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Th c problcm of thc gcneration of a n electrom agnetic pulse by a n expanding, infinitely 
co nducting, spherical plasma under t he earth is co nsidered. Th e solution consists of t he 
dcrivation of a n appropriatc tensor Grecn's fu nction for the half-space which reduces the 
problem of detcrminin g the elect ri c fi cld at a ny point in space clu e to the currcnt density 
gcnerated by t he i ll tcract ion of the plasma with the ea rth's static magll etic field to evaluatin g 
a n i ntcgra l. Thc vcrt ical component of t he electric fi cld at t he earth's surface which is 
gencrated by the mecha ni sm is calcu lated. 

1. Introduction 

The problem of determining Lhe electromagnetic fleld resulLing from a vertical and a 
horizontal dipole imbedded in a conducting half-space have been solved ill the past essentially 
by following Sommerfeld' s method for solving half-space boundary value problem. A imilar 
problem such as the one of determining the field due to an arbitrary vector current distribution 

p J(r, t) imbedded in a conducting half-space wiLh a time independent, uniform co nductivity rJ, 

is often of some interest. Such a problem, for example, may arise from Lbe electro magnetic 
radiation of an expandin g plasma which m ay resulL from a very intense underground explosion 
[T aylor, 1950] . The olectromagneLic field generaLed by the current density J can be obtained 
by first evaluating the appropriate Green's function which sftLisfies the bounda.ry conditions 
and then evaluating the volume integral of the product of J a nd the Green's function. In 
this paper, the Green's function for a time-varying source is derived by m aking use of Fourier 
transforms. The field expression at any point in space is then obtained. Numerical results are 
given for Lhe vertical component of the electric field at the earth's surface. 

2. Formulation of the Problem 

From Maxwell's equations it is seen that the electric field E(r, w) as a function of position r 
and angular frequency w satisfies the equation 

(1) 

where Rer, w) and J(,r w) are r espectively the Fourier transforms of the corresponding time­
varying electric field E (r , t) and the current J(r, t), defined by 

J(r, w)=_ l_ f a> J(r, t) eiwtdt 
, (2:;;. - a> 

1 The work reported here was partiall y sponsored by the Air Force Systems Comm and, Rome Air Development Center . GriffissAir Force Base, 
New York, and by the Advanced Research P rojects Agency, Washington, D .C., 20301, uuder Co ntract AF 30(602)-2500. 

2 Now at American N ucleonics Corporat ion, Glendalc, Calif. 
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and {3 is the propagation constant defined by 

2 { f.LOfOWZ in the nonconducting half-space 
{3 = f.Lofow2 + iwf.LlT in the conducting half-space. 

(2) 

The symbols Mo, f O, and IT denote respectively the free-space permeability, free-space dielectric 
constant and the conductivity of the conducting half-space. 

Thus, if a dyad r is defined which satisfi es the equation 

- -
\1 X \1 X r- {32r =o(r - r ')1 (3) 

where J is a unit dyad and r satisfies the appropriate boundary conditions at the interface of the 
finitely conducting and nonconducting half-spaces, the electric field intensity can be written as 

(4) 

the integration being taken over the region of space V where J does not vanish identically. 
Let the conducting and nonconducting parts of the space media be respectively referred 

to as 1 and 2, as shown schematically in figure 1. Also let a cartesian coordinate sys tem be 
chosen such that the z axis is normal to the interface between the media 1 and 2. 

Since (3) bas coefficients which do not depend on x and y, one may introduce the Fourier 
transform 

l\~, 7] , z)=(_1_)2f oo f oo I\x, y, z) e*+i~Ydxcly ,rz; -00 -00 

(5) 

into this equation . Then the operator \1 is transformed into \1p where 

(6) 

In (6) and in the following, a caret is used to indicate a unit vector in the respective coordinate 
direction. Thus (3) can be written as 

(7) 

Equation (7) represents a system of ordinary differential equations, in the variable z, for the 

components of r. Appropriate boundary conditions must be satisfied. The continuity of the 
tangential components of JI-' for an arbitrary current source means that r rr, rrz , and ree are 

continuous at z= O. Continuity of the tangential component of H. (proportional to \1 X r) 
AA AA AA 

implies that the rO, Or , and Oz components of \1 X r are continuous at z= o. The other tan-

gential components of \1 X r vanish identically. 

