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The disturbances produced in a homogeneous pl as ma by passin g cha rges is analyzed. 

1. Introduction 

A source which is efrective during a limited period can be described by a fun ction of time 
or by an equivalent Fourier spec trum. I t is well known t lJ<lt t he disturbances produced by 
such a source depend mainly on its highest frequenci es shortly after t he arri\ral (determined 
by a propaga tion veloci ty) of the first effect, ~),t t= to say, whereas the lower frequencies de
term in e the efl' ects observ ed later on. The Fourier syn thesis of the dist lll'b ~Lnce, whic h has to 
include the contribu tions of all freq uencies, will represen t t he special effect of the low freq uencies 
in a n obscured form even when the latter filHtlly dominate . A n ew r epresen ta,tion is then 
desired ; i t may b e obtained as follows. 

The tim e dependence of the disturb~),nce m ay be known as a Laplace integral 

f "'+iO 
dw ·f(w) . e-iw(l-Io' 

-1Xl+io 

which is equivalent to a FOlll'ier in tegral with a path of integration L parallel to the real axis 
of the w-plan e. This integral can t ben be redu ced in two difJ'eren t ways: 

(a) a p ar allel shif t of L to the r eal ax is itself. This r esul ts in a con ven tional Fouri er 
synthesis in terms of real frequencies. J n t he case of poles on the r eal axis, t bese are to be 
avoided by a n indentation jus t abo ve i t. In t he limit or ,Lll infini tesimal indentation this 
r eduction leads to the sum of a main contribution represented by a Caucby's principal value, 
and of additional contributio ns co nsisting of half the residues at the poles . 

(b) a transformation of L into a closed contour which r esults by adding to L t be upper 
half of the infinite circle of the w-plane if t< to and its lower h alf if t> to. In the first case the 
integral will vanish , as it should , if j(w) h as no singulari t ies whatever above L. However, 
the other contour to be applied for t> to, encloses the sing ularities of j (w) situated ill t he half 
plane rm w< 0 or possibly on the real axis . The integral itself can th en be reduced to the 
residues at the enclosed poles and to co ntributions along branch lines co nn ected with th e 
other singularities. If the branch lines do not extend up to infinity, we get by contraction of 
the integration path around the poles and branch lines under consideration contributions 
connected with discr ete frequencies and with frequency bands r especti \Tely . 

As an example we consider the Laplace in tegral 

(1) 

A shif t of the in tegl'ation path to the real axis here results in: 

f '" e - iwl 7r 

I = PV dw --2--2 - - sin (wot) 
_'" (w - wo) Wo 

(PV = principal value) . (2) 
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All frequencies are contained in this integral, though the particular frequency Wo has a finite 
amplitude even when observed in an infinitesimal band around woo On the other hand, trans
formation to a closed contour as suggested in method (b) reveals the vanishing of the integral 
for t< 0, while it simply reduces to (- 27r/ wo) sin (wot) for t> O. Thus the property of the 
signal of containing only a single frequency Wo right after its start at t= O was hidden in the 
con ventional Fourier representation (2). 

Idealized ionospheric disturbances, analyzed with the aid of the above procedure, will 
be discussed in the next sections. They refer to a single infinitesimal current element, only 
effective at a special moment, and also to a charge moving with constant speed along a straight 
line. The latter situation simulates a charged particle emitted by the sun, that travels along 
a magnetic line of force through the ionosphere. The limiting cases of a zero and of an infinite 
magnetic field are worked out in detail, the intermediate case of a finite magnetic field is only 
mention ed briefly. The ionospheric plasma is assumed throughout as homogeneous (constant 
plasma frequency wpa and cold . 

2 . Disturbance Generated by a Current Element in a Plasma Without Magnetic 
Field 

2 .1. Derivation of Laplace Integrals for the Field 

Let the current element be situated at the origin, and directed along the z-axis, while 
effective only at t= O. This corresponds, in the case of a normalized momentum o(t), to a cur
rent-density distribution: 

...., ...., 
1 = o(x ) 8(y ) 8(z)8(t)uz, (3) 

...., 
U z b eing the unit vector in the z-direction. 

The effective dielectric constant E= 1- w;, j w2 for a homogeneous plasma at frequency w 

then involns the following Ma)..,vell equations in gaussian units: 

...., 
...., 10H 

curl E+--=O 
C ot ' 

...., ...., 

cud - - - --+w- E =--oH 1 ( 02 
? ) ...., 47r oJ 

ot C ot2 pl C at 
47r ...., 

=- 8(x)8(y)8 (z )8' (t )uz' 
C 

The complete solution in terms of Laplace integrals reads: 

...., ...., 
E = - 47ro (3c) 8(y)8( z ) cos (w p l t)U(t)71 z 

r r r 
I ...., i_.\/WZ-Wl21 . OO+io C p ---4 ~ 

t" U z . -iw t we _ -1 -1 +-2 curl cull ~ ----;- f dw e ( 2_ 2) - El + E 2, say, 
7r 1 1 -oo+io W w pl 

~ ~ 

ICT _ SIB G . d -iwl+i - Iw2-w l2 ...., . 8 l { ] f OO+i, r - } ...., 
-:1. - - ---- - we c-V p U"'. 

