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This p aper is par tly of a tu to ri al n ature. Tlw in te nded p urpose is to exploit t he essen­
tial two-dimensional nature of wa ve propagation in t he ea r t h- ionosphe re waveg uid e . It is 
shown t ha t , wi tho ut resorting to e rudi te a rg ume nts in t he comp lex pla n e, the us ua l wo rki ng 
form ulas of VLF mode theor y may be d erived d irect ly from o rt hogonali t y consid e rations. 
F urt hermore, t he physical ins igh t ga ined by t he present de velopmen t immedi ately s uggests 
hO\I' t he formulas m a y be genera li ~ed to an ea r th- io nosphere \\'a\'cgui cl e of nonu nifo rm II·id th . 

1. Introduction 

In the theory of terresLrial radio propagation , th e earth is represent ed by a spheric111 body 
and t he atmosphere is usually ideali :;:ed by concen tric sph el'i cal layers. J n (hi sense the problem 
is iOJ'lnulated a a three-dimension al one. H owever , in subsequent developments and in th e 
reduction to u eiul formulas, approximations are usually made whi ch displ ay th e inheren t two­
dimensional character of the problem . T ypical of these approximations are the replacement of 
the spherical wave fun ctions by Airy fun ctions and the Legendre functions by leading Lerms in 
tllCil' asymptotic eA,])ansions. 

It is the purpose of the presen t paper to develop the fin al formulas directly from a two­
dimensional formula tion. This should help dispel any doub ts concerning the validiLy of the 
approAi mated three-dimensional solutions. A dem.onstration such as this is timely since a two­
dimensional labor atory model has been used recently Lo study VLF propagation in a spherical 
waveguide. l At the same time we hall discuss the excitation factors, heigh t-gfl in fun ctions 
[Spies and Wa.it , 1963], and mode conversion coefficients [\iYa.i t, ] 962a] for th e two-dimensional 
model. F or the purposes of Lbis paper , the ionosphere is assumed to be equivfllenL Lo an iso­
tropic medium. 

2. Primary Fields 

In formulating the radio problem in spherical coordinates, it is customary to choose the 
source as a ra.dial electric dipole or a radial magnetic dipole. By an appropri a te superposition, 
the fields of an arbitrary source may be determined. In a two-dimensional model it is more 
convenient to work with line sources. For example, in place of a radial electric dipole on a 
spherical surfflce it is convenient to employ a line dipole source. To in troduce the subj ect 
the fields, of such a line dipole located in free space, are derived from basic principles . 

The line source consists of a uniform distribution of vertical electric dipoles. The si tuation 
is illustrated in figure 1 where the source current density is I amps per meter , for a s trip of width 
dt, along the x axis. Because the source current h as only a z component, the resultin g H er tz 
vector also has only a z componen t, II,. Clearly, th e Hertz vector of the distribution is ob­
tained by integra tin g the contributions from the distribution of vertical electric dipoles; thus 
[Wait, 1959] 

- f+at ~ e- i kr . , 
IIz- 4' dx , 

_at 7T'UOW r 
(1) 

I M icrowave model experimen ts being cond ucted by the au thor's colleagues E . Dahar and S. :lVl aley ill the D epartm ent of Elect r icaJ Engineer­
ing at the University of C olorado. 
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FlGURE 1. Line dipole SOUI'ce and coordinate system 
employed for the discussiun of primary fields. 

where k = 2'n-jwavelength, 
r = [(x-x')2 + y2 + z2]1/2, 

and ~o= 8.854 X 10- 12 • The integration with respect to x' may be readily carried out , to 
give [Wait, 1959] 

IIz=2I~l Ko(ikp) , (2) 
7r'/, ~OW 

where p= (y2 + Z2)1/2 and Ko is a modified Bessel function of order zero. The resulting mftgnetic 
field , which has only an x component, is obtained from 

Hz= ik2 olIz, (3) 
J1.oW oy 

where J1.o = 47f X 10- 7• In the far zone, where kp> > 1, this reduces to 

I dl ( ik ) 7> _ i kp • 

2(27rp )7> e sm lX, (4) 

where sin lX = y/ p. It is of interest to observe that the radiation pattern characterized by sin lX, 
is identical to the pattern of an isolated vertical dipole. However, in the case of ft line dipole 
SOUTce, the radiation field is a cylindrical wave whose amplitude varies inversely as the square 
root of distance. This is to be contrasted with the radiation field of a point electric dipole 
which is a spherical wave with an inverse distance variation of the amplitude. An obvious 
point of similarity between the line dipole and the point dipole is the common phase factor 
exp (-ikp), occurring in the radiation fields. 

