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Considerable use has been made of the geometric-optical propagation theory to describe
long wavelength terrestrial radio waves between the ionosphere and the ground by Bremmer
[1949], Wait and Murphy [1957], Wait [1961], Wait and Conda [1961], and Johler [1961,
[1962]. The physical interpretation of pulse signals propagated around the terrestrial
sphere as an application of the theory has been described by Johler [1962, 1963a, 1963b].
Indeed, the use of the Loran-C radio navigation-timing system to study the propagation of
LE ionospheric waves has given further impetus to such a study.

The geometric series from which the geometric-optical ray limit is derived like the full
wave residue series or the series of zonal harmonics [Johler and Berry, 1962] is rigorous.
However, the comparatively gross approximations usually employed in the geometric-optical
ray limit are worthy of careful serutiny at this time since the rigorous residue series methods
have been worked out in some detail for large scale computers [Johler and Berry, 1962, 1963].

It is apparent from the rigorous theory that the geometric-optical rays do not merely
diffract around the curvature of the terrestrial sphere but at considerable distance beyond
the geometric-optical horizon are built up to stronger fields by additional ionospheric re-
flections of the nature of a detached mode of propagation not ordinarily taken into account
by the saddle point method of the ray limit.

1. Introduction

The display of time-separated pulses on a low frequency Loran-C radio navigation-timing
oscillogram [Johler, 1962] at considerable distance from the transmitter can be explained by the
geometric-optical rays, ficure 1. Thus, the first pulse to arrive at the receiver (o) from the
transmitter (s) can be considered as a signal propagated via the ground wave (7=0) over the
surface of the ground with which the geodetic d=af is associated (the waves in the earth are
completely absorbed and hence do not ordinarily emerge again). Another pulse will arrive
20 to 40 wsec later by propagating over the ray (j=1) as a single ionospheric reflection. Higher
order (j=2, 3,4 . . . ) pulses will arrive at the receiver (0) by propagation over rays which
reflect two or more times between the ground and the ionosphere, arriving at the receiver at
ever later times. These pulses are quite calculable for measured models for the ionosphere
[Johler, 1963a and 1963b] from the Fourier transform-integral theorem, employing the theory of
propagation for either the geometric-optical series or the more conventional residue (mode)
series. Concerning the latter, Bremmer [1949] in his well-known textbook is quoted, “We
begin by remarking that for the skywave the development of the residue method is, in general,
less clear than the geometric-optical method . . . . Indeed, the geometric-optical method
provides a clear physical interpretation of the rays without the pulse solution, where, on the
other hand, the residue or mode theory does not split into time-separated pulses without the
Fourier inversion to the time domain. Thus, the terms of the residue series (modes) are not
clear as far as a physical interpretation of the time domain is concerned. Both methods of
course should yield identical numerical values, but the approximations used in the geometric-
optical ray limit of the rigorous series are subject of scrutiny in this paper by a comparison
with the rigorous residue or zonal harmonics methods.

1 This work was sponsored by the Advanced Research Projects Agency under ARPA Order No. 183-62, Amendment 4, or NBS Project 85411
initiated under this contract.
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Fiaure 1. Diagrammatic illustration of the geometric
optical rays in the ground-ionosphere guide.

2. Theory of the Geometric-Optical Series

The propagation problem described, ficure 1, has been formulated rigorously for a source s
and an observer o, in the guide between the ionosphere and ground without regard to geometric-
optical rays, in a companion paper, Johler and Berry [1963]. This solution is the series of
zonal harmonics, which for the particular case of a vertical electric field, £, volts/meter, figure 1,
assuming a source dipole current-moment, /i/=4x/uc~3.38(107?) ampere-meters,
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where ¢ is the speed of light. P, (z) is the solution of Legendre’s differential equation,
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where J,,,(z) and H,,(2) are Bessel and Hankel functions of order n+% and argument (z)
and the Hankel function 77{? is of the second kind. The quantities R, and 7, are related to
the spherical reflection coefficients, RS and 7%, respectively,
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where d=a-+h and £ is the height of the ionosphere boundary above the surface and
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for a plasma frequency squared «3 and a collision frequency »
The denominator in (1) is expanded in the geometric-optical series [Bremmer, 1949],
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=
provided | T%|<1, and the field %, is expressed in the geometric-optical series,
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where, the ground wave, 7, o, which can be regarded as the zero order (7=0) term of the series,
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and a particular ionospheric wave, 7,
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The expressions (12) and (13) can be evaluated directly at long wavelengths (<30 ke/s) by
summing the slowly converging series according to methods described by Johler and Berry
[1962].

