife edge. This is inherent in
the form of the solutions given by Rice [1954] and Wait and Conda [1959].
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Ficure 5. Unwersal diffraction curve for a rounded
knife-edge.

Frcure 4. Intercept magnitude and phase for diffrac-
tion over a rounded obstacle.

The solution provided by Rice [1954] is that for a perfectly conducting parabolic cylinder
(model B in'fig. 1), an infinitely remote source (plane wave incidence), small diffraction angles,
and a point of observation sufficiently remote to define a field proportional to a Sommerfeld
crest wave [Sommerfeld, 1896; Baker and Copson, 1950]. The Sommerfeld crest wave corre-
sponds to the asymptotic form of the ideal knife-edge diffraction loss of figure 3. Rice’s solution
may therefore be extended to values of v less than 2.0 when the Sommerfeld crest wave is
replaced by the more general form of figure 3. If in addition, Rice’s evaluation of the mag-
nitude of the “Artmann shift’”’ of the shadow boundary [Artmann, 1950] is corrected to include
the appropriate phase (60°), subsequently given by Rubinow and Keller [1960], then Rice’s
solution for horizontal polarization reduces to (5).

A more general and rigorous solution was given by Wait and Conda [1959]. Starting with
the wave equation and a spherical waveincident upon a circular eylinder of arbitrary dielectric
constant and conductivity, they obtained the solutions for small diffraction angles with either
horizontal or vertical polarization for model C of figure 1. By numerical integration they were
able to reduce their solution to a set of curves which permitted plots of diffraction loss such as
in figure 2. Due to the slight degree of approximation which permitted this numerical integra-
tion, for p<0.5 and vp<0.55, the evaluation of diffraction loss breaks down for larger values
of porof vp. The quantities p and vp are equivalents of Wait and Conda’s 1/u and 0.8.X. As
described in the appendix, the present authors have eased the restriction on the value of p
by a partial evaluation of the approximation error for »=0. For the condition of horizontal
polarization and a highly conducting rounded knife edge, it may be readily shown that both
of the above solutions provide identical corrections to the simple knife-edge expressions. As a
consequence the asymptotic forms of Rice’s solution are applicable, and the above mentioned
limitation on the values of »p in Wait and Conda’s solution is removed.

In further support of the validity of (5), it should be noted that Wait and Conda’s solution
has agreed within a fraction of a decibel with the experimental (laboratory) measurements of
Neugebauer and Bachynski [1958] and smooth earth diffraction theory.
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4. Application to Irregular Terrain

For the ground constants generally encountered for irregular terrain and for transmission
frequencies of VHE or higher, the theoretical solution for highly conducting rounded knife edges
and horizontal polarization is directly applicable to irregular terrain. Hence, for the conditions
itemized in section 2, (5), and (6) will closely approximate the diffraction effect of hills, moun-
tains, and ridges, independent of polarization. There is, however, one major difficulty in the
application. Neugebauer and Bachynski [1958] have shown that the radius of curvature of
interest for the rounded knife edge is that in the great circle plane of the transmitting and
receiving points. The difficulty arises because the radius of curvature is rarely constant for hills,
mountains, etc.

As illustrated in figure 1, the transmitting and receiving antenna horizons are marked by
the distances dz, and dyr for the simple geometrical model. Of primary interest is the crest
radius of curvature between the two horizons. One method of estimating an effective radius
of curvature for the model from the terrain feature is related to the definition of angular
distance and is given by:

r=(d—dpr—dpr) /¥ ()

where 7, d, ete., are defined in figure 1 and determined from the modified terrain profile [Norton,
Rice, and Vogler, 1955]. The distances 7, d, etc., in (8) are in the same units of length, and
¥ is in radians.

5. Comparison With Experimental Data

Experimental data were obtained for two general propagation paths in the vicinity of Den-
ver, Colo. (see fig. 6). The audio signal was recorded at the indicated sites (A, B, and C) for
transmission from four VHE TV stations on Lookout Mountain. The terrain profiles, modified
for standard atmospheric refraction, are indicated in figures 7 and 8. Also indicated are the
transmission frequencies, transmitting antenna elevations, and the maximum receiving antenna
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Ficgure 6. Denver Area of Colorado.
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Frcure 9. Observed diffraction loss versus antenna height KBTV, 191.75 Mc/s.