The preceding rather elementary derivation is based on a prior knowledge of the expression 
for the Hertz vector for a point dipole. It is in structive to obtain the same final formula for 
H z by using a transform method. 

The starting point is to recognize that Hx m ust satisfy the wave equation 

(5) 

Solutions are of the form exp (±iAZ) exp (± uy) where U= (A2_P)I /2 and A is a parameter. 
A general solution is constructed by writing 

(6) 
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where F(A.) is an unknown function and where the contour of integration is along the whole 
real axis of A.. The r adi cal is to be chosen in u such th at Re u> O. Thus, the minus sign in 
the exponent is to be employed when y> O rm d the positive sign is chosen when y< O. Diffi­
culties with branch points on the contour are avoid ed by allowing k to have a very small but 
finite negative imaginary part (i. e., - Imag . k> O). 

The function F(A.) is obtained by notin g t hat Hx must become numerically equal to - J /2 
at z= O and as y tends to zero from positive values. Thus 

J 
H x] ~--2 o(z)dl , 

y=o+ 

where o(z) is the unit impulse function at z= O. It should also be noted that 

Employing the spectr al representation of the unit impulse fun ction , i. e., 

it follows from (6) and (7a,) thftt 

Thus 

F (A.) = _ Jdl. 
471" 

for y> O. This in tegral in (10) m ay b e evaluated by no Li llg that 

which m ay be differentiated under the integral sign with respect to y. 

H ikIdl K (' k ) . x= - -Z;- 1 '/, P SID ex, 

As a resulL, 

(7a) 

(7b) 

(8) 

(9) 

(10) 

(ll) 

(12) 

where sin a= y/ p and K l is the modifi ed Bessel function of order one. 
kp» I , it follows that 

In the far zone, where 

E7 (ik )Y, Jdl -ik . 
:Zx~-2(271"p) !'i e PSlDex, (13) 

which is identical to (4) as it should be. 

3 . Fields in the Concentric Cylindrical Waveguide 

To come to grips with the general problem, a rather simple model is chosen . The wave­
guide region consists of two concentric cylindrical surfaces of radii a and a+ h, respectively, 
as indicated in figure 2a. In terms of a cylindrical coordinate system (r, e, z) , these bounding 
surfaces are defined by r= a and r= a+ h where the trmgential fields are assumed to satisfy 
impedance-type boundary conditions. The field variations in the z direction are taken to be 
zero so that the modes in the structure may be either 'I'M (transverse magnetic) or TE (trans­
verse electric). Only the 'I'M modes will be considered here since their analog in VLF radio 
propagation is of greatest practical interest . The analysis for the TE modes is almost identical. 

For the 'I'M modes in such a cylindrical region , the magnetic fi eld h as only an axial or z 
component which is deno ted H (without writing the subscript z). From :Maxwell's equations, 
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FIGURE 2a. Concentric cylindrical model and 
conventional coordinate system Cr, 0) . 

it is seen that the electric field has only rand (J components. 
The magnetic field in some aperture plane (J = (Jo, a+h> r> a is now assumed to be Imown 

and designated by H((Jo, r), being independent of z. The boundary conditions for H((J, r) are 

Eo= -ZaI-I at r=a, (14a) 

EO = Z iH at r= a+ h, (14b 

where Z g and Z j are the respective surface impedances. Within the region a+ h> r> a, the 
magnetic field must satisfy the wave equation 

(15) 

Solutions are any linear combinations of the form 

where v is a complex quantity independent of the coordinates. H<~) and H <;) are Hankel func­
tions, of order v, of the first and second kind, respectively. 

Solutions which are periodic require that v is an integer. However, this is an unnecessary 
restriction since individual modes need not be periodic . Instead , the value of v will be deter­
mined from the boundary conditions. Furthermore, without loss of generality, it is specified 
that Re v> O, and attention is restricted to solutions which behave as e-i,o . This will correspond 
to waves which are attenuated in the positive (J direction. The waves propagating in the 
negative (J direction are identical in form . 

