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The Watson transformation, which is the basis of VLE mode theory, is reviewed. It is
shown that the disappearance of the line integral (‘‘continuous spectrum’”) depends only on
the properties of the earth (for a homogeneous ionosphere). Thus, the integral is interpreted
just as in the classical groundwave case, i.e., it represents the waves which have reentered
the air after traveling through the earth.

The limitations of the second-order Debye approximations have been discussed vaguely
before. Actual calculation in specific cases shows that the attenuation rate of the first mode
is in error by 60 percent at 16.6 ke/s, 25 percent at 10 ke/s, and 15 percent at 8 ke/s when the
Debye approximations are used for all wave functions.

It is not possible to deduce effective parameters for the homogeneous ionosphere from
consideration of the attenuation rate alone. It is suggested that simultaneous consideration
of attenuation rate and phase velocity will remove ambiguity and an example calculation is
given for 10.2 ke/s.  The resulting model ionosphere is at a height of 65 km with |w,| ~1.2
(10%).

1. Introduction

The electromagnetic field excited by an elementary dipole between a homogeneous, spheri-
cal earth and a concentric homogeneous, isotropic ionosphere is given exactly by a series of
zonal harmonics. Although the series can be summed with a digital computer [Johler and
Berry, 1962], it is usually transformed into a quickly convergent series of residues, or modes.
This transformation was first performed by Watson [1917, 1918], but it was not used for theo-
retical calculations (except for the “eroundwave’) for many years. The Watson transforma-
tion was recently reviewed preparatory to writing a computer program to sum the modes, and
clarification of some details resulted.

Section 2 outlines the solution with sufficient detail to support the remarks made in section
3.1 about the disappearance and interpretation of the line integral. The validity of the second-
order Debye approximation is discussed quantitatively in section 3.2 and the problem of pre-
scribing the model of the ionosphere is considered in section 3.3.

2. Watson Transformation

Figure 1 shows the geometry of the model. The origin of a spherical coordinate system
(r, 0, ¢) is at the center of the homogeneous earth of radius @. The ionosphere is a concentric
spherical shell, extending from r=d=a+h to infinity. The source is a vertical electric Hertzian
dipole at =0, r=b(a <b<d), and the field 1s to be found at any point (r, 0, ¢).

The electromagnetic properties of the media are given by their wave numbers, £,. In the

earth (r<la),
2
1@:2\/62—@' 2ol (1)

w

where w=2xf, and f is the frequency, ¢ is the speed of light, e, is the relative permittivity, and
oo, the conductivity, of the earth. In the air (a<r<d),

w
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1 This work was performed as part of NBS Project 8510-11-85111.
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where 7 is the index of refraction of air, and in the model ionosphere (»>d),

where

v is the electron collision frequency, and wy is the electron gyrofrequency (wf=~3.18>10° N,
where N is the number of electrons per cubic centimeter).

The field components in the air (a<r<d) are found from a scalar Hertz-Debye potential
[Johler and Berry, 1962]
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P,(cos 6) 1s the Legendre function,

o (2)= —HV"”’ (2), m=l12, (5)
and -
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where H{™,(z) and J,;,(z) are Hankel and Bessel functions. [Jahnke and Emde, 1945.]
The constants b, and ¢, are found from the boundary conditions.
1 $i (ferb) g (Fya) ¥, (k) 0
B, bk i) 0
b=D;* | , (7)
0 & (kyd) Y (ki) Vo (keyd) O (kead)
0 2 (kad) g, (Fer b) Yo (ki) kl &0 (kead)
Im(v)
1 Ei
Re (v)

Ficure 2. Complex v-plane showing contours of
Ficure 1.  Geomelry of the model. integration.
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where

W= 4n(2), £ ()=t £ (2), .

and

R, =R, (k) =, (ks) [, (k).

¢, 1s the same as b, except that the ¢,(z) functions in the third column of the determinant are
replaced by — ¢ (2) functions.