On the other hand, highly convergent representation of (12) and (13) can be obtained
from the contour integrals,
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where the poles of order 7 are associated with 7%_,; as the roots of v=v;, of (8),
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Integral (14) contains the real axis poles, e U U R of the original series of

zonal harmonics; and the only other poles of order (7+1) are those of R5_.;, or, eq (8), the roots
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Equations (16) and (17) are readily evaluated by methods of Johler and Berry [1963] in a com-

. . : 1.
panion paper. The convergence of the integrals (14) and (15) is assured for n=9—3z In (10)

by |R)_.; T ;|<1, which permits interchange of order of integration f and summation >
c i

since the series converges uniformly with the circle of convergence, [R, ,T, .,/=1.
Employing the approximations,
)
v (ka) + (k)% 7, (18)

with approximations of Debye or Hankel appm\imation [Johler and Berry, 1963 ; Berry, 1963],
which substitutes Hankel functions of order % for those of complex ordel Bremmer [1949]
has introduced a determination of the roots r=r,, v=uv, of (7) as the roots of Riccati’s dif-
ferential equation,
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which, incidentally, have been tabulated [Johler, Walters, and Lilley, 1959], where for vertical
polarization, 6=34,,
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However, as has been demonstrated in previous papers, Johler and Berry [1962] (17) can be
evaluated directly. The integral (14) then becomes the classical series of residues, upon
closing the contour along the imaginary axis of the complex »-plane with the richt half of the
»-plane,
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where R, y;=n, /D, ;. 'This is the well-known residue series, representing the first term or
“pure” groundwave term of the geometric-optical series. The line integral has been found to
be negligible by Berry [1963] in a companion paper. Computation details for this residue
series (21) and the zonal harmonics series (12) have been detailed, Johler and Berry [1962].
The evaluation of the integral (21) was carried out in a companion paper by Johler and Berry
[1963].

The zonal harmonics series before splitting into a geometric-optical series can also be
transformed,
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where the integration to be considered is performed in the complex »-plane.
Equation (15) represents the ionosphere waves. Indeed, the sum of these waves,
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in which the poles of R} .,=n, .,/D, .;, D, ,,=0 produce a residue series which is precisely the
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negative of the groundwave. Thus, the residue series resulting from the zeros v=u, of

U= /(kl(])]__ A Lﬁ(kla)_ B
ey | ey | (24)

again yields the total field-ground and ionospheric wave.

It should be quite possible to evaluate (15) for each ionospheric wave, j=1, 2, 3 Y
as a series of residues v=v, for the poles of 1% _,;=n, 1,/D, s, and T%_,,=n}_s,/Di_y; for D,_,,=0.
But, these are not simple poles, hence the application of the Cauchy residue theorem becomes
quite complicated. The first ionospheric wave is of particular interest or (23) is written as a
series of residues for j=1, employing the integration contours used in (21),
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where the line integral Berry [1963],
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can be neglected. D, ,; is identical with (17) and can be evaluated by previously described
methods of Johler [1961] for the first series of (25). The contribution of the second series
as a result of the poles v=uv, of D} _,,=0, does not occur in Bremmer [1949] and Wait [1961]
formulation.