If attention is restricted to large radii of curvature such that both ka> > 1 and h/a< < 1 
are satisfied , the H ankel func tions may be approximated by their Airy function representation. 
There is a vast amount of literature on this particular subject and here only the final form is 
quoted. Thus [Wait, 1962b] 

where 

t =(~a)~ (v- ka), 

Y=(~a)~ k(r-a), 

and WI is an Airy function. Similarly, 

H;') (kr) ';;;,-7r
i

Y, (~ar wz(t-y), 

84 

(16) 

(17) 



LINE DI POLE 
SOURCE 

I 
X-------.J 

I 
I 

FlO V RE 2b. Concentric cylindl'ical model with the 
"natural" coordinates (x, y ). 

in terms of the Airy function W2. In terms of more conventional notation 

Wl (t) = 7rY2 [Bi(t ) - iAi(t) ], 
and 

(18) 

W2(t) = 7rY2 [Bi(t ) + iAi(t) ], (19) 

where the Airy functions Ai and B i have b een defin ed and tabulated by Miller [1946]. The 
functions W I and W2 satisfy 

d2w(t ) -t (t )=O (20) dt 2 w , 

which is known as Stokes' (or Airy's) equation . 
To facilitate the subsequent discussion , certain dimensionless parameters are in troduced 

which simplify the notation. These are 

X= (lea/2)'Ae, Xo = (lca/2)'Aeo, y = [2/ (lea) ]'Alc (l' - a), Yo= [2/ (ka) ]'Alch, q= -i(lca/2)'AZ u/rJo, 

qj= -i(lca/2) 'AZ d''1 0, and 71 0= ( !J.o/€o) y,~ 1207r. 

The parameters x and y, while describing horizontal and vertical distances, should not b e con­
fused wiLh Car tesian coordinates. The quantities q and q/ describe conveniently the electrical 
properties of the bounding walls of the waveguide. The situation is illustrated in fi gure 2b. 

The (approximftte) solutions of (15) are now written as linear combin ations of 

Wl(t- y) 

W2(t - y) 

The discrete values of t (i.e., the eigenvalues), denoted by tn, are determined from the boundary 
conditions. Thus, the resultant field has the form 

H = H (x, y) = ~ bnif> (tn, y)e-jCx-xoltne-ikaCO-Ool, (21) 
n=l , 2, 3 ... 

where 
(22) 

where bn and A(t,,) are undetermined coefficients. It is evident from (20) that if> satisfies 

(23) 

The boundary conditions given explicitly by (14a) and (14b) may be written in the form 

dd if>(t, y) ] +q<I> (t, 0) = 0, 
Y y=o 

(24) 
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and 

dd <I>(t, y) ] -q/f'(t , Yo) = O. (25) 
y y=yo 

The latter two equations determine both the eigenvalues t n and the coefficient A(t,,). Using (22) 
and (25), it is seen that 

where the prime indicates a derivative with respect to the argument t - yo of the Airy function. 
If (24) is also to be satisfied, it follows that 

(27) 
where 

(28) 

Within the approximations used, the modal equation (27) for this cylindrical model is identical 
to the one developed for a concentric spherical model [Wait, 1961]. 

It should be mentioned at this stage that the surface r= a+ h can be regarded as a reference 
surface where the ratio of the tangential fields is specified. In the general case, Z i or qi may 
be a function of the eigenvalues t n. However, for VLF it is a good approximation to regard 
Zt or qi as constants. This is equivalent to stating that the surface impedance does not depend 
on the angle of incidence. In a similar manner Zg or q can be regarded as constants. 

The orthogonality properties of the modes are now studied. We consider two sets of 
values, t n and t"" which satisfy the boundary eqs (14a) and (14b). However, for any value of 
y these must also satisfy 

(29 ) 

and 
cZZ 

-d 2 <I>",-( tm- y)<I>m= O, <I>rn= <I>(t"" y) . y 
(30) 

After multiplying the first of these equations by <I>", and the second by <I>n, they are subtracted 
from one another. Both sides of the resulting equations are then integrated with respect to 
y over the range 0 to Yo. This results in 

d d JYo l YO <I>n -z <I>m - <I>", -Z <I>n = (tn- tm) <I>n<I>mdy. 
cy cy 0 0 

(31 ) 

In view of the boundary conditions on <I>n and <I>", at y = 0 and y = yo, the left-hand side of the 
preceding equation is zero. Thus, the integral on the right also vanishes if t n is not equal to 
t m . Therefore, we have the importan t result 

