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The problem of the generation of an electromagnetic pulse by an expanding, infinitely
condueting, spherical plasma under the earth is considered. The solution consists of the
derivation of an appropriate tensor Green’s function for the half-space which reduces the
problem of determining the electric field at any point in space due to the current density
generated by the interaction of the plasma with the earth’s static magnetic field to evaluating
an integral. The vertical component of the electric field at the earth’s surface which is
generated by the mechanism is calculated.

1. Introduction

The problems of determining the electromagnetic field resulting from a vertical and a
horizontal dipole imbedded in a conducting half-space have been solved in the past essentially
by following Sommerfeld’s method for solving half-space boundary value problems. A similar
problem such as the one of determining the field due to an arbitrary vector current distribution
J(7, t) imbedded in a conducting half-space with a time independent, uniform conductivity o,
is often of some interest. Such a problem, for example, may arise from the electromagnetic
radiation of an expanding plasma which may result from a very intense underground explosion
[Taylor, 1950]. The electromagnetic field generated by the current density J can be obtained
by first evaluating the appropriate Green’s function which satisfies the boundary conditions
and then evaluating the volume integral of the product of J and the Green’s function. In
this paper, the Green’s function for a time-varying source is derived by making use of Fourier
transforms. The field expression at any point in space is then obtained. Numerical results are
given for the vertical component of the electric field at the earth’s surface.

2. Formulation of the Problem

From Maxwell’s equations it is seen that the electric field £(7, w) as a function of position 7
and angular frequency w satisfies the equation

VXVXEF, o) —BEF, o) =iwud (7, o) (1)
where (7, w) and J(,7 w) are respectively the Fourier transforms of the corresponding time-

varying electric field Z(7, t) and the current J(7, 1), defined by

]_f(;:, w)= *“:'1_ E(r, t)etdt, j(F, w):—é_;f j(;] t)eletdt
&Y —®

’\27I'. —®
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and B is the propagation constant defined by

(2)

g woeow® I the nonconducting half-space
L moeow’ Fiwuo in the conducting half-space.

The symbols uy, €, and ¢ denote respectively the free-space permeability, free-space dielectric
constant and the conductivity of the conducting half-space.

Thus, if a dyad T is defined which satisfies the equation
VXVXT —BT=6(F—F/)] (3)

where 7 is a unit dyad and T satisfies the appropriate boundary conditions at the interface of the
finitely conducting and nonconducting half-spaces, the electric field intensity can be written as

E:iwuof r-Jdv, (4)
Vv
the integration being taken over the region of space V where ./ does not vanish identically.

Let the conducting and nonconducting parts of the space media be respectively referred
to as 1 and 2, as shown schematically in figure 1. Also let a cartesian coordinate system be

chosen such that the z axis is normal to the interface between the media 1 and 2.
Since (3) has coefficients which do not depend on z and ¥, one may introduce the Fourier

transform
= )N e -
re 2):(’—‘” [ T, e mizay (5)
\/27|' Voo J—o

into this equation. Then the operator v is transformed into v, where

Ve=—itE—iny+— - (6)

gl

In (6) and in the following, a caret is used to indicate a unit vector in the respective coordinate
direction. Thus (3) can be written as

VX VeXT(E, 1, 2)—BT(E, n, 2)=1 o 6(z—2")ei=+im, (7)

1
21
Equation (7) represents a system of ordinary differential equations, in the variable z, for the

components of T. Appropriate boundary conditions must be satisfied. The continuity of the
tangential components of T for an arbitrary current source means that T',,, I',., and T are

continuous at z=0. Continuity of the tangential component of H (proportional to v > T)
ne B AN = o
implies that the 76, 67, and 8z componentsof v > T are continuous at z=0. The other tan-

gential components of v X T vanish identically.