1 1(12) (kla') ¢n (kla') 0
MR, ) i) 0
Dn: ) > (9)
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0 Pl D) e )

Using the substitutions,

a(2)=3 [P () +82(2)], (10)
and
ilm)’(N) (m> . (—(m) 2 ) (11)
and after some algebra,
b )+ eapullor) = | =525 (b)) | (12)
where
1 G (kib)§sl (hva) ) ¢ (ka) =& (k) &7 () 0
1 %h’u $ (kb)) (k) D (o) ¢ (eya) — &0 (k) ¢ (Rya) 0
_1|t2 .
DTG e (D) D B — 0D (k) (2 |
0 DS (D) P EDE D =P e ) R 6 (k)
Then, from (4)
11 1)
= ‘)k“ b Z (2n-+1)P,(cos 0) D: “>(A )¢ (k) ==hs (14)
___1 @
ok ng()) 2n-+1)P,(cos 8) g(n). (15)
Now
=0 vP,_(—cos 0) 1
HMZk%rb a cos U v )dl (16)

where () is a contour enclosing the positive, real axis, as shown in figure 2. (All contours are
taken counterclockwise.) Equation (16) reduces to (15) when the integral is evaluated by
summing the residues at its poles, v=n-+%, n=0, 1, 2, . . ., noting that [Jahnke and Emde,
1945]

P,(—cos 8)=(—1)"P,(cos 0). (17)

fczvpv_é(()s vcwos 2 < __> db*f S(@)dv, (18)

where (), is a semicircle in the right half-plane with infinite radius, and diameter along the
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imaginary axis, figure 2. P, ,,(—cos 6)/cos vr decreases exponentially along the circumference
of the semicircle so the integral along the circumference is zero [Watson, 1917]. Let (5 be a
contour in the right half-plane enclosing all zeroes of D, ,; and no zeroes of cos vw. Then

—i®
[ roar— [ st r@iot | e, (19)
Substituting into (16),
i e
7 L'SP, _1(—~COS 0) A,,__l ) I“Hm
— s—2 s—2 > a 2
rb = COS VT ) +2kf'“b Joie fo)dv, 1)
o T,
where
])v,_%:O, Re (D)>O (22)

The terms in the residue series in (21) are called modes.
™ y(2)=exp [(—1)"tori]i™(2), m=1,2 (23)

[Jahnke and Emde, 1945]. Substituting (23) into (9) and (13), and looking at (15), it is seen
that
g(—v—3)=g(v—3) (24)

R_y_y(ka) =R,y (kst). (25)

if, and only if,

If the second order Debye approximation is used for the ¢,(k.a) functions in (8)

R,_y(ksa)~1 1—(-2 )2, 5
(k) \/ 1—(7a (26)
which satisfies (25).
Cos o7 1s an even function, » is odd, and [Jahnke and Emde, 1945]
P—ﬂ—%(z)zpv—%(g): (27)

so, to the extent that (25) holds, f(») is an odd function and

Fio
f Ff()dv=0. (28)
— i

The terms of the mode series are the residues of f(») at its poles v, in the fourth quadrant.
Since f(v) is an odd function of » (to the extent that (26) holds), there is a corresponding set
of poles —u»; in the second quadrant. The Watson transformation could be carried out in
the left half-plane and the field represented as the sum of the second-quadrant modes.
This sum is equivalent to the sum of the fourth quadrant modes, both analytically and
numerically.

3. Discussion

The important point in section 2 is the clear demonstration that only condition (25) is
necessary for the line integral in (21) to vanish. Yet this apparently minor mathematical re-
finement throws considerable light on the physical interpretation.

3.1. Significance of the Line Integral

Wait has stated that the line integral in (21) vanishes if |ks| > >k, [Wait, 1960], or if the
fields satisfy the impedance boundary conditions at the surface of the ionosphere [Wait, 1963].
However (25) depends only on the radius and electromagnetic properties of the earth and is
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independent of the properties of the ionosphere. Actually, Friedman [1951] showed that the
line integral is zero if the earth is perfectly conducting even if the atmosphere varies continuously
in the radial direction.

Equation (26) becomes exact as k,a— o, so the integral in (21) is interpreted physically
just as in the groundwave case, i.e., it represents the contribution of waves that have traveled
through the earth and reentered the airspace. This interpretation was made explicit for the
egroundwave by Bremmer [1949] who wrote the integral as the sum of “rainbow terms.” A
ray that enters the spherical earth travels in a straight line through it (after the initial refraction)
until it intersects the earth-air boundary, when some of its energy reenters the airspace.
Thus, the integral in (21) is not quite zero, but since the waves attenuate rapidly inside the
earth, physical reasoning shows that the integral is very small compared with the mode sum.
Indeed, the approximation in (26) is in error no more than a few parts in 10° for any practical
VLE-ELF case, and is usually much less than that.