( YO Jo <I> (t "" y)<I>(t n,y)dy= O if m=;6.n. (32) 

It now follows that, if both sides of (21) are multiplied by <I>(tm, Yo) and integrated from 
o to Yo, 

( Yo 
J( H(xo,y)<I>(tn,y)dy 

b = 0 • 
n eo 

Jo [<I>(t n,y)j2dy 
(33) 

The normalizing integral 
eO 

N n= Jo [<I>(tn,y)]2dy, (34) 
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is now expressed in a more convenient form. This is accomplished by noting that 

(35) 

This can be proved by differentiating both sides with respect to y and making use of (29) . 
Then using the definition of <I> (tn, y) in terms of Airy functions, it follows that 

2i 
<I>(tn,O) = '() ()' 

W 2 tn - QW2 tn 
(36) 

and 
2i 

(37) 

where use is also made of the Wronskian condition 

(38) 

which is valid for any value of t. Finally, on making use of (35), (36), and (37) along with 
(14a) and (14b), it is found that 

N = _ 4(t ,,_q2) + 4(tn- yo-qD . 
n [w~(tn)-qw2(tn)]2 [w;(t,, - YO) + qiW 2(tn- YO)]2 

(39) 

This can be regarded as a fairly important result. 

Equation (33) for the coefficient bn can be wriLten in the convenien t form 

2A ( Yo H(xo, y)<I> (t n, y)ely 
b n Jo 

n = Yo "--"----'[=<I>-;-( t-n ,--:0:7") ]"'""2 -- , 
(40) 

where 

(41) 

We are now in the position to obtain the flelds resulting from a line dipole source at height 
z above the earth's surface. Thus, the aperture field is specifled by 

H (T, 0) = o(z- z)(I/2)ell , 

where Z=T- a and where I and ell have the same meaning as used previously. 
the natural coordinates, the assumed field in the aperture plane is given by 

A (2)~ A where Y= ka k z. 

( 2)~ A 1 
H(xo,O) = k ka o(y-y) "2 ell , 

Using this result and (40), it follows that 

b I An <I>(tn' Y) (2 )~k 
n= Yo [<I>(tn,O))2 ka . 

(42) 

In lerms of 

( 43) 

(44) 

The resultant field for a dipole line source, at 80= 0, may now be written compactly in the 
form 

H(x, y) = H (O) (x, y)V, (45) 

where 

V = 4(1rX) M e-i.-!4 '5:. e ixl A G (A)G ( ) ~ - finnY n Y, 
Yo n=1, 2, 3 .•. 

(46) 
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(47) 

(48) 

fl,nd 

G (y) _ cf>(tn, Y) . 
n - cf>(tn, O) (49) 

The qUfl,ntity H (O), defined above, is numerically equal to the broad-side field of the line 
dipole source in frp.e space at a distance equal to aO (e.g., compare with (4) for a = 7r/2). The 
quantity Gn(y) , described as a height-gain function , is the ratio of t.he field of mode n at height 
y to the field of the same mode at y= o. 

The coefficient A n, which is defined by (41), is called the "excitation factor." The physical 
significance of this factor may be evident from the identity 

A Yo 
n ( Yo ' 

2 Jo [G,Jy)]2dy 
(50) 

which may be verified by comparing the right-hand sides of (33) and (40). As may be seen, 
height-gain functions G,,(y) , which increase appreciably with height, correspond to small 
excitation factors. 

The expression for V given above is identical in form to the corresponding result derived 
for a spherical model under the assumption that h/a< < 1 and ka> >1. In both cases, Vmay 
be described as the ratio of the actual field to a "primary field." Furthermore, the height­
gain function G,,(y) and the excitation factor An also have identical definitions in the cylindrical 
and spherical models. 

4. Extension to Waveguides of Nonuniform Width 

The development of the theory in this paper lends itself quite readily to certain generaliza­
tions. A case of some interest is when the height of the upper boundary varies in the direction 
of propagation . In the two-dimensional model considered here, the (normalized) height 
yo(x' ) is considered to be a fun ction of x', the (normalized) distance. As indicated in figure 3, 
yo(x' ) varies, in a smooth manner, from Yo( O) above the source to Yo(x) above the observer. 
The (normalized) surface impedances of the walls are also regarded as a slowly varying func­
tion of X' . 

