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Considerable use has been m ade o f t he geometric-op tical propagation thco ry to describe 
lon g wavelength terrestrial radio waves between t he ionosphere and t he ground b~1 BrclIlill cr 
[1 949], Wait and Murphy [1 957], Wai t [H)61 ], Wait a nd Co nda [1 961], and J o hler [196 J , 
[1 962]. The physical in terpretation of pulse signa ls propagated a round t he te rrest ria l 
sphere as a n application of t he t heory has been describcd by J ohle r [1 962, 1963a, 1963b]. 
Indeed , t he use of t he Lora n-C radio navigation-timi ng sy stem to s t ud y the p ropagatio ll of 
1,F ionos phe ric waves has given f ur the r impet us to s uch a st ud y . 

T he geometric se ries from which t he geomet ric-optica l ray limi t is derived li ke the full 
wave residue se ries 0 1' the se ri es of zonal ha rmonics [Johler a nd Berry, I D62] is ri go ro us . 
H oweve r, the com pa rat ively gross app rox imations usually em ployed in the gco l1w trie-op t ical 
ray li mit a re wo r t hy of ca reful sc ru tin y at t his tim e s in ce the ri go rous resid ue se ries me t hods 
have bee n wo rked o ut in some detail fo r la rge scale com pute rs [Johler a nd Berry , 1!J62, 1963]. 

It is appa re n t from t he rigo rous t heory t hat the geom etric-op t ical rays do not me rely 
diff ract aro und t he c urvature of the t e rres t rial sp here b u t at considerable d istance beyond 
t he geometric-op tical horizo n a re built up to s tronger fie lds by addi t iona l ionosp heric re­
flections of t he nature of a de tac hed mode of propagation 1I 0t o rd ina rily ta ken in to accoun t 
by the saddle poin t m e thod o f thc ray li mit. 

1. Introduction 

The display of tillle-separated pulses on a low frequency Loran-C radio navigation- Liming 
oscillograrn [JolLIer , 1962] at considerable distance from t he transmi tter can be explained by the 
geometric-op tical rays, figure l. Thus, the first pulse to arrive aL the ]'ecei vel' (0) from t he 
t ran smitter (8) can be considered as a signal propagated via the ground wave (j = O) over tb e 
surface of Lile ground with which the geodetic d = afJ is <Lssociated (t he w,wes in the earth are 
completely absorbed and hence do not ordin arily emerge again). Another pulse will a l'l'i \'e 
20 to 40 ,usec later by propagating over the ray (j = 1) as a single ionospheric reflect ion . Higher 
order U=2, 3, 4 .. . ) pulses will arri\re at t he receiver (0) by propagation over rays which 
reflect two or more times between the ground and the ionosphere, arriving at t he recei vel' at 
ever later times. These pulses are quite calculable for measured models for the ionosphere 
[Johler, 1963a and 1963b] from the Fourier transform-in tegral theorem , employing the theory of 
propagation for either the geometric-optical series or the more con ventional residue (mode) 
series . Concerning the latter, Bremmer [1949] in his well-known textbook is quo ted , "We 
begin by remarking that for the skywave the developmen t of the residu e method is, in general, 
less clear than the geometric-optical method .. .. " Indeed, the geometric-opt ical method 
provid es a clear physical in terpretation of the rays without the pulse solution, where, on the 
other hand, the residue or mode th eory does not split into t ime-separated pulses without the 
Fourier inversion to the t ime domain. Thus, the terms of the residue series (modes) are no t 
clear as far as a physical interpretation of the time dOlnain is concerned . Both methods of 
course should yield identical numerical values, but the approximations used in the geometric­
optical ray limit of the rigorous series are subject of scrutiny in this paper by a comparison 
with the rigorous residue or zonal harmonics methods. 

1 Tbis work was sponsored by tbe Advanced Research P rojects Agency under ARP A Ordor ~o. 183- 62, Amendment 4. or N BS Project 854 Jl 
initiated under tb is con tract. 
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FIGURE 1. Diagrammatic illustration of the geometric 
optical rays in the ground-ionosphere guide. 