3.2. Approximations to the Radial Wave Function

Most of the early writers on mode theory, e.g. [Schumann, 1954 ; Bremmer, 1949; Wait,
1957, 1962b], used the second-order Debye approximations [Wait, 1957

:lgg)"; (;),QJ (* 1 )m+l?‘/ /]7;7<_1.)): m=1. 2 (29)
() \ z)’ T \
for the radial wave functions. Wait pointed out that (29) is not valid for functions of argument
kya for many cases of interest [Wait, 1960, 1962b], and since 1960, he has used a third-order
approximation involving the Airey integral w;(z) [Fok, 1946 ; Wait, 1962b].  (See fig. 4.) This

approximation is the first term of a series in (1—(»”)) which represents the asymptotic form
[Fok, 1946]
—ig exp [(—1)"7i/6
o (Z2—vH)%

where é=o(tanh w—w), and cosh w=»/z. Figure 3 compares field computed with the Debye
approximation at 16.6 ke/s [Wait, 1957] and at 1.6 ke/s [Wait and Carter, 1960] with fields
computed using the more accurate (30).

The Debye approximation is apparently adequate at ELE, but is inadequate at 16.6 ke/s.
This inadequacy is more apparent if the curves are extended to greater distances, since the
attenuation rate computed with the Debye approximation is only 60 percent of what it should
be. Further computation shows that the attenuation rate of the first mode computed with
the Debye approximation is in error by about 25 percent at 10 ke/s and by about 15 percent
at 8 ke/s.

H{™ (z) =~ I HP(—1¢), =l & (30)

3.3. Selection of Ionospheric Model

To make theoretical calculations of VLF field strengths, the effective height and electro-
magnetic parameters of the ionosphere (contained in the parameter ks;d) must be available.
Figure 4 shows the attenuation rates of the more important modes as a function of electron
density (or |w,|) for A=70 km and for frequencies of 25, 10, 4, and 1 ke/s. For a fixed frequency,
as many as three values of N give the same attenuation rate for the first mode. Indeed,
Watson [1918] deduced a conductivity corresponding to an electron density of the order of
several thousand electrons/em?; Wait [1957] deduced an electron density of about 600 electrons/
cm?®; and Johler and Berry [1962] used a value of 56 electrons/em?®. If the difference in frequency
and assumed height are corrected for, these three models give about the same attenuation
rate and are the three possible values mentioned above.

Figure 5 shows the phase velocity (relative to the speed of ligcht) of the first mode as a
function of electron density at 25, 10, and 4 ke/s. The behavior of the phase velocity as a
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function of electron density is sufficiently different from the behavior of the attenuation rate

to suggest that the ambiguity in the preceding paragraph can be (at least partially) resolved

by simultaneously considering the attenuation rate and phase velocity of the dominant mode.
As an example, a model was sought for the following case [Swanson, 1962]

frequency=10.2 ke/s,

all sea path, daytime,

attenuation rate=3.5 db/1000 km
relative phase velocity=1.0033.

Under the reasonable constraints, ~>60 km, |w,/<10° successive approximations were com-
puted until the above attenuation rate and phase velocity were attained. The resulting
ionospheric parameters were then

h=65 km

|| 1.2 X 107,

No other values of 4 and |w,| could be found which gave the required attenuation rate and phase
velocity simultaneously. It is interesting to note that Wait deduced the values A=70 km,
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Ficure 5. Relative phase velocity of first mode as a
Sfunction of the electron density of the model iono-
sphere.

w,=1.2X10° for ELF propagation [Wait, 1962a] from an analysis of atmospheric wave forms.

The attenuation rate in the above example is approximate and different combinations of
attenuation rate and phase velocity would yield different models. The important point is
that simultaneous consideration of phase velocity and attenuation rate removed the ambiguity
in extracting an effective model ionosphere from experimental data.

4. Conclusions

Careful derivation of the series of modes shows that the line integral represents waves that
have traveled through the earth and reentered the airspace, and does not contribute to an
ionosphere lateral wave for the homogeneous model ionosphere. This is satisfying since it
agrees with the simple ray picture.

Quantitative estimates of the error incurred in using the Debye approximations were
given.

The ambiguity which results from attempting to deduce an effective ionosphere from
only the attenuation rate can be removed by considering attenuation rate and phase velocity
simultaneously.
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