On physical grounds it can be expected that a waveguide with slowly varying properties 
will not differ fundamentally from a waveguide of constant cross section. In other words, at a 
distance x', the structure of the modes is characteristic of a uniform waveguide of constant 

}(I-------l q{x ' ) I, Y:;; a 

,,---;---/ 
I I 

FIGU RE 3. Waveguide of nonuniform width. 
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width which is equal to Yo (x') and with constant wall impedances equal to q(x') and qi(X' ) . 
To obtain the overall behavior of the fi eld one is led to integrate over the whole range of x' 
from ° to x. Thus, the appropriate form of the (complex) phase term is 

exp [ -i .r t n(x ' )clx ' J exp (-ikaO), 

where X= (kaj2) 'A 0, x' = (kaj2) 'A O' , and t n(x' ) is the slowly varying eigenvalue. From what 
we have said above, it follows that tn(x') is a solution of 

A[t,.(x') ]B[tn(x') ]= exp (-i27r71), (51) 

where A[tn] and B[tn] have the same definition s as (26) and (28), where now Yo, q, and q. are 
fun ctions of x' . 

For the slowly varying waveguide, it is also necessary to employ the heighL-gain funct,ions 
determined by the local wid th. Thus, Gn(y) is to be replaced by the fun ct.ion 

G ( ' ) _ <l>[tn(x' ) , Y] , 
n x ,y - <l>[t ,,(x' ), O] 

which is an obvious generalization of (48). 
The resultant expression for the field is thus given by 

H (x , y) = H CO) (x, y)V, 
where 

- 4(rrx)I /2 - h / 4 • [ 'lx .1 'J - A V [ (0) ( ))l 12 e ::6 cxp -~ t ,, (x )dx 1\ " G,, (O , y )Gn(x, y). 
Yo Yo x n= 1, 2, 3, • . • 0 

The "excitation facLor" is now obtained from 

- [yo(O)Yo(X) ]1/2 

A n { ( YO(o) r VQ(X) } 1!2' 
2 Jo [Gn (O,y))2dYJ o [G,, (x,y)]2cly 

which is an obvious generalization of (50) . It is then evident that 

A = [A (0) A ( X) J 1 /2 
n n n , 

(52) 

(53) 

(54) 

(55a) 

(55b) 

where A~O) is defined by (41) if Yo, q, and qi are replaced by Yo(O), q(O) , and qi (O), respectively. 
Similarly, the definition of A~x) has the form of (4 1) if the corresponding quantities Yo(x) , 
q(x), and qi(X) are employed. 

It migh t be mentioned that if the curvature of the walls is sufficiently small and qi is 

essentially zero, An will become equal to unity as in the guide of constant width [Wait , 1962b]. 
Thus, in this limiting case, it may be seen from (54) that the fields of the individual modes 
vary apprm .. imately as 1N yo(x) , apart from the exponential factors. This b ehavior is consistent 
with conservation of power since the outward power flow is proportional to 1jyo(x) or inversely 
to the width of the waveguide. 

The form of (54) is suggestive of a WK.B approximation for propagation in a horizontally 
stratified medium with slowly varying properties. Implicit in the development is the assump­
tion that conversion of modes from one order to another may be ignored. Thus, the properties 
of the waveguides must vary only slightly in a distance equal to one wavelength. 

5. Waveguide With Localized Obstruction 

If the width of the waveguide changes suddenly, it is apparent that the results in the 
previous section are not valid. In this case, it is suggested that a K.irchhoff-Huygen's ap-
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FIGURE 4. The concentl'ic cylindrical waveguide with 
a localized obstruction in the aperture plane x = Xo· 

proach is useful [Wait, 1962cj. 
It is now imagined that the incident field results from an equivalent line magnetic source 

at x= O (i .e., 0= 0). Thus, 

H(x,y) ="'L, am~(t"" y)e - ixt m for x< xo (56) 
m 

where am is a coefficient which does not depend on x or y. It is assumed that the aperture 
plane x= xo is obstructed in such a manner that the effective aperture is a slit extending from 
Y= Yl to y, (i.e., r-a=Zl to Z2). The situation is illustrated in figure 4. Thus, within the 
Kirchhoff approximation, 

H(xo, y) = "'L, am~(tm, y) e-ixotm for Yl<y<y~ 

= 0 for O< Y< Yl 

= 0 for Y2< Y< YO' (57) 

In other words, we are assuming that the field within the aperture of the slit has the same value 
as if the slit were not present. It is known from a st udy of the rigorous solutions of diffraction 
by slits that this is an excellent approximation [Born and Wolf, 1959] provided the width of 
the slit is greater than about a wavelength. 