MEDIUM (2 ) 

MEDIUM ( I ) 

. r' = (,', y', z') 

FIGURE 1. Coordinate system used in deriving 
Green's function . 
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The solution of (7) satisfying these conditions is readily obtained. If the source point is 

in :rnediurn 1 and th e field point in medium 2, the Green's function r which satisfies (3) and 
this boundary condition can now be expressed as 

'~' l 
~~'Y/ I (8) 

e+'Y/2J 
N 

where 

and the subscripts on the propagation constants refer to the conducting and nonconducting 
media. 

3 . Pulse Generated by an Expanding Plasma 

This Green 's function will now be used to solve the problem of the emission of an electro­
Illitgnetic pulse by a very intense explosion under the earth. It will b e assumed that the 
explosion CI'eates an infinitely conducting, expanding spherical plasma which interacts with the 
earth's magnetic field . It is known that the magnetic fi eld is frozen in the plasma as it ex­
pands [Cowling, 1957]. Thus, if the expansion is assumed to begin from a point, no magnetic 
flux will exis t inside the volume containing tbe plaslua. 

The physical mechanism for canceling the earth's magnetic field, Eo, inside the plasma is 
a surface current which is induced by Bo. Hence, the plasma may be replaced, for COlllputa­
tional purposes, by an equivalent current density J in the earth. This is more convenient 
than solving directly the difficult moving boundary value problem which requires, in addition 
to the vanishing of the normal component of the total magnetic field at the plasma surface, 
the vanishing of the tangential componen t of 3 

at the plasma surfacewhere1!:= ECr, t) and B=BCi, t) are respectively the electric and magnetic 
fields generated by the plasma. Here a= a(t)r is the radius of the plasma. 

To obtain an expression for the equivalent current density generated by the expanding 
plasma, we first remark that if the explosion takes place at a sufficiently great depth, the effect 
of the earth-air boundary on the field near the plasma will be negligible. In fact, even ne­
glecting attenuation in propagation through the earth and assuming that the earth-air boundary 
is a perfectly reflecting plane, the ratio of the reflected field to the primary field at the surface 

3 '1'0 see tbat this boundary condition must be satisfied instead of the nsnal vanishing of the tangcntial component of i!5, one can consider, in 
ad ditioll to the fixed coordinate system nsed above, a coordinate system which momentarily is moving with the velocity 01 some point on the 
sur1ace of the sphere. In th is coordinate system, a portion of the plasma surface is stationary and the boundary condition is that the tangential 

component of E vanishes. 'l'ransforming back to the fi xed coordinate system, we find that tbe bound ary condition is that stated above. 
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of the plasma is of the order of 

for low frequency waves where d is the depth of explosion origin and Rm ax is the maximum 
radius which the plasma achieves. For example, the effect of the earth-air boundary is less 
than 0.1 percent for a plasma which achieves a final radius of 25 meters if cl = 150 meters. 

Thus, to calculate the current density at the surface of the plasma which will cancel the 
earth's magnetic field inside, it can be assumed that the plasma is located in an infinitely 
extended medium with conductivity 0". Let r, 0' , cj/ be the spherical coordinates of the point 
r in a coordinate system using Bo as the polar axis and the center of the plasma as the origill . 