N

MEDIUM (2)

MEDIUM (1) / o

X

<

Sr=xhy, 2Y)

Ficure 1. Coordinate system wused in deriving
Green’s function.
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The solution of (7) satisfying these conditions is readily obtained. If the source point is

in medium 1 and the field point in medium 2, the Green’s function I' which satisfies (3) and
this boundary condition can now be expressed as

= 1 R . .

(- 7 72 ’ — Yoz ’— —_) — —y?)

1 (.lf, Th el il o )_4 5 dfdne Yoz +712’ — iE(x—2/) —in(y—y
™ — —

(L & —né ek )
ity N N
_&n R S yan (8)
N ntre N N
mé iy Etn’
. N N N )

where

N=v,85+7v:6%
71,2:1“‘%2‘!‘772—55

and the subsecripts on the propagation constants refer to the conducting and nonconducting
media.

3. Pulse Generated by an Expanding Plasma

This Green’s function will now be used to solve the problem of the emission of an electro-
magnetic pulse by a very intense explosion under the earth. It will be assumed that the
explosion creates an infinitely conducting, expanding spherical plasma which interacts with the
earth’s magnetic field. It is known that the magnetic field is frozen in the plasma as it ex-
pands [Cowling, 1957]. Thus, if the expansion is assumed to begin from a point, no magnetic
flux will exist inside the volume containing the plasma.

The physical mechanism for canceling the earth’s magnetic field, By, inside the plasma is
a surface current which is induced by B,. Hence, the plasma may be replaced, for computa-
tional purposes, by an equivalent current density ./ in the earth. This is more convenient
than solving directly the difficult moving boundary value problem which requires, in addition
to the vanishing of the normal component of the total magnetic field at the plasma surface,
the vanishing of the tangential component of *

E+ %0 (B,+ By

at the plasma surface where 1= (7, t) and B=B(7, ) are respectively the electric and magnetic
fields generated by the plasma. Here 2=a(f)7 is the radius of the plasma.

To obtain an expression for the equivalent current density generated by the expanding
plasma, we first remark that if the explosion takes place at a sufficiently great depth, the effect
of the earth-air boundary on the field near the plasma will be negligible. In fact, even ne-
glecting attenuation in propagation through the earth and assuming that the earth-air boundary
is a perfectly reflecting plane, the ratio of the reflected field to the primary field at the surface

3 To see that this boundary condition must be satisfied instead of the usual vanishing of the tangential component of £, one can consider, in
addition to the fixed coordinate system used above, a coordinate system which momentarily is moving with the velocity of some point on the
surface of the sphere. In this coordinate system, a portion of the plasma surface is stationary and the boundary condition is that the tangential

component of E vanishes. Transforming back to the fixed coordinate system, we find that the boundary condition is that stated above.
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of the plasma is of the order of

Rmax>3
2d
for low frequency waves where d is the depth of explosion origin and R, is the maximum
radius which the plasma achieves. For example, the effect of the earth-air boundary is less
than 0.1 percent for a plasma which achieves a final radius of 25 meters if d=150 meters.

Thus, to calculate the current density at the surface of the plasma which will cancel the
earth’s magnetic field inside, it can be assumed that the plasma is located in an infinitely
extended medium with conductivity o. Let r, 8’, ¢" be the spherical coordinates of the point
7 in a coordinate system using By as the polar axis and the center of the plasma as the origin.
In this case, the symmetry of the problem dictates that the current density be in the ¢A>’ direc-
tion and proportional to sin 8. For, it is clear that any vector associated with the electro-
magnetic field is independent of the angle ¢’. Furthermore, if a reflection in any
plane containing B, followed by multiplication by minus one is performed, it is seen that
B, (which transforms as a pseudovector) and the geometry remain invariant. Therefore, all
vectors associated with the EM field must be invariant under these operations. This implies
that vectors can have only a $>' component and pseudovectors 7 and 6 components. The
fact that the angular dependence of J is given by sin 6’ can be seen by recalling that a plasma
moving in a radial direction interacts with the external field B, by a term proportional to
5 % By (where 7 is the radial velocity vector). By substituting a driving term of this form into
Maxwell’s equations and using the above results, it is immediately found that J is propor-
tional to sin 6’.