2. Theory of the Geometric-Optical Series 

The propagation problem described, figure 1, has been formulated rigorously for a source 8 

and an observer 0, in the guide between the ionosphere and ground without regard to geometric­
optical rays, in a companion paper, Johler and Berry [1963]. This solution is the series of 
zonal harmonics, which for the particular case of a vertical electric field , E r , volts/meter, figure I, 
assuming a source dipole current-moment, I ol = 41r/tLoc'"'-'3.38 (10- 2) ampere-meters, 

(n= O, 1,2,3 ... ) (1) 

kI and a are constants, k J =~7]J~~, a is the radius of the terrestrial sphere at a frequency j = w/21r 
c c 

where c is the speed of light. P n (z) is the solution of Legendre's differential equation, 

(2) 

Also, 

(3) 

(4) 

where I n+)1(z) and H~2+ )1 (Z) are Bessel and Hankel functions of order n+X and argument (z) 
and the Hankel function H~2) is of the second kind. The quantities R n and Tn are related to 
the spherical reflection coefficients, R~ and T~, respectively, 

(5) 

Tn (6) 

where 

RS n (7) 
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(8) 

where d= a+ h and h is the height of the ionosphere boundary above the surface and 

~ 
2 

W . W N 
k3=- 1 -~ (+ . ) 

C W 1I tw 
(9) 

for a plasma frequency squared w~ and a collision frequency v 

The denominator in (1) is expanded in the geometric-optical series [Bremmer, 1949], 

ro 

{ 1- R nTn} - 1= 1+ ~ R~T/" 
j = l 

provided I R~n l< I , and the field E , is expressed in the geOLnetric-optical series, 

00 

E ,=E r . o+ ~ E ,.J 
j=l 

(10) 

(11) 

wh ere, the ground wave, E r . o, which can be regarded as the zero order (j = 0) term of the series, 

(12) 

and a particular ionospheric wave, j, 

The expressions (12 ) and (13) can be evaluated directly at long wavelengths «30 kc/s) by 
summing the slowly converging series according to methods described by Johler and Berry 
[1962] . 

On the other hand, highly convergent representation of (12) and (13) can be obtained 
from the contour integrals, 

E =~ i v(v2-t)Pv_)-> ( -cos 0) r (2) (k )./, (k )[I+Rs ]d 
r,O k2 4 ~ v-)-> la 't' v-~ ja v-~ V 

la C cos V7r 
(14) 

(15) 

where the poles of order j are associated with T~_Y2 as the roots of V=Vs, of (8), 

(16) 

Integral (14) contains the real axis poles, v=n-~=~' ~, ~ . . ., of the original series of 

zonal harmonics; and the only other poles of order (j + 1) are those of R~_Y2' or, eq (8), the roots 
v=v. of 

(17) 
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Equations (16) and (17 ) are readily evaluated by methods of Johler and Berry [1963] in a com­

panion paper. The comrel'gence of the integrals (14) and (15) is assured for n=v-~ in (10) 

by Im-y,T~ -y:d < 1, which permits interchange of order of integration r and summation ~ J C J 

since the series converges uniformly with the circle of convergence, IRv- y, Tv-y,I= l. 
Employing the approximations, 

(18) 

with approximations of Debye or Hankel approximation [Johler and Berry, 1963 ; Berry, 1963], 
which substitutes Hankel functions of order ~~ for those of complex order, Bremmer [1949] 
has introduced a determination of the roots 7 = 7 " v= vs of (7) as the roots of Riccati 's dif­
ferential equation, 

(19) 

which , incidentally, have been tabulated [Johler , \Valters, and Lilley, 1959], where for vertical 
polarization, 0= 0., 

(20) 

However, as has been demonstrated in previous papers, Johler and Berry [1962] (1 7) can be 
evaluated directly . The integral (14 ) then becomes the classical series of residues, upon 
closing the contour along the imaginary axis of the complex v-plane with the right half of the 
v-plane, 

(21 ) 

where R v-y,= 1] v-y,/DH ". This is the well-known residue series, representing the first term or 
" pure" groundwave term of the geometric-optical series. The line integral has been found to 
be negligible by Berry [1963] in a companion paper. Computation details for this residue 
series (2 1) and the zonal harmonics series (12 ) have been detailed, Johler and Berry [1962J. 
The evaluation of the integral (21) was carried out in a companion paper by Johler and B erry 
(1963]. 