In this case, the symmetry of the problem dictates that the current density be in the ~, direc­
tion and proportional to sin 0'. For, it is elear that any vector associated with the electro­
magnetic field is independent of the angle cp'. Furthermore, if a reflection in any 

plane containing Eo followed by multiplication by minus one is performed, it is seen that 
Bo (which transforms as a pseudovector) and the geometry remain invariant. Therefore, all 
vectors associated with the EM field must be invariant under these operations. This illlplies 

A A A 

that vectors can have only a cp' component and pseudovectors rand 0' components. The 

fact that the angular dependence of J is given by sin 0' can be seen by recalling that a plasma 
moving in a radial direction interacts with the external field Eo by a term proportional to 
v X Eo (where v is the radial velocity vector). By substituting a driving term of this form into 
NIaxwell's equations and using the above results, it is immediately found that J is propor­
tional to sin 0'. 

Hence, J can be written as 
J = K(t) sin O'8(r-a)¢' (9) 

where the 8 function has been inserted because the current is confined to the surface of the 
plasma. Here a = a(t) is the radius of the plasma and K(t) , which may depend on time, is 
to be found . 

To determine K , we find the magnetic field which is generated in a medium of conductivity 
0" by a current density of the form indicated in (9). It is convenient to Fourier transform into 
the frequency domain. Since the electric field Green's function in an infinite medium can be 
expressed as [Morse and Feshbach, 1953a] 

[ = I1I1J ei~lr--r'I_ . ~ 00 I 2l + 1 (l -m)! . {'--o) - (3) - (11 - (3) } 

1+ (32 I r-r' I - ~{3 U~d, ~ ~o l(l+ l) Em (l + m)! M Ulm({3r» M uln({3rd+N ({3r» N ({3rd 
even - - . . {I ifm = O where M and N are vector sphencal harmol1lcs, E:n = 2 if m ~ 0 and the symbols r> and r < 

indicate respectively the larger and smaller of r, r', it is found , as a result of the orthogonality 
r elations among the vector spherical harmonics, that 

where hi andjl are spherical Bessel functions and J(r', w) is the Fourier transform of K(t)8(r- a). 
Fourier transforming to the time domain, it is found, after taking (9) into accoun t, that 

where the argument of a is t'. 
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Now, it is r eadily seen from dimensional arguments [Cowling, 1957] that if a non-uniform. 
spflLial distribution o[ the magnetic field exists inside the sphere, the time for the non-uniformity 
to decflY to zero is o[ the order of J.!O(J}'2. For a sphere with a radius of 25 meters and an earth 
cond uctivity of 10- 2 mho/m, this time is about 10- 5 seconds whieh is much smaller than any 
pracLical expansion t ime for the plasma. Thus, the field at any point within the radius a(t) 
can be considered to be quasi-static and equal to the field at 1' = 0 . Hence, to evaluate J{(t) , 
we may set 1' = 0 in the following. 

In this cflse, (10) reduces to 

B(O, t) =2~ Sa'" dtIK(t')iJ.!o{32a2N~!~n.l . o(0)hl({3a) 
= - i J.!o ~ (cos 8' ; -sin 81hJ'" dw e-iw(t - t')[{3a+i]e -iBu. (11) 

2~ 3 _'" 

Since {3a is small for all frequencies of interest, the term eipa may b e expanded in a power series. 
Keeping terms of order (32a2, it is found that 

It is seen, then, that the magnetic field generfLted by Lhe currenL dcnsiLy J will cflilcel Lhe 
emth's magnetic field 

i [ J{(t) satisfies t il e differential equation 

(12) 

In pfLrticul ar, for slowly expfLnding plaslllas, J{(t) is nearly fL constant : 

J{(t ) "" _~ B o. 
2 J.!o 

This will be true in cases of pmctical interest, for the term }J~(J ~lt (J{a2) is of order J-l~t2 smaller 

than the leading term in (12). This is very small. The third term of (12) is of even s lllfLller 
order. 