Hence, .J can be written as

J=K(t) sin 0'5(r—a) ¢’ )

where the 6 function has been inserted because the current is confined to the surface of the
plasma. Here a=a(t) is the radius of the plasma and K(#), which may depend on time, is
to be found.

To determine K, we find the magnetic field which is generated in a medium of conductivity
o by a current density of the form indicated in (9). It is convenient to Fourier transform into
the frequency domain. Since the electric field Green’s function in an infinite medium can be
expressed as [Morse and Feshbach, 1953a]

= UV el & & 2041 I—m)! [— — = -
[T+ | it 55, 20 2 7D <= (et (E0n(6rs) 0,3 + F (615 ) N 1.0}

where M and N are vector spherical harmonics, e,— ; if Z;g and the symbols 7~ and 7»-

indicate respectively the larger and smaller of 7, /| it is found, as a result of the orthogonality
relations among the vector spherical harmonics, that

B(r, )= VX E—iu N80 | )T 07, '+ o[ 107000,

where h; and 7, are spherical Bessel functions and J (', w) is the Fourier transform of K(t)5(r—a).
Fourier transforming to the time domain, it is found, after taking (9) into account, that

BG, t):ﬁ fmdt’K(t’)fm dwe— 1944 662
m 0 J—® . _
IN®. 1 o8I (Ba) H(a—1)+ No 1. o(8r) 1 (Ba) H (r—a)}  (10)

where the argument of a is #’.
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Now, it is readily seen from dimensional arguments [Cowling, 1957] that if a non-uniform
spatial distribution of the magnetic field exists inside the sphere, the time for the non-uniformity
to decay to zero is of the order of wyor?. For a sphere with a radius of 25 meters and an earth
conduetivity of 107 mho/m, this time is about 107° seconds which is much smaller than any
practical expansion time for the plasma. Thus, the field at any point within the radius a(t)
can be considered to be quasi-static and equal to the field at »—=0. Hence, to evaluate K(),
we may set =0 in the following.

In this case, (10) reduces to

B0, )= f A K () ipBa N, 1. o(0)h(Ba)

:_22@% (cos 6’ —sin 0’0‘") f dwe =14~ Ba+ile~ e (11)
T . J-w

Since Ba is small for all frequencies of interest, the term ¢#* may be expanded in a power series.
Keeping terms of order g%?, it is found that

B0, 1) “"‘“o T )[ dUK( )f dwe=teti=1" [1#“"]

)

2 7 A & 7575 P Trlar PR )~ / /
—ko g (cos 0"r—sin 070 )f dt’ K(t”) [B(t—t )+(;- — oo ;f o€ /tz} o(t— :I

JO

- 2 AL Ty Moo L/ o Mo€ a? 2
—Ho g (cos 0’7 —sin 670") [K({,H- 5 7 (Ka?) S (Ka )]

It is seen, then, that the magnetic field generated by the current density J will cancel the
earth’s magnetic field

By(cos 0’;—sin 0’@’)
if K(t) satisfies the differential equation

_} & ;K(t)
2 Mo

#00 d

97 8 (o) b & (Ba). (12)

2 i

In particular, for slowly expanding plasmas, K(f) is nearly a constant:

. 3B
K@=~
< Mo
This will be true in cases of practical interest, for the term 'u; 7 - (Ka?) is of order 'u“N smaller

than the leading term in (12). This is very small. The third term of (12) is of even smaller
order.
Thus, the current density

5/ 3 BO . , , A, ’
J(r, t)=—=—sin 0’6(r" —a)¢ (13)
2 o

will approximately cancel the earth’s magnetic field inside the plasma. It can be readily
checked by expanding the integrand in (10) in powers of gr that this expression for the current
density will lead to a field B(a, t) at the boundary of the plasma whose normal component differs
from —cos 6'By by a term in the integrand of order (Ba)? smaller than the leading term. A
similar calculation shows that the second boundary condition is also satisfied to the same order
of magnitude. For frequencies near 1 ke/s, an earth (onductivity of 1072 mho/m, and a maxi-
mum sphere radius of 25 meters, the error of order (8a)? in the integrand is about three percent
of the leading term.
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MEDIUM (2)

MEDIUM (1)
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Ficure 2. Illustrating geomelry for eleclric field
calculation for an expanding plasma.

