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In a previous report [Crary, 1962] the field strength, direction of arrival, and apparent
polarization of whistler signals was calculated by the use of ray theory (or geometrical
optics). The convergence coefficient is a factor in the ray theory equations which expresses
the net convergence or divergence of the rays caused by reflection from the curved earth

and ionosphere.

Intuitive reasoning led to the assumption of unity for this coefficient in the whistler
case, where there are an equal number of reflections from the concave ionosphere and convex
earth. 'This is contrasted with the convergence coefficient for the case of ground-to-ground
transmission; this coefficient contains singularities at critical distances.

The derivation and evaluation of the expression for the coefficient for the whistler case
confirms the accuracy of the assumption of unity; this greatly simplifies whistler calculations.

The author has shown the methods for and the
results of calculations of the field strength and ap-
parent polarization and direction of arrival of whis-
tler signals [Crary, 1961, 1964]. These calculations
utilized the methods of geometrical optics to express
the field as the sum of a series of rays. The as-
sumption is made that the ionosphere may be rep-
resented by a sharply-bounded homogeneous slab
with a constant vertical magnetic field.

One of the factors in the ray equation is the
convergence coeflicient, which is a purely geometrical
expression for the focusing or defocusing of the rays
confined between the spherical earth and ionosphere.

The convergence coefficient for the case of ground-
to-ground transmission (a,,) was derived by Bremmer
[1949] and discussed by Wait and Murphy [1957].
The geometry of this case for an n-reflection ray is
illustrated in figure 1. The corresponding conver-
gence coefficient is given by (1).
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This coefficient increases rapidly near the critical
distance and becomes infinite at this point. The
critical distance is that where the vertical angle of
takeoff-arrival at the ground is 90°. This point is
called a caustic in the language of geometrical optics.
The expression is not valid near the caustic, where
higher-order approximations are necessary to calcu-
late a value for the field. Wait [1961] derives ex-
pressions which are valid near and beyond the
caustic, and discusses the region of validity of (1).
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Ficure 1.

Convergence coeflictent geomelry for the case of
ground-to-ground propagation.
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FiGURE 2. Convergence coeflicient geomelty for the case of
whistler propagat'ion.

Diﬁerentiation then yields:
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Fiaure 3.

The combination of (6), (7), and (13) then yields

Convergence coeflicients for the cases of ground-to-ground and whistler propagation as a function of ground distance.
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The values of the coefficients from (1) and (17)
are shown in figure 3. The rapid variation of the
coefficient in the ground-to-ground case is quite
evident as the critical distance is approached. The
critical distance is, of course, dependent on the
reflection height (D, ~vS8nha [Wait and Murphy,
1957)).

The results, therefore, substantiate the intuitive
assumption of unity for the convergence coefficient
for the whistler case. The maximum deviation is
seen to be of the order of 5 percent and this occurs
for large n, at distances greater than those which
are normally of interest in whistler propagation.
This allows a substantial reduction in the com-
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plexity of the calculations in most cases of interest
in whistler propagation.

The coeflicients are plotted for several values of
n and h. The curves for the ground-to-ground case
are shown first for n=1, A=70, and 90 km, where
the critical distance is in the range of 1900 to 2200
km. The coeflicients are also plotted for n=10,
h=70 and 90 km. These are almost constant out
to 3800 km since the critical distance 1s the yn
times that for n=1.

In contrast to the ground-to-ground case, the
curves for the whistler case show that the coeflicient
is nearly constant for n=1 to 10 for distances up to
3800 km. An examination of (17) shows that there
are no infinities of the expression at large distances
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