Thus, the current density 

- - 3 B A 

J(r, t) = - - ~ sin (JIB(r' - a)q/ 
2 J-lo 

(13) 

will fLpproximately cancel the earth's magnetic field inside the plasma. It call be readily 
checked by expanding the integrand in (10) in powers of (3r that this expression for the current 
density will lead to a field B(a, t) at the boundary of the plasma whose normal component di/Ters 
from -cos (J' B o b y a term in the integrand of order ({3a)2 smaller thfLn the leading terill. A 
similar calculation shows tlmt the second boundary condition is also satisfied to the sm ne order 
of magnitude. For frequencies nem' 1 kc/s, an earth conductivity of 10- 2 mho/ l11, and a ll1axi­
mUln sphere radius of 25 meters, the error of order ({3a)2 in the integrand is about three percen t 
of the loading term. 
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FIGURE 2. Illustrating geometry for electric field 
calculation for an expanding plasma. 

To calculate th e electric field at the elUth 's surface produced by the expanding plasma, 
it is necessary to write (13) in terms of the coordinate system in which the Green's tensor is 
expressed. Let the earth 's 111 agnetic field b e inclined at an angle Q to the vertical axis, as is 
illustrated in figure 2. The primed system of coordinates is also illustrated with the x and x' 
axes oriented so tlutt they coincide. Then the y' axis is in the y - z plane. The following 
equations hold : 

x' == x 
AI _ A, . A Y - cos Qx- sm Qz. 

Furthermore, the vector ~, which occurs in t be expression for th e current density is given by 

~' = -sin q,'x' + cos q,'y'=- sin q,'x + cos q,' cos l1y - cos q,' sin Qz. 

, Ve want to express the quantity sin (j'q,' in terms of the unprim ed variables. Now, 

sin (j' sin q,' = r'.f/ = sin (j sin q, cos Q-cos (j sinQ 
and 

sin (j' cos q,' =t-'. x' = sin (j cos cj>. 

Thus, 

sin (j'~' = [-sin (j sin q, cos Q+ cos (j sin Q]x +sin (j cos q, cos Qy -sin (j cos q, sin Qz . (14) 

The vertical component of the electric field at the earth's surface can be fo und from (4), 
(8), (13), and (14). It is convenient to perfoTIn..!:.he volume integral indicated in (4) before 

attempting the ~, 7] integrals in the expression for r. Thus, we 'write 

(15) 

where 

(16) 

In this equation a= x, y , or z and J ",(w) is the Fourier transform of J",(t ). We have also set z= O 
in the equation for Ez and have assumed that the center of the expanding plasma is at a depth 
d below the interface. 
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The integrftls in (16) are to be evaluated using (J 3) and (14). Then px, for example, is 
given by 

'1 2
11" d</>[ -sin 8 sin </> cos n + cos e sin n]. eiATsin 6eos (q,-",) 

where F[o(r - a)] is the time Fourier transform of oCr-aCt) ) and we have introduced the spher­
ical coordinates r, 8, </> centered at the plasma center (z axis vertical) . The parameters 'A and a 
are defined by the equations 

~='Acosa 

7] = 'A sin a. 

The </> integration is readily performed and we obtain 

. [ - sin2 e cos n27ri sin aJ 1 (Ar sin e) + sin e cos e sin n27rJo('A sin 0)] 

where J o and J 1 denote Bessel functions of the zeroth and fi.rst order. To perform the 0 inte­
gration, we use the following result listed in Morse a nd F eshb ach [1953b]: 

i 1l" eiz cos 0 COS" J m(z sin e sin u)P':{(cos u) sin udu= i n-m -J2; P~'(cos 8)J n+l/2 (z ) 

where Pr;: is an associated Legendre polynomial. By usin g this result, one finds for Px. and in 
the same manner, Pu and pz 