Thus, for example, Bremmer [1949] in his well-known textbook (p. 33 of his document)
makes th(\ substitution ¢,=3%¢, (using exp (iwt) time function). This can be accomplished
in an exact manner, ¥,=3[¢" +¢?].  This latter exact substitution in (15) results in a single
series with only groundwave type poles of importance such as those poles in the first series
of (25), and the effect of the ionosphere poles is thrown in essence into the excitation factors, as
was accomplished in the less exact geometric-optical theory to be derived sul)soquontl\
Detailed study of these matters is reserved for future work.

Thus,
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for v=uv, in the second series of (24). 'Thus, it is unnecessary to make further mathematical
development of (25) since techniques for all functions describe(l horoin have been desecribed
D = D _y. Since bao D, _,; has
been worked out, a continuation of this procedure, although tedious, is tractable. The signifi-
cance of (25) and (13) 1s a series of residues and a series of zonal harmonies for the ionospheric
geometric-optical wave which, like the ground wave, is rigorous. It is therefore quite tractable
but tedious to formulate and calculate rigcorous geometric-optical ionospheric waves. This
task is reserved for future work. An examination of the more conventional ray limit of the
rigorous geometric-optical series will now be made.
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The ray limit of the rigorous geometric-optical series represents an evaluation of the integral
(15) employing approximations:
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for Im » large or, say, Im »>2, since » is exponential order. Noting the elimination of the
poles of the integrand due to cos »7 on the real axis as a result of the approximation (30), (15)
can be written, j=1,2,3 . . . or j#0,
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It is common practice to evaluate this integral by the saddle point method, Wait [1961],
Bremmer [1949],
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where »; are the roots, »=v; of f/(»)=0, or
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This leads to the standard geometric-optical formula, Johler [1961], using t;=t,—1);/c where for
the ground wave, =0, to=t—mn, d/c,

or

and
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where
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and
Fy=FiF;=[F}; ’=[1+R,,-x,J=[1+R]? (37)
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for transmitter (¢) and receiver (r) over identical ground,
Ci=[Ry,— /[Ty sV =[R} TV (38)

where R and 7' are interpreted as the well-known Kresnel reflection coefficients for vertical
polarization (e),
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The effect of anisotropy and the variation of electron density and collision frequency with
altitude (nonsharply bounded ionosphere) are accounted for by the factor C; which involves
the reflection coefficients 2, 7. In the anisotropic case [Johler and Harper, 1962; Johler,
1962], I is replaced by R, and R, the vertical electric and vertical magnetic reflection coeffi-
cients, and 7'is replaced by 7., 1., Tp., Tpn, where T,, is a vertical electricincident wave with
a corresponding vertical electric reflected wave, 7', is the abnormal component or vertical mag-
netic resulting from the vertical electric field at the anisotropic boundary. Similarly, 7',
refers to the vertical magnetic incident and reflected and again 77, is a corresponding abnormal
component. Thus, for the anisotropic case, Bremmer [1949],
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where

Explicit expressions for ; are given by Johler [1961].  Johler and Harper [1962], Johler [1962]
have devised computation boundaries to evaluate electron density-altitude, N(4) collision
frequency-altitude »(h) profiles of the lower ionosphere. Also, monoenergetic electron-ion
collision frequencies have been introduced into these reflection coefficients, Johler and Harper
[1962b].

GG =@G*~sin? 15 (41)

for identical transmitter and receiver dipoles, C=10"7/,l/d, where d=ab, the geodetic, t;=t—
nD;le(n~1) and
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=T, with the factor 4;1, Wait [1960)

The factor «; is corrected in the caustic region, 7; 5

A;z\/% H? (z)) exp {—1[5m/12—2z,]}, (43)

where z;=Fka cos® 7;/3 sin? 7;.  Also, in the same region, Wait and Conda [1958] have replaced
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the factor /= (1-+R)* with the solution for a plane wave wrapped around an infinitely long
cylinder,