The zonal harmonics series before splitting into a geometric-optical series can also be 
transformed, 

(22) 

where the integration to be considered is performed in the complex v-plane. 
Equation (15) represents the ionosphere waves. Indeed, the sum of these wuYes, 

(23) 

in which the poles of R~ _y,= 1] v_y,/Dv_y" Dv_y, ='O produce a residue series which is precisely the 
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negative of Ute g]'oundwaye. Thus, the residue series resulting from the zeros V=Vs of 

(24) 

again yields the total field-ground and ionospheric wave. 
It should be quite possible to evaluate (15) for each ionospheric wave, j = 1, 2, 3 . .. , 

as a series of residues V=V .. for the poles of R~_'A= 7] v_'A/Dv_'A and T~_'A= 7] ~_y.JD!_'A for D v-'A= O. 
But, these are not simple poles, hence the application of the Cauchy residue theorem becomes 
quite complicated . The first ionospheric 'wave is of particular interest or (23) is written as a 
series of residues for j = l , employing the integration contours used in (21 ), 

r '\ 

where the line in tegral Berry [1963], 

X{ 1 +R~8 _ )i } 2{{ ~;;~: } ~ (25) 

OV 8 v=v. ) 

CH Il be Il eglected. D '_'A is idenLi cnl wit h (17) and can be evalua Led by previously described 
methods of Johler [1961 ] for the first series of (25 ). The contribution of tlte second series 
,1S a result of Lhe polos V= Vs of D!_'A= O, does not occur in Bremmer [1949] and W ait [1961 ] 
r onnulation. 

Thus, for example, Bremmer [1949] in Ilis well-know ll Lextbook (p. 33 of his document) 
makes the substitution >/;n= H n (usin g exp (iwt) time function ). This can be n,ccomplished 
in n,n exact manner, >/;n= t [r }!)+ r ,;2)]. This latter exact substitution ill (15) results in a single 
series with only groundwave type poles of importance such as those poles in the first series 
of (25), and the effect of the ionosphere poles is thrown in essence into t ile excitation fac tors, as 
waf' accomplished in the less exact geometric-optical theory to be derived subsequent.ly. 
D etailed study of these matters is re~erved for future work. 

Thus, 

(26) 

for V= Vs in the second series of (24). Thus, it is unnecessary to make furtiler matllellH\,tical 
de\"elopment of (25 ) since techniques for all functions described herein h ave bee n described 

02 • 0 
pre\-iously, JollIer and Berry [1962 and 1963] except for the ov2 Dv-v.. . Smce ov Dv-» has 

been worked out, a continuation of this procedure , although tedious, is tractable . The signifi­
cance of (25) and (13) is a series of residues and a series of zonal harmonics for the ionospheric 
geomeLrie-opticnl wave which, like the ground wave, is rigorous. It is therefore quite tractable 
but tedious to formulate and calculate rigorous geometric-optical ionospheric waves. This 
tr1sk is resen Ted for future work. An examination of the more conventional ray limit of the 
rigorous geometric-optical series will now be made. 
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The ray limit of the rigorous geometric-optical series represents an evaluation of the integral 
(15) employing approximations: 

~v (z)~exp { i; { 1_G)2}1'_7r;} {l-GY} - ~< (27) 

provided 11-(;YI< <+ I ~{ l-(;y} 12[> >1[, where the former condition applies to the low 

frequency groundwave poles and the latter to the higher frequency case (100 kc/s), z= k, r 
large. Also , 

{ iz { (V)2 }12 7ri} { (V)2 ') _ ~ s~2 ) (z)~exp -"3 1- Z +4 1- Z ) (28) 

(29) 

(30) 

for 1m v large or, say, 1m v> 2, since v is exponential order. Noting the elimination of the 
poles of the integrand due to cos V7r on the real axis as a result of the approximation (30), (15 ) 
can be written, j = l, 2, 3 ... or j,c.O, 

(31) 

It is common practice to evaluate this integral by the saddle point method, Wait [1961], 
Bremmer [1949], 

(32) 

where Vj are the roots, V=Vj off'(v) = O, or 

(33) 

or 

(34) 

and 

{ v-.l.. [ (V_.l..)2J_Y, v- .l.. [ (V_ .l..)2J_V, } 
}//(v)=-2j (k\d)2 1- kj - (lc1a)2 1- lc1a