27rc elr r -00+ 10 

(4) 

(5a) 

(5b) 

The sign of the square root is defined by the property ~W2-W;' l----7W along th e infinity circle, 

while a crosscu t is assumed along the section -Wp l < W < W 1)1 of the real axis. Further, l1r and 

11", mark unit vectors in the radial and azimuthal directions corresponding to polar coordinates 
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U(t) represents Heaviside's unit function , while 0 may be any positive numb er . 
The solution (5) can be verified as follows. We evaluate cud E (2) with the aid of the vecto r 

identity: 

as well as the relation : 

We thus obtain: 

curl curl curl= - curl V2, 

e ikr 

(v 2+ P) - - = 47ro(x)8(y)8 (x) . 
r 

(6) 

The last integral equals - 27riU(t) cos (wp1 t) from which the second term proves to r educe to 
--curl E(l ) . H en ce we find for the total Efield: 

The firs t Maxwell equation of (4) is then readily verified by applying the fur ther identity 

~ ~ ~ 

sin e . A' (1') . U", = U z X grad A(r) = -curl {uz · A(1') } (7) 

to the magnetic field H. 
The other Maxwell equation can be checked, withou t workillg out the curl curl operator 

~ 

occurring in curl oI-1j Ot when (5b) is replaced by a curl equi valcnt to it according to (7) . In 
~ 

the further elementary derivation the application of the opera,tor 02j Ot2+W;1 to E (2) amounts 
to a cancellation of the denominator of the integrand. 

The first contribution E (l) of the electric field is recognized as a nonpropagati ng field with 
a frequency equal to the plasma frequency; it can not move away from the source . The main 

~ ~ 

contribution E (2), as well as H , is composed of spherical waves of complex frequencies. 

2 .2. Frequency Spectrum After the Start of the Field 

An application of method (a) of the first section shows how all real frequencies contribute 
to the final field , but the explicit form of this spectrum is not very instructive. The method 
(b), however, directly shows the predominan t role of the lower Ireq uencies after the signal has 
started at the point of observation . In fact , the approximation 

e- iwU-r/c) 

for the exponential factor in the integrand of both integrals of (5) involves that the integration 

path can be closed along the upper or lower half of the infinite circle when t<":. or t> ":. respec-
c c 

tively. In the first case the only singularities of the integrands, situated at W = Wp l and w= - W pl, 

are outside the contour and the integrals vanish. In the second case the contour can be con
tracted to a loop L around the part - W pl<W < W pl of the real axis which was introduced as the 
branch line fixing the sign of ";W2-W;I; the ends o.f this line constitute the only other singulari-

~ 

ties of the integrand, viz, its two poles at W pl and - W pl ' Hence the main contribution E (2) , 
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e.g., can be represented at all times by: 

. r ~zU (t -~) i: ,jw2-wp ,2 'I 
-) ~ J c i . we C E (2)=- curl curl I dw e-,wt 2 2 ~ . 

27r I r L (w -wp /) 1 

~ ) 

The contraction of L involves the sum of the complete residu es at th e poles, and of the 
limit for E--?+ O of an integral along the interval -Wpl + E< W< w'I /- e of the real axis; along 

the la tter we have to take into acco unt the new valu es i"/W;II-W2 and -i"/W;I-W2 of .JW2-W;1 
just above and below the branch line. Both residues can be added together to a term -27ri 

cos (wp1t). The remaining integral can be reduced to an integration over the positive in terval 
O< W< Wpl- E only, which, however, involves an integral yet to converge for E= O. The residues 

-) 

are missing in the corresponding integral for H. We thus arrive at the following final expres-
sions without an E limit: 

-) [-> U(t-D r 2 wpl W sinh G ~/W;I-W2) II 
E (2 ) = curl curl U z • ~ cos (Wplt) + -- r dw . sin (wt ) ( 2 _ 2) ~ J (8a) 

1 1 7r J 0 W ,11 W I 

~ ) 

-) 2 s in 11 d r U (t -D i "PI (r ___ )1 -) 
H=-- · d' i dw cos (w t ) . sinh - .JW;I - W2 ~ . u". (8b) 

7rC 7 L roc J 
For t '>~ we infer a dependence on the lower freq uencies W~WPI only. 