. )
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5 3 A . s
where 0= (d—dy)/2a and dy is the length of geoadetic from transmitter to horizon, r;==» and,
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arg p"/M=" " arg p where m and n are integers, whereupon all functions involved are single
valued. This can also be written as a residue series summation,
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The use of the cylindrical geodetic in the calculation of the factor F% 7 in (44) can be re-
placed by the exact solution for a plane wave on a sphere using either the series of zonal har-
monics or the residue series of Johler and Berry [1962, 1963] or K,=F,, (12), (14), where £
is the primary field

lI);nll ZO—F’ 7 (48)

3. Discussion

The advantages of using geometric-optical theory to interpret pulses in the time domain
and to introduce local changes in the reflection processes warrants an investigation to determine
corrections or extensions of the theory to make the accuracy of the predicted fields correspond
with the same degree as the accuracy of the residue methods. To this end the computation is
studied. The ground wave /7, , portion of the conventional geometric-optics is calculated by
methods developed by Bremmer. The formulation of Bremmer’s [1949] theory for the large
scale electronic computer was presented by Johler, Kellar, and Walters [1956]. A comparison
of this method of computation, which employs some approximations, with the rigcorous solution
originally proposed by Watson [Johler and Berry, 1963] using residue methods and also using
the series of zonal harmonics gave identical results.

This leads one to inquire as to how well the higher order terms j=1,2,3 . . . of the geo-
metric-optical series (36), or indeed, the sum of all significant terms of the series compares with
the rigorous solution (23) (25) (16). Employing the computation methods described in the
companion paper by Johler and Berry [1963], figures 2, 3, 4 illustrate such a comparison at
100 ke/s, 30 ke/s, and 10 ke/s as a function of distance for various situations. A sharply
bounded, isotropie, model ionosphere was employed for this purpose. At 100 ke/s, the geo-
metric-opiteal ray series clings quite accurately to the rigorous curves at short distances, <400
km, probably because of the dominance of the Bremmer-van der Pol ground wave term in the
series. Indeed, as distance is increased, the accuracy is still quite remarkable in spite of the
comparatively gross approximations in (36). The ripples caused by interference of ground
and ionospheric waves are followed quite accurately out to approximately 1,000 km. Here
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also the departure is not serious since no new phenomena are observed in the rigorous theory.
The departure does, however, become serious at 2,000 km and greater distance where the field
decays more rapidly than is indicated by the rigorous solution. A similar situation is noted,
figures 3 and 4 at 30 ke/s or 10 ke/s.  However, at 10 ke/s it is interesting to note that the seri-
ous departure between the geometric-optical and rigorous method is smaller even at distances,
say, 2,500 km. This, of course, is contrary to intuition, since it is generally conceded that
geometric-optical rays are valid at the high frequency ray limit, /. However, the compari-
son 1s more subtle, since, the so-called geometric-optical ray theory used at long wavelengths,
(36), does employ spherical corrections as described previously. This leads one to inquire
as to the cause of the departure of (36) from the rigorous theory and suggests a possible cor-
rection to extend the theory to greater distances.

It is possible to question the validity of the approximations for the convergence coeffi-
cient, «;, but the calculations have been restricted to distances for which the spherical cor-
rections are valid. The use of the cylindrical approximation (44) of Wait and Conda [1958]
to calculate F% 7™ could also be questioned. However, a comparison of this factor with the
rigorous factor (48) indicates good agreement in the distances of concern, near (d—dgz=0).
This leads one to question the saddle point approximation.