The field in the region x> xo can now be expressed in the form 

H (x, y)="'L,"'L,A~m) ~(t n , y)e-iCx-xoltne-iTotm (58) 
m n 

where 

(59) 

We see clearly that the incident mode of order m excite" modes of order n where m and n are 
positive integers. 

It is convenient to write 
(60) 

where, for m"",n, 

p (m) = _ 2An ~(tm, 0) l YI G ( )0 ( )d 
n y ~ ( t 0) m Y n Y y, o n, 0 

(61) 

and 

Q(m) = _ 2A n cp(t,", 0) l YO G ( )G ( ) I 
n <I> (t 0) m Y n Y ( y, Yo n, Yl 

(62) 

where 
G (y) _ <I>(t n , y ) 

n - <I>(t n, 0) (63) 
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and 

G () <I:> (t m, y ) 
In Y ~,( 0) '*' t in, 

(64) 

In obtaining t he above forms for p~m) and Q~m) use has been made of the orthogonality 
condition given by (32). 

'When m= n, we have 
A~n) =[p~n)+ Q~n) lan (65) 

where 

p~n) = I -=--.!!. [Gn(y) Pdy ') A I VI 
Yo . 0 

(66) 

and 

Q~n)= l- 2An l Yo[ Gn(y)FclY 
Yo Y2 

(67) 

where use has been m ade of (39). 
The in tegr als over the range 0 to YI in the preceding equations can be regarded as the 

influence of the obst acle on the ground, whereas t he integrals over Y2 to Yo are related to the 
protubera nce at the ionosphere. To evaluate these in tegrals it is desirable to expand the G 
functions as a power series in y. 

Sin ce 

and 

it is not difflCUlt to show th at 

Gn (O)= l 

[dGn (y) /dyL~ o= - q 

d2G(y) 
-_·_= (t - y)G(y) for any Y dy2 n , 

G ( ) - + tny2 (l + tnq) 3+ 
It Y - 1- qy 2 6 Y .... 

Thus, 

(68) 

(69) 

(70) 

(71) 

(72) 

and the expfl,n sion for [Gn(y)j2 is ob tain ed by simply replacin g tm by tn in the preceding result. 
The integrations for the P in tegrals are now readily carried out. They yield 

p~m)= _ 2~n gm,n [YI- qy~+ (tn+ tm+ 2q2) ~~-(l+2tnq+ 2tmq) n+· .. J (73) 

where 

and 

<I:> (tm, 0) W~ (tn)-qw2(tn) 
gm,n <I:> (tn, 0) W~(tm)-qw2(tm) 

P (n) _ _ 2An [ _ 2+( + 2) Y~-( 1 +4 ) y f+ J. 
n - 1 Yo YI qYl tn q 3 tnq 12 . . . 

The Q integrals are evaluated in a very similar m anner. Thus 

Q~m) = _ 2:an gm,nGm(yo) Gn(yo) [ (YO-Y2)-qi(YO-Y2)2 

+(tn+ tm + 2qD (YO~Y2)3 
and 

(74) 

(75) 

Q~n) = 1- 2~n [Gn(yo) J2 [ (Yo-Yz) -q;(Yo-Y2)2+ (t n+qD (Yo---;, yz)3 (1 + 4tnq;) (YO~Y2)4 + .. J (77) 
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Due to the typically large values of qi at VLF, the preceding series for the Q functions are 
probably not useful. It would be better to work directly with eqs (62) and (67). 

6. Discussion of Formulas 

Some of the previous results are now discussed briefly. For purposes of illustration, it 
is assumed that the ionosphere is a sharply bounded medium whose t>ffective conductivity is 
~oW, where ~o= 8.854 X 10- 12. Under this condition extensive numerical values of the coeffi­
cients tn satisfying eq (27 ) are available [Spies and Wait, 1961] . Using these values, the various 
quantities entering into the formulas for the modal coefficients can be evaluated in a straight­
forward manner. 