To calculate the electric field at the earth’s surface produced by the expanding plasma,
it is necessary to write (13) in terms of the coordinate system in which the Green’s tensor is
expressed. Let the earth’s magnetic field be inclined at an angle @ to the vertical axis, as is
illustrated in figure 2. The primed system of coordinates is also illustrated with the z and »’
axes oriented so that they coincide. Then the ¥’ axis is in the y—z plane. The following

equations hold:
’

Y
=7

A . A
’'—=cos Qr—sin QZ.

> B>

A
Furthermore, the vector ¢” which occurs in the expression for the current density is given by
g s 1Ay i 2 A ’ A F ol 2
¢’ =—sin ¢'z"+cos ¢’y = —sin ¢’x+4cos ¢’ cos Qy—cos ¢” sin Qz.

We want to express the quantity sin ’¢” in terms of the unprimed variables. Now,

sin 0" sin ¢’ =7’.7/ =sin § sin ¢ cos Q—cos 6 sin Q
and
sin 6’ cos ¢’ =4'.4"=sin 0 cos ¢.
Thus,

sin 0’2)’:[——sin 6 sin ¢ cos Q-+cos 0 sin Q)Z-+sin 0 cos ¢ cos Qy—sin 0 cos ¢ sin Q5. (14)

The vertical component of the electric field at the earth’s surface can be found from (4),
(8), (13), and (14). It is convenient to perform the volume integral indicated in (4) before

attempting the &, n integrals in the expression for T. Thus, we write

“‘Yld

EF—%QI_ f_ [vlépx+71npy—{52+n2}2’z]-eN e~ ididy (15)

where

Pa= f J a(w) ettEt mEN GOy (16)
sphere

In this equation a=z, y, or z and J,(w) is the Fourier transform of /, (). We have also set 2=0
in the equation for E, and have assumed that the center of the expanding plasma is at a depth
d below the interface.
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The integrals in (16) are to be evaluated using (13) and (14). Then p,, for example, is
given by

5 o .
Pp—— 5y [ Fl6(r—a)]r* (Irf df sin fe17cos0
2 uo
f d¢[—sin 0 sin ¢ cos Q-Fcos 0 sin Q. 7 sindcos (6=a)
0

where F[6(r—a)] is the time Fourier transform of 6(r—a(t)) and we have introduced the spher-
ical coordinates 7, 6, ¢ centered at the plasma center (z axis vertical). The parameters N and «
are defined by the equations

E:)\ CcOS «

n=N\ Sin a.

The ¢ integration is readily performed and we obtain

Dr—— 3B f]f [6(r—a)|ridr fwdﬂ(ﬂl’ 2eelY
0

-[—sin®0 cos Q2mi sin /(N sin 0) sin 0 cos 0 sin Q2r.J (N sin 6)]

where J, and J; denote Bessel functions of the zeroth and first order. To perform the 6 inte-
gration, we use the following result listed in Morse and Feshbach [1953b]:

™
f eizeosbeosu (= gin 0 sin w)Pr(cos w) sin udu=i""" \/~— Pr(cos 0)J,11/2(2)
0

where /7 is an associated Legendre polynomial. By using this result, one finds for p, and in
the same manner, p, and p,