2 
• (35) 

This leads to the standard geometric-optical formula, Johler [1961], using t ; = t j-Dj/c where for 
the ground wave,j= O, t~ = t - 7) \ die, 

(36) 
where 

and 
(37) 
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for transmit ter (t ) and receiver (r ) over identical ground, 

(38) 

where R and l' are interpreted as th e well-known Fresnel reflection coefficients for vertical 
pola rizat ion (e) , 

(39) 

(40) 

The effect of anisotropy and the variation of electron density and collision frequency wit h 
altit ude (nonsharply bounded ionosphere) are accounted for by the factor OJ which involves 
the reflection coeffi cients B, T. In the anisotropic case [Johler and H arper, 1962 ; Johler , 
1962], R is replaced by He and Rm, t he ver tical electric a nd vertical m agnetic reflection coeffi­
cients, and T is replaced by Tee, Tern, Tnt., Trnm, where T ee is a ver tical electric incident wave with 
a corresponding vert ical electric reflected wave, Tern is the abnormal componen t or ver tical mag­
netic resulting from the ver tical electric fi eld at the anisotropic boundary . Similarly, Tmm 
refers to the ver tical magnetic inciden t and r eflected and again Tme is a corresponding abnormal 
componen t. Thus, for the anisotropic case, Bremmer [1949], 

where 

A[ = RmT"pn 
.flz = Be Tee + B ", T",,,, 
A 3= HeRm[- Tee Tmm+ Te", T",,]. 

E xplici t expressions for OJ are given by JollIer [1961]. Johler and Harper [1962], Johler [19 62] 
have devised computat ion boundaries to eVilluate electron density-altitude, N(h ) collision 
frequency-al tit ude v(h) profiles of the lower ionosphere. Also, monoenergetic electron-ion 
collision frequencies have been introduced into these reflection coeffi cien ts, Johler and H arper 
[1 962b]. 

(41 ) 

for identical transmitter and receiver dipoles, C= 10-7I ol jd, where d= afJ, the geodetic, t;=t ­
T/ lD j jc(T/l'" 1) and 

[ " fJ] t [ fJ] t a+ h 2J sm ~ (a+ h) - a cos 2' 
a ."-' - - J .J A j > 

J = a sin fJ ( + h) fJ a cos ~-a 
J CArl) 

(42) 

The factor CX j is corrected in the caustic region, 7j;;; ~' with the factor Aj ~l, Wait (1960) 

(43) 

where zj= kla cos3 7j /3 sin2 7j> Also, in the same region, 'Vait and Conda [1958] have replaced 
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the factor F= (1 + R )2 with the solution for a plane wave wrapped around an infinitely long 
cylinder, 

F/t,r ", -~ . [-'k 8']S '" exp[ - i(k l a/2) "'8'p]d (44) 
j = 7r exp ~ la W'( ) W ( ) P, 

roexp [-ih/3] 1 P - q J P 

where 8' = (d- dH )/2a and dH is the length of geodetic from transmitter to horizon, Tj=~' and, 

q=-i (kJa) '" kl 11-'!..!' 
2 k2 -V k2 

Also, 

wherE, 

and 

WI (p) = exp [- 27ri /3].f;!3( - p)" I-I~) {H - p )~1 } , 

H1~ (p) = exp [ -27ri/3]-J7r/3pI-I~) {H - p ) ~2}, 

arg (-p)=arg P- 7r, 

(45 ) 

(46) 

m 
arQ' pmlm=_ aro' p where m and n are integers, whereupon all functions involved are sinbo1e 

= n b 

valued, This can also be written as a residue series summation, 

F t,r,.."., - 2' ( . [-'k 8,]~exp[-i(kla)"'8'T" ], 
j ~-v 7r exp ~ la L.J [2 '" _ 2]W (2 '" ) 

8=0 T , q I T s 
( 47) 

The use of the cylindrical geodetic in the calculation of the factor F } r in (44) can be re­
placed by the exact solution for a plane wave on a sphere using either the series of zonal har­
monics or the residue series of Johler and Berry [1962 , 1963] or E r=E ro (12) , (14) , where Eo 
is the primary field 