2.3. The Field Expressed in Terms of Bessel Functions 

The integrals in (5) are connected with Bessel functions. This can be shown with the aid 
of the operational relation [Van del' Pol and Bremmer, 1955] 

JO(~/ t2- T2). U(t-T) . - q- e-r ,lq'+ l 
. . .Jq2+ 1 

(Re q> O), (9) 

in which we use the nomenclature h(t)~-j(q) for 

We replace t by wP/t [which requires the r eplacement of q by q/w1I zl and also the nonoperationa1 
variable T by Wp IT. We then obtain the following extension of (q ): 

Jo(Wp /~ t2 T2) ·U(t-T) :.J 2! 2 e-q 1q'+wp ,' (Req > O). (10) 
q Wpl 

We next apply to both sides the operator (likewise nonoperational) j' O> dT, which leads to: 
• r ic 

(11) 

The inversion integral of this new operational relation reads: 

( )f t 1 i O+iO> qt-~ ,Iq'+wp ,' 
U t-~ clTJO(W PI .Jt2_ T2)=-2' dq 6 ( 2+ 2 ) 

C ri c 7r~ o-ioo q W p ! 

(12) 
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The derivative of this relation with respect to t yields at once a new expression for the E ( Z) 

contribution of (5). We find: 

--) 0 
E ( 2)=- curl curl ot 

r --) U (t -Df l 
~ Uz dT I T ri c 

'-

""\ 

J o(w p r\/t2 - T Z) ~. 
J 

(13 a) 

A corresponding reduction 1'01' the magnetic field represented by (5b) is arri ved at by first 
del'iying from (12) : 

(14) 

We next apply the operator - O/OT to (10) while tal.;:ing T= ~' and also thc opel'l1tol' (cl2j:ft2 
c 

+ W~l) .. (z2+w~J to (11) . Tn both cases we get the same operational "image" in the l'ig h t
hand side which inl'01l'es an identity for Bessel fun ctions according to which (14) CMl be replaced 
by: 

-c~ {JO( WtJl I t2 _~). u (t -~) } =~ [ "'+iO dw. e-iwt+i;; -JwZ- w"". 
or '- -V c C 271". -"'+' 0 

(15) 

Hence the magnetic field (5b) can be expressed as follows in terlllS or Bessel fUllctions, without 
any integr al: 

.--) . 0 [l O r ( ~~) . ( 1') ~ ] --) H=sJne· --- ~Jow t - _ ·Ut-- ·uq, . 
or T Or l PI c2 C J 

(13 b) 

3. Disturbance Generated by a Charge Moving Along the z-Axis Through a 
Plasma Without Magnetic Field 

3.1. Derivation of Laplace Integrals for the Field 

' 'Ve assum e a unit charge moving with a constant velocity v along the z-axis acco rding to 
t be equation z= vt. The corresponding current-densi ty distribution is given by: 

--) ( z) --) J = o(x) o(y)o t -v U z · 

T he connection with the nonmo\'ing current element or th e pre\-ious section is shown by 
the equiv alent representation: 

--) f '" --) J =V _'" dto' o(x) 8(y)o(z-vto)o(t-i.o) . U z• 

Hence this new curren t distribution is obtained from the former (3) by first substi tuting z-vto 

for z, and t-to for t, and by applying n ext the operator v f -"'", clto. In view of the lin ear dependence 
--) --) 

of the field yectors E and H on the sources, the fields for the presen t si tuation m ay be derived 
by applying the mentioned substitutions and operator to all resul ts arrived at in section 2. 

We first consider the electric field. In the case of (5a) the mentioned procedure results 
in the following expression if the to integration is evaluated in the first contribu tion E (I), and 
if Lhe order of the in tegrations with respect to wand to is inverted in the main contribution Ee): 
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TIle substitution 

z . p. ( .. 1w2_W2 } 
to=-- t - sm ~ x+t arc smh ~' pi 

V V I (C2 ) 
l :;J2-1 W 2+W;l ) 

reduces the to-integral to a Sommerfeld integral for a Hankel function HJl) (iz)=~ K o(z) which 
7r'l, 

is given)xplicitly by 

provided -thaC"the modulus of the argument of the square root is smaller than 7r/ 2. This in
volves the:following final expression for the electric field: 

The corresponding reduction of the magnetic field can be carried through by first trans-
forming the formula (5a) for this field in the case of a nonmoving current element into 

H-4 1 I {~zJ "'+i" l -iwl+i: ~/W'-WI'I' } =- . cur - G W • e c , 
2?rc l' - "'+i" 

which is equivalent to the original expression in view of (7). The resulting expression for the 
magnetic field of the moving charge then becomes: 

-4 -4u >. J ",+i" . (Z) {~( 1 1) 2 } '" V -Iw 1-- 2 Wpl H = = - · - clw· e v ·Ko p 2 - 2 w+ z ' 
7rC () P _ "'+i" V C C 

(16b) 

in the derivation of which we have applied a vector identity similar to (7), viz: 

-4 --> 
j(z).g'(p) ·u",=-curl {uz·j(z) .g(p) } . 