])I:_fij [—%N sin a cos @+, sin Q] 3 By fF[6(1‘—(1)]./'1(517')7‘2(77‘
Bi 2 .
4N
Py=——5— €08 a C08 Q i f]' [6(r—a) ] (Byr)rdr
1
p T2 sin 0 cos a3 2 [ Flatr—a)li(Brrdr
B1 2w .

where 7; is the spherical Bessel function of order one.
Substituting these results into (15), we find, after performing the « integration and making

the substitutions p*=x*-+17? tan 0:% and using the fact that % Jo(Ap)=—J 1 (Np)\ that

1d

E(p,8,d,w)=—21i0u; sin Q cos 0 5——9 fF o(r— a)]jl(ﬁlr)rdra f
Mo

The integral over X in (17) represents the effect of propagation over the earth and has
occurred in many studies of radio propagation over a conducting half-space. For distances

p<50 km (but much larger than the skin depth Im B;*) and for frequencies f:%r<103 cps,
one can show that [Space-General Corporation, 1960]

JoOoNdn ~ 0 g 1] € 18
i, ~—6?[””‘ﬁ2+; e (18)

2 (7 o
op Jo 7152+7252

correct to within 15 percent.
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To evaluate the remaining integral in (17), it is necessary to be more specific about the
nature of the source. According to Taylor [1950], the radius of the plasma increases with
time (at least during the initial instants) according to the formula

a(t)=At*"> (0<t) (19)

where A is a constant. We will assume that this expansion continues until a time #,.c at
which time the plasma radius is R and then stops abruptly.

With this expression for a(f), it is convenient to perform the » integration before per-
forming the Fourier transform in the source integral in (17). Thus,

J‘R F[a(r—a,)]jl(Blr)rzdrzé ) Qe [R drr*g (Byr)é(r—a(t))

V& JO

©

=,—;_ (6 (Bualt)) e dt

V2r Jo

29 t@lmax !max
— o ED T [ e }
w ‘}_'LC 0

—
The last form results as a consequence of our assumption that a(t) =R for t>t,.. The quan-
tity e is a small positive number whose purpose is to shift the pole off of the axis of integration

when is multiplied by a function and integrated over w. Because of the multiplying

1
w-+1e€
factor w in (17), no improper integrals will occur in our problem and we can set e=0 in all that
follows.

Because of the attenuation factor ¢=™ A1 which occurs in (18), high frequencies will be

attenuated very rapidly in the earth. Furthermore, the maximum radius R of the plasma

107
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Ficure 3. Electric field stremgth vs time after be-
ginning of expansion.
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will not be large in most conceivable cases. Thus ;<1 and we can expand the spherical
Bessel functions 7,(8,¢) and 7,(8;R) in a power series, keeping only the first term. When this
is done, one can write, after collecting the above results

Bap
E.(p, 0, d, ) :J;: B,R® sin Q¢ € [—i52+%] A(w) cos 0
s

p
where
. . lmax a 3 N
A(w):’be“"'mx—i—wf (E) et tdt. (20)
0

Finally, the time dependent field is

E.(p, 0, d, t):L_ I E.(p, 0, d, w)e “do. (21)
\’27I' —®

Figure 3 illustrates some results obtained by use of (20) and (21). The conductivity of
the earth was set to ¢=10"2 mho/m. B, was taken equal to 0.5>X107* webers/m? and sin
2=0.707. The depth of the plasma was taken as d=165 meters and the plasma was assumed
to expand to a radius =26 meters in a time f,,,— 1.8 X107% sec while obeying the law expressed
by (19). 'The time integral was evaluated numerically on an IBM 704 computer. Figure 3
presents the vertical component of the electric field pulse at the earth’s surface for several
distances p evaluated at §=0.

4. Conclusion

The tensor Green's function for the electric field in a conducting half-space has been ob-
tained.  With the aid of this function the calculation of the electric field generated by an
arbitrary current distribution imbedded in a conducting half-space is reduced to evaluating an
integral. The formalism was illustrated by an example which indicated the usefulness of this
approach.
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