L ' Er F t ) un -= / / r , (48 
b--c> '" Eo 

3 . Discussion 

The advantages of using geometric-optical theory to interpret pulses in the time domain 
and to introduce local changes in the reflection processes warrants an investigation to determine 
corrections or extensions of the theory to make the accuracy of the predicted fields correspond 
with the same degree as the accuracy of the residue methods , To this end the computation is 
studied, The ground wave Er,o portion of the conventional geometric-optics is calculated by 
methods developed by Bremmer. The formulation of Bremmer's [1949] theory for the large 
scale electronic computer was presented by Johler, Kellar, and Walters [1956], A comparison 
of this method of computation, which employs some approximations, with the rigorous solution 
originally proposed by Watson [Johler and Berry, 1963] using re8idue methods and also using 
the series of zonal harmonics gave identical results , 

This leads one to inquire as to how well the higher order termsj = 1, 2, 3 . , , of the geo­
metric-optical series (36), or indeed , the sum of all significant terms of the series compares with 
the rigorous solution (23 ) (25 ) (16 ), Employing the computation methods described in the 
companion paper by Johler and Berry [1963], figures 2, 3, 4 illustrate such a comparison at 
100 kc/s, 30 k c/s, and 10 kc/s as a function of distance for various situations. A sharply 
bounded, isotropic, model ionosphere was employed for this purpose, At 100 kc/s, the geo­
metric-opitcalray series clings quite accurately to the rigorous curves at short distances, < 400 
km, probably because of the dominance of the Bremmer-van del' Pol ground wave term in the 
series. Indeed, as distance is increased, the accuracy is still quite remarkable in spite of the 
comparatively gross approximations in (36) , The ripples caused by interference of ground 
and ionospheric waves are followed quite accurately out to approximately 1,000 km, Herr 
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also the departure is not serious since no new phenomena are observed in the rigorous theory. 
The departure does, however, become serious at 2,000 km and greater distance where the field 
decays more rapidly than is indicated by the rigorous solution . A similar situation is noted, 
fig ures 3 and 4 at 30 kc/s or 10 kc/s. However, at 10 kc/s it is interesting to note that the seri­
ous departure between the geometric-optical and rigorous method is smaller even at dist ances, 
say, 2,500 km. This, of course, is contrary to intuition, since it is generally conceded that 
geometric-optical rays are valid at the high frequency ray limit, j ---?> OJ. However, the compari­
son is more subtle, since, the so-called geometric-optical ray theory used at long wavelengths, 
(36), does employ spherical corrections as described previously. This leads one to inquiTe 
as to the cause of the departure of (3 6) from the rigorous theory and suggests a possible cor­
rection to extend the theory to greater distances. 

It is possible to question the validity of the approximations for the convergence coeffi­
cient, (XJ, but the calculations have been restricted to distances for which the spherical cor­
rections are valid. The use of the cylindrical approxinla tion (44) of Wait and Conda [1958] 
to calculate F;' T could also be questioned. However, a comparison of this factor with the 
rigorous factor (48) indicates good agreement in the distances of concel'll, near (d-dH= O). 
This leads one to question the saddle point approximation. 

The complex v-plane of the contour integral (16), represent ing the rigorous solution to 
the problem , for which computation details have been presented by JollIer and Berry [1 963] 
in a companion paper is illustrated , figure 8, at a frequency of 100 kc/s. The position of the 
poles of the integrand are shown graphically, and the excitation factor for each residue is also 
gIven. A rather interesting change occurs in the topography of the complex v-plane at 100 
kc/s. Thus, at lower frequencies , the poles "march" downward to the left in the fourth quad­
rant, approaching ever closer to the 1m v-axis with e lTer increasing imaginary in a quite reg­
ular manner similar to the poles with excitation factor 232 , 169, 144, 132, figure 5. However, 
at 100 kc/s there is a group of poles in the region k1a< Re v< k1d which exhibit a sharp dis­
continuity in thi s otherwise regular progress, such that the 1m v is comparatively small and 
the excitation factor is comparatively larger, the residues of the poles with excitation factors 
286 , 232, 315, 226 , etc., obviously dominate the field at short distances. But, since t he 1m v 
is comparatively large, these modes decrease rapidly with distances and at 1,500 or 2,000 
km no longer dominate. At this point the modes with the somewhat smaller excitation fac­
tors, 75 , 120, 3.2, 2.2, etc., dominate, since their 1m v, 'which is of exponential order, is con­
siderably smaller . Bremmer [1949] alludes to this quantizing of the field by referring to 
these latter modes as B-poles, where the former fLre A-poles. The saddle point approximation 
apparently implies the A-poles as the dominan t field at the surfaces of the earth. It would 
be necessary to represent the B-poles by rays skirting the ionosphere. Whereas these rays 
never touch the ground, they fill the space and apparently make a contribution at greater 
distances, (> 2,000 km ). 