elevations. Continuous recordings were obtained with horizontal half-wave dipole antennas
which were raised and lowered between a minimum of 8.5 m and a maximum of 32 m (sites A
and B) or 35.4 m (site ) above ground. The recordings were obtained on winter afternoons
and required approximately 20 min to complete the raise-lower cycle. A comparison of the
recordings for the up and down portions of each cycle exhibited an average difference in signal
level of 2 db or less and no marked variation in structure. The variation of KBTV (191.75
Mec/s) recordings for increasing antenna height is illustrated in figure 9 for sites A, B, and C.
These are typical also of the recorded signals for the other three frequencies. The lobing due
to foreground reflections was observed only for site A and at antenna heights of less than 20 m.
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Due to the roughness of the terrain, it is assumed that the contribution due to ground
reflections between the transmitting antenna and its horizon is negligible. To permit a com-
parison with theory and to minimize the effect of the foreground reflections at site A, a least-
square fit was obtained for the variations of observed diffraction loss with height. TFor each
frequency and site, five values of observed diffraction loss were selected at equal intervals of
antenna height and compared to the calculated values. These values were selected so as to
also include the least and most favorable points for comparison with theory. The results are
presented in ficure 10 in terms of the observed value less the calculated value. The calculated
value, A(v, p), is plotted as a reference. Also indicated are the calculated values, A(v, o),
for the simple (r=0) knife edge. Figure 10 indicates that the calculated values provide esti-
mates which, in this situation, improve with transmission frequency. It further demonstrates
the superior estimate available when allowance is made for the effect of the crest curvature
upon the diffracted field. The apparent exception to this are the results for KTVR at site B,
where the apparent frequency dependence is not as mentioned above, although the calculated
and observed values are still comparable. This is felt to be erroneous and possibly due to a
calibration error, for the following reason. Although sites A and B are not in line, they are
only 1 km apart and have, for some values of antenna height, common diffraction angles.
Due to their close grouping in position and frequency, the received signals for KTVR and KOA-
TV at sites A and B would be expected, from calculation, to be within 3 db of one another for
antenna heights above 20 m. The same holds for KLZ-TV and KBTV at sites A and B.
This was also the case for the recorded signals with the exception of KTVR at site B. The
received signal for K'TVR at site B was approximately 5 db below the comparable observed
levels. 1In this application, the values of v, p, and vpwere in theranges 0.1 to 1.3, 0.31 to0 0.78, and
0.02 to 0.44, respectively.
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6. Conclusion

For application to irregular terrain, the solutions for the rounded knife edge as given by
Rice [1954] and by Wait and Conda [1959] have been extended and reduced to engineering
formulas which determine both magnitude and phase of the diffracted field. Although the
comparison with experimental data has been promising to date, much additional investigation
is indicated. This is so in the matter of determining the effective radius of curvature from
terrain data. Also of interest is the effect of less smoothly rounded crests than those in-
vestigated to date. Of additional interest is the application of the curved knife-edge formulas
to the problem of multiple diffraction, which has been treated by Furutsu [1963] for the ideal
knife-edge model only.

The authors acknowledge the contributions of Martin J. Miles and Mary Ellen Johnson
of the NBS staff who assisted in some of the computations.

7. Appendix

A major problem of extending the previous solutions for the diffraction of radio waves
by conducting cylinders or spheres is that of determining the diffraction loss for grazing con-
ditions. The grazing condition (»=0) provides a diffraction loss given by the intercept value
A0, p). Wait and Conda [1959] determined the intercept value for u>2(p<0.5). This
appendix describes the evaluation of the intercept value for 0.7 <« <1.0 which should cover
most applications to irregular terrain.

7.1. Extension for . >1.0

In the case of a cylinder or rounded knife edge [Wait and Conda, 1958, 1959] as in the case
of a sphere [Fock, 1951], the diffracted field may be expressed in terms of the Fresnel knife-edge
diffraction field plus a correction term. The general form of the correction term G(X)/u may
be expressed in terms of the Airy Integrals, W,(t), Ws(t), and their imaginary component »(#),
as defined by Wait and Conda [1959] and Spies and Wait [1961].

10 WA =gWald)
N G X Jo, W =) W = W=yt
G(X):I: .:/rl./z] .

() —qo(t
-+ . e“’“%g Wi (t—) Wy (t—y.)dt

where the contour C is for ¢ from «e¢ 7”4 to 0 and the contour (% is for ¢ from 0 to «. The
q is a function of the polarization and ground constants. For the application to irregular
terrain and the conditions specified at the end of section 2, ¢ is very large. The distance
from transmitting to receiving antenna via the obstacle (fig. 1) is TOR=M*/4+d=d,+d,—=
dy v+ dpr+r¢ which when multiplied by (kr/2)/r yields z= \/Jl—l—‘/yz—kX In this appendix it is

convenient to use the X, < \/ vp) and u, (=1/p), of Wait and Conda [1959] to permit direct

comparison with their expressions.