The complex »-plane of the contour integral (16), representing the rigorous solution to
the problem, for which computation details have been presented by Johler and Berry [1963]
in a companion paper is illustrated, figure 8, at a frequency of 100 ke/s. The position of the
poles of the integrand are shown graphically, and the excitation factor for each residue is also
given. A rather interesting change occurs in the topography of the complex »-plane at 100
kefs.  Thus, at lower frequencies, the poles “march” downward to the left in the fourth quad-
rant, approaching ever closer to the Im »-axis with ever increasing imaginary in a quite reg-
ular manner similar to the poles with excitation factor 232, 169, 144, 132, figure 5. However,
at 100 ke/s there is a group of poles in the region kya<Re »< k,d which exhibit a sharp dis-
continuity in this otherwise regular progress, such that the Im » is comparatively small and
the excitation factor is comparatively larger, the residues of the poles with excitation factors
286, 232, 315, 226, etc., obviously dominate the field at short distances. But, since the Im »
is comparatively large, these modes decrease rapidly with distances and at 1,500 or 2,000
km no longer dominate. At this point the modes with the somewhat smaller excitation fac-
tors, 75, 120, 3.2, 2.2, etc., dominate, since their Im », which is of exponential order, is con-
siderably smaller. Bremmer [1949] alludes to this quantizing of the field by referring to
these latter modes as B-poles, where the former are A-poles. The saddle point approximation
apparently implies the A-poles as the dominant field at the surfaces of the earth. Tt would
be necessary to represent the B-poles by rays skirting the ionosphere. Whereas these rays
never touch the ground, they fill the space and apparently make a contribution at greater
distances, (>>2,000 km).

This suggests evaluating the second summation of (25) as an additive correction to the geo-
metric-optics. Since this residue series involves simple poles for the first ionospheric ray, it is
comparatively simple to evaluate by previously described methods, Johler and Berry [1963].
The more complicated first residue series of (25) can also be evaluated for the complete rigor-
ous geometric-optical first ionospheric reflection. It is apparent that a similar rigorous evalu-
ation of the higher order terms of the geometric-optical series (7=2,3,4 . . . ) can be made
by similar procedures, the most serious complication being the evaluation of the residues of
higher order poles. This is complicated but tractable.

The poles of the second series together with excitation factors ? as calculated by (16) are
illustrated in table 1. The poles of the diffraction factors, R, ., (17), are identical with the
groundwave.

2 The excitation factor of the second term-series of (25) is

1
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TasLe 1. Ilustrating a comparison of the topography of the v-plane for the ionosphere modes of D,—1,=0 with
mode B-poles of 1 —Ry_1,Ty-1p=0

[=100 ke/s k1a=13349.7 h=67.5 km
Tonosphere poles Mode B-poles
8 Re Vs Im V, |Excitation factor| Re Vs Im Vs |Excitation factor|
1 13418. 67 —5. 660 75 13418.17 —5. 660 22
2 13391. 39 —5.74i 5 13391. 48 —5. 718 4
3 13367.29 —5.78i 5 13369. 91 —6. 607 126

NoTE: —i Im 012—i (kia)'/3 Tm 702~—15 i for ground wave poles (18) which have been tabulated by Johler, Walters, and Lilley [1959].

The ionosphere poles are close to the B-poles of the residue series or mode series repre-
sentation. However, the excitation factors are different. Note the large excitation factor for
s=1 of approximately 75.

Since the ionosphere poles have small Im », these are not negligible at greater distance
since the excitation factor is sufficiently large. Indeed, these residues are of sufficient amplitude
to compensate or correct the geometric-optical curves, ficures 4, 5, where the first and second
term of the geometric-optical series are sufficient. Obviously, the corrections for the higher
order terms of this series are required at the greater distances (*>~2,000 km). It can then be
concluded that the geometric-optical rays are not merely built up by ray diffraction around
the terrestrial sphere but indeed are built up by certain ionospheric reflection of the nature of
a detached mode. The detailed study of these phenomena is reserved for future work.

4. Conclusions

The geometric-optical ray theory, which has been corrected with the conventional spheri-
cal corrections, is a reasonably valid theory to distances of approximately 1,500 or 2,000 km.
At greater distances and especially at LF (100 ke/s), it is necessary to correct the field for addi-
tional 1onospheric propagation, in which case an ionosphere reflection coeflicient residue cor-
rection can be made. It is quite possible with presently available techniques to evaluate the
first term (j=1) of the rigorous geometric-optical series, and the extension to higher order
(7=2, 3,4 . . .) terms of the series is tractable but complicated. In any case it is clear that
a diffraction theory is not always adequate to describe the field from a geometric-optical point
of view, especially at distances greater than 1,500 km. The results of this analysis suggest
such extensions for future work.
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