It is seen that the modal coefficients, given by eqs (73 ), (75 ), (76 ), and (77 ) all contain 
the factor An. This factor is a modal excitation factor and it is a measure of the efficiency of 
excitation of a given mode from a line or dipole source [Wait, 1961, 1962b] . In the present 
context it is normalized so that it approaches unity for perfect ground conductivity (q= 0) 
and a flat earth (0= OJ). In general it is a complex quantity. To illustrate its behavior w, is 
set equal to 2 X 105 and h is taken as 70 km. Furthermore, the ground is assumed to be perfectly 
conducting . Under these conditions A n for n = 1 has the following complex values for the 
freq uencies indicated: 

AI= 0.95 13.8° (10 kc/s), 

0.59 14.6° (20 k.c/s), 

0.19 110.6° (30 kc/s). 

0.79 13.0° (15 kc/s), 

0.37 17.4° (25 kc/s), 

(78) 

This mode corresponds to the mode of least attenuation. It is characterized by an excitation 
factor which decreases approximately as the inverse of the frequency. Under the same 
conditions A n, for n greater than 1, is roughly unity over the same frequency range [Wait, 
1962b] . 

The modal coefficient p~n) defined by (75 ), in the case of n = l, can be written 

p ?) ~1-2AI~' (79) 

Here, hI/II, is the ratio of the heights of the obstacle on the ground to the height of the ionosphere. 
This quantity would never be greater than about 0.05 and thus the modification of the first 
m.ode by even an extremely high mountain range would be small. This is particularly the 
case at the upper end of the VLF band where the excitation factor is small . 

The relative con version of the field from an incident mode of order 1 to a mode of order 2 
is obtained from the factor p~m) defined by (73 ) for m = 1 and n = 2. Approximately, this 
can be written 

The complex quantity g1, 2 is defined by eq (74 ) for m= l , n = 2, and q= O. For the same 
conditions, its magnitude for the frequencies indicated, are given as follows 

Igt, 21= 1.72 (10 kc/s), 1.47 (15 kc/s) , 1.08 (20 kc/s), 0.70 (25 kc/s), ancl0.41(30kc/s). (81) 

Since IA2 1 is of tho order of unity, it is thus apparent that the conversion to higher modes may be 
significant. 

The influence of the protuberance on the upper boundary is described by eqs (76) and (77) . 
The situation is similar to that of the ground obstacle except that the factors Gn(yo) appear. 
Actually, these are the ratio of the field just below the ionosphere reflecting layer to the field 
at the ground. 

Of particular interest is the possibility that , as a consequence of an ionospheric irregularity, 
a mode of order 1 may be excited by an incident mode of order 2. The magnitude of this 
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first-order mode relative to amplit ude of the second-order mode I S obtained from eq (76) 
'with m = 2 and n = l. Thus, approximately 

Qi2) ~ -2AI9z.IGz(Yo) GI(yo) (h~h2} (82) 

The numerical magnitude of the excitation fad or Al has aheady been discussed . As noted, 
it m a,y be quite small for frequencies of the order of 25 kc/s. However , in certain cases, the 
height-gain function GI(y) , is somewhat greaLer Lhan unity. Thus, the conversion to the 
lower-order mode may be quite significant. This point can also be demonsLrfLted direcLly 
from eq (62) which , in Lhis special case, h as the form 

(83) 

Modes of the " whispering gtLllery" type [Budden and Martin , 1962], also known as "earth­
deLfLched modes" [vVa,it, 1962b], are associated wiLh a low excitati on efficiency (i .e., Al is 
s mall). H owever, t lte height-gtti n fun cLion GI(y) for a " whispering gallery mode" is an in­
crcasing fu nction of height. Thus, the product of the in tegral over y , to Yo and the exciLation 
factor Al m tL}' be of app recitLble JmtgniLudc. 

FurLher worl.;: on Lbis s ubj ect awaits the completion of the extcnsive tabulations of nu­
merical values of the coeIri.cients t n and th e heigh t-gain function s Gn(y) for a rrtnge of the 
paL'lLmeLers. Also, the co mplic<ttions resulLing from the earth' magnetic lielcl are incorporaLed 
following the approach introduced in a previo Lls paper [Wait, 1963]. 

I th fLnk Prof. S. ::\!raley and \Irr. K. P. Spies for their helpful remarks, and ~frs. Eileen 
Bl'tlcketL for her assista nce in preparing the manu cl'ip t. 
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