This suggests evaluating the second summation of (25 ) as an additive correction to the geo­
metric-optics. Since this residue series involves simple poles for the first ionospheric ray, it is 
comparatively sinl ple to evaluate by previously described methods, Johler and Berry [1963]. 
The more complicated first residue series of (25 ) can also be evaluated for th e complete rigor­
ous geometric-optical first ionospheric reflection. It is apparent that a similar rigorous evalu­
ation of the higher order terms of the geometric-op tical series (j = 2, 3, 4 . . . ) can be made 
by similar procedures, the most serious complication being the evaluation of the residues of 
higher order poles. This is complicated but t ractable. 

The poles of the second series together with excitat ion factors 2 as calculated by (16) are 
illustrated in table 1. The poles of the diffraction factors, R v-y" (17 ), are identical with the 
groundwave . 

2 The excitation factor of the second term·series of (25) is 
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T A B L E 1. IllustTaling a com pm'i son of the topogra phy of the v -plane for the ion osphere m odes of D:-1/2= 0 with 
mode B-poles of 1 - R v- 1!2T v- l ! 2= 0 

j = 100 kc/s 
I 

1110=13349.7 h=67.5 km 

Ionosphere poles Mode E -poles 

8 Ro V. Im V . IExeitat ion [acLOl'1 Re V. Im V. IE xeitation factor I 

1 13418.67 -5.66i 75 13418. 17 -5. 66i 22 
2 13391. 39 -5.74i 5 13391. 48 -5. 71i 4 
3 13367.29 - 5.78i 5 13369. 91 -6.60i 126 

NOTE: -i Im vl~-i (klO) 1/3 Im To~- 1 5 i [or ground wave poles (18) wbieb bave been tabulated by Jobler, Walters, and Lilley [19591 . 

The ionosphere poles are close to the B-poles of the residue series or mode series r epre­
sentation. However, the excitation factors are differ ent. Note the large excitation factor for 
s= 1 of approximately 75. 

Since the ionosphere poles have small 1m v, t hese are not negligible at grea ter distance 
since the excitation factor is sufficien tly large. Indeed, these r esidues are of sufficien t amplitude 
to compensate or correct the geometri c-op tical curves, figures 4, 5, wher e the firs t and second 
tenTl of the geometric-optical series are sufficien t . Obviously, the corrections for the higher 
order term of this serie are r equiTed at the greater distances (> rov 2,000 km ). It can then be 
concluded that the geometric-optical rays are no t mer ely built up by Tay diffrac tion around 
th e terres Lrial sphere but ind eed are buil t up by certain ionospheric r eflection of Lhe na ture of 
a detached mode. The detailed s tudy of these phenomena is reserved for future work. 

4. Conclusions 

The geomeLric-optical ray theory, which has b een correc ted with the conventional spheri­
cal corrections, is a r easonably valid theory to dis tances of approximately 1,500 or 2,000 km. 
At greater distances and especially a t LF (100 k c/s) , it is necessary to con ect the field for addi­
tional ionospheric propagation, in which case an ionospher e reflection coefficient r esidue cor­
rection can be made. It is quite possible with presen tly available techniques to evaluate the 
first term U= 1) of the rigorous geometric-op tical series, and the extension to higher order 
U=2, 3, 4 .. . ) Lerms of the series is tractable but complicated . In any case it is clear that 
a d iffraction Lheol'Y is not always adequate to describe the field from a geomeLric-optical point 
of view, especially at d istances greater than 1,500 km. The r esults of this analysis suggest 
such extensions for future work. 
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