Px= - :~ [-iA sin a cos n + Yl sin n] ~ ~oo J F[o(r- a)] jl({31r )1,2dr 

py= - 4;~'A cos a cos n ~ ~oo J F[o(r-a)J.il ({31r)r2dl' 

pz= ~~A sin n cos a ~ ~oo J F[o(r- a) ]jl ({31r)r 2d1' 

where jl is the spherical Bessel function of order one. 
Substituting these results into (15), we find, after performing the a integration and making 

the substitutions p2=X2+ y2, tan e= 'JL and using the fact that A
O J O(Ap)=-J 1(Ap)A that 

x u p 

(17) 

The integral over 'A in (17) represents the effect of propagation over the earth and has 
occUlTed in many studies of radio propagation over a conducting half-space. For distances 

p:S;50 km (but much larger than the skin depth 1m {31 1) and for frequencies j=~ < 103 cps, 

one can show that [Space-General Corporation, 1960] 

(18) 

correct to within 15 percent. 
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To evaluate the remaining integral in (17) , it is necessary to be more specific about the 
nature of the source. According to Taylor [1950], the radius of the plasma increases with 
time (at least during the initial instants) according to the formula 

a(t )=At2/5 (0::::; t) (19) 

where A is a constant. I'Ve will assume that this expansion continues until a time tmax at 
which time the plasma radius is R and then stops abruptly. 

With this expression for a(t), it is convenient to perform the T integration before per­
forming the Fourier transform in the source integral in (17). Thus, 

The last form results as a consequence of our assumption that aCt) = R for t?:. tm ax • The quan­
tity € is a small positive number whose purpose is to shift the pole off of the axis of integration 

when +1. is multiplied by a function and integrated over w. Because of the multiplying 
w ~€ 

factor win (17), no improper integrals will occur in our problem and we can set €=o in all that 
follows. 

Because of the attenuation factor e-1m iltd which occurs in (18), high frequencies will be 
attenuated very rapidly in the earth. Furthermore, the maximum radius R of the plasma 
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FIGU RE 3. Electric field strength vs time after be­
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will not be large ill mosL conceivable cases. Thus (31R < 1 and we can expand the spherical 
B es el function j[({3[a) and jl ({3[R) in a power series, keeping only the first term. When Lb is 
is done, one can wriLe, aILer collecting the above results 

where 

(20) 

Finally, the time dependent field is 

1 f a> E z( p, 0, eL, t )= ro E z( p, 0, el, w)e -iw1clw. 
,,27r -ro 

(21) 

Figure 3 illusLrates some results obtained by use of (20) and (21). The conductivity of 
the earth was se t to 0- = 10- 2 mho/m. E o was taken equal to 0.5X lO- 4 web ers/m2 and sin 
[2 = 0.707. The depth of the plasma was taken as cl= 165 meters and the plasma was assumed 
to expand Lo a radius R = 26 meters in a time tmnx = 1.8X 10- 3 sec while obeying the law expressed 
by (19) . The time integral was evaluated numerically on an IBM 704 computer. Figure 3 
presen ts the vertical component of the elecLric fi eld pulse at the earth's surface for several 
distances p evaluated at 0= 0. 

4. Conclusion 

The tensor Green's function for t lw elecLric fLOld in a conduct ing half- pace has been ob­
Lained. With the aid of this function the calculation of Lhe electric field generated by an 
arbitrary current di tribution imbedded in a co nducLing half-space is reduced to evaluaLing an 
integral. The formalism. was illustrated by an example whi.ch indicated the usefulness of this 
approach. 

The work rcported here was paltially sponsored by Lhe Air Force ystems Command, 
Rome Air D evelopment Center, Griffiss Air Force Ba e, N ew York, and by Lhe Advanced R e­
search Projects Agency, Washington, D.C ., 20301, under ConLract AF 30(602 )- 2500. 

The authors express theiT thanks to Dr. G. L . Brown , :Manager of the Nuclear Science 
D epartment, Space-General Corporation, for his help and encouragement and ~i[rs. N. B. 
Dollins also of Space-General Corporation for her help during the preparaLion of tbe manuscript . 
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