To determine the form of (9) suitable for large values of 7, and ¥, as well as the required
correction terms for lesser values of #; and ., we may expand the factors exp [—iat] W, (t—1)
W, (t—vs,) in the integrals of (9) in terms of the asymptotic expressions for W;(¢), [Spies and Wait,

1961], to obtain:
e W (t=y)Wi(t —y2) =—je ™ X (yuy) ~ /e RE (i +127)

1 y1+y’ Y11+
{1+ ylyZ Y2 ) *- } (10)
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which, omitting the phase relative to the reference path 7' to R, reduces to:

. B2
_]e—]Xt(ylyZ)“IM |:1+4u4+52u8 t :I (11)

In the above, the relationship u*=+/y/y2/(Vi-F4/7.) has been used. For X=0, ¢—>w, (1)
reduces to:

60~ G0+ L T s @@+ ] (12)

4ut
where the b(X) is (9) evaluated with only the first series term of (11) and the primes indicate
the order of the derivative with respect to the argument X. The G’ (X) and G”/(X) have been
evaluated at X=0 by numerical integration as 0.1816¢° and —0.0191¢*°.  Wait and Conda
have already given G(0) as 0.3568 exp [—i14.94°], and the intercept value for u>1.0 is given by:

0.5 0-3568 3566 p-inoie y 00454 0 +0002 s> (13)
u{)

Equation (13), with 1/u replaced by p, provide the values of A(0, p) and¢ (0, p) for p<_1.0 shown
in figure 4.

7.2. Extension for 0.7 <u<1.0

Values of 4 <1.0 (or p>1.0) will be encountered when one antenna is appreciably closer
than the other to the rounded knife edge. In the case of vy, > ">y, then w*=1y, for small values

of X. The asymptotic expression may then be retained for W(t—1.). However, the W;(t—1,)
is then better approximated by a Taylor’s series expansion [Spies and Wait, 1961]. First,
however, we return to (9) and substitute t¢/* for ¢ in the first integral so as to permit common
limits for both integrals. Then retaining only the first term of the asymptotic form for W, (t—1,)
and for X=0, ¢—>», (9) reduces to:

rehr/S [m o HRRG-VPY (1= w8 _yy2) o(2) i
0

Wa(t)
+f e —jtu? W, (t u2) ‘;/(2)

G(0) ~ = g+ (14)
VT

The expressions W(te ?7)=W,(t)e " etc., have been employed in reducing (9) to (14).
The Taylor series expansion of Wi(t—u') is given by:

WYl(t_’U}):Wl(t)[ao+alt+a2t2+a3t3+ . . -]“W1/(t>[bo+blt+bz>t2+b3t3+ ce ] (15)

where
ay=~1—u'?/6 bc~[l —ut?/12]ut
~[1—u'?/15]u’/2 =~ [1—u'?/20]u'?/6
@y =~ [1—u'?/23.31u'%/24 bz =~ [1—u'?/28]u®/120
s~ [1—u'?/31.5]u**/720 ~[1—u/36]15/5040. (16)

For the expansion of Wj(te=##—u*) the t’s of (7) are simply replaced by te=/ and the

relations such as W' (te=#7) = ¢ W, (1), ete., are employed. Substituting these series expan-

sions into (14) yields
G(O)‘*

wr

3
_ g1t nZ=O a, A, u)—b,B(n,u)—ib,C(n,u) } (17)
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where

—/3u2t u_%_ml]
A(n, u)*" t”z'(t){ —wit e 2 }

B, w= | tro) {em e itinutinmmaeny WOV Gt oy (O
0

[W)[*

Oln, u)—= f () {e=9% o= VBuH2git 2= (mim)x 31} It (18)
W (t)IZ

Despite the appearance of these integrals, they are readily determined by computer programs

for numerical integration, since they converge very rapidly. For any one particular value

of ©<1 they may also be determined by graphical integration from tabulated values

or curves of »(t), u(t), |[W(t)|. The values of A(0, p) and ¢(0, p) for p>1(u<1) were deter-

mined in figure 4 {from (17), (18), and (19):

a(0, p) =0.5—pG(0)
from which (1) and (2) determine A(0, p) and ¢(0, p).
7.3. Comparison of Solutions of Wait and Conda [1959] and Rice [1954]

The above function G(X) from Wait and Conda’s solution and the basic function of
Rice’s solution, ¢(7), are both defined in terms of Airy integrals. It may be readily shown

that ¢(—7) =2 virG(X) for horizontal polarization and an infinitely conducting rounded knife
edge. For large values of v and |7|=|X]|, Rice’s solution for the diffracted field is proportional
to Wait and Conda’s solution. Furthermore, Rice’s evaluation of the Artmann shift, when
the phase is incorporated, closely approximates the second term of (13) in magnitude and
phase. Because of the foregoing, Wait and Conda’s solution for horizontal polarization and
an infinitely conducting rounded knife edge may be expressed as (5) and (6) and evaluated
from figures 3, 4, and 5.
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