3.2 Discussion of the Frequency Spectrum 

The integrals in (16) cannot be transformed into contour integrals, in contrast with the 
corresponding Laplace integrals in (5) for a nonmoving current element. Mathematically 
this follows from the exponential behavior at infinity of the part 

of the integrands. In view of the asymptotic approximation of K o the total exponential factor 
of the integrands can then be represented for I w l~oo by 

-iw (t -=)-p ~ w v V ;2-C) e . 

For v<c this involves an infinite increase of the integral along those parts of the infinite circle 
of the w-plane at which 

tan (arg w»p~~-?/(t-;} 
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Both the upper and lower half of the infini te circle therefore contain a sector in which the 
integrand incr eases exponen tially. The physical r eason for the impossibility of obtaining 
contour integrals which are different for large and sm all t is the lack of a starting time before 
which the signal vanishes. The situation would be quite differen t in the opposite case v> c 
where the disturbances propagating wi th velocity c mO\Te behind the source; this la t ter situa
Lion is realized for Cerenkov radiation. 

W e shall fur ther restrict ourselves to the case v< c. We then can only apply method (a) 
of the procedures mentioned in the introduc tion, which amounts to a shift of the integration 
pa th of (16) to the real axis, or to determining the limi t for 0---70 . In (16a) we then h ave to 
take, in view of the poles ttt w= ± Wp l, the sum of Cauchy's principal value (V.P. ) connected 
with the la tter, and of haIr the associated residues . Moreover , the pa th of in tegration can 
finally be reduced to the positive half of the real axis. In (16b) the poles ar c missing, n.nd it 
is unnecessary to consider a principal value. The finnl resul ts become: 

E =-47ro (x )o(y) cos { W pl (t-;)} . U (t -;) ~z 

[ 
K. { 1(1 1) 2+W;I } 

-) ') 00 r w 0 P'\j ?-? W -., 

+ Clll'] cu rl 1I z { ::' V.P . r dw . sil1 ~ w (t -~) } ~·_ c~ c· 7f.Jo \.. v W Wpl 

+oo,{ w" (t-M ~ (w;, p) } } 

H= -:c ~~ . :P 100 dw · cos { w (t-;)} . E o { p~(b-?) w2+ WJI } . 

-4 

(17) 

Obviously, tbe first term of E represen ts a conLribu Lion left behind alon g the trajectory 
which has b een covered by the moving charge up to i ts posiLion n. L the moment of observation. 
All con tributions only depend on P and t- z/v, which indicaLes thn.t the field m oves along wi t h 
the same velocity n.s the ch n.l'ge. The spec tral density of the fini te con tribu tions depends firs t 
of all on the mono tonically decreasing E o function . This decrease determines t h e predominn.J1ce 
of the lower frequ encies. As a matter of fact, only t hose frequencies contribu te considerably 
for which the argumen t or E o does no t exceed the order of magnitude of unity. Working ou t. 
the corresponding condition in the cn.se v < < c we infer that tbe field is mainly r es tric ted to 
a cylinder of radius C/ W p l around the tra jec tory of the charge (z-axis) while t he cu toff fre
quency decreases rapidly inside this cylinder when moving away from its axis. Only very low 
frequencies may yet penetrate a little outside the mentioned cylinder , up to distances rou ghly 
of the order of v/w. 

3.3. The Field Expressed in Terms of Elementary Functions 

In the case of a nonmoving current element the field could be reduced to Bessel functions 
(see section 2.3) . For a moving charge the magnetic field can even be connected wi th a simple 
algebraic function by substituting in (16b), for 0---70, the expression 

This relation is again connected with the representat ion of H ankel functions b y a Sommerfeld 
integral. 

After the substitu tion we invert the order of in tegration wi th respect to wand cpo The 
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integral over W then amounts to a delta function according to which we find: 

f oo l -iw(I-~) K { ~(l 1) 2+ W~ I } C W • e V· 0 P ;Z- (!i W c2 
• -00 

f oo -~ wJ>l ·cosh'" ( Z ~ll. ) 
= 71" def> · e c . a t- - -p - - , smh ef> • 

_ oo V v2 c' 

This integral can be worked out most cOlweniently by introducing the argument of the delta 
funcbon as a new integration variable, and applying next the sifting property of integrals con
taining such a function. The formula (16b) thus finally proyes to be equivalent to 
the representation: 

The exponential factor, which is missing in the absence of a plasma, indicates that the 
latter compresses the field in space and in time. 

4. Disturbance Generated by a Current Element Along a Line of Force of 
an Infinite Magnetic Field Embedded in a Plasma 

4 .1. Derivation of the Laplace Integrals for the Field 

According to the Appleton-Hartree form ula the external magnetic field only enters into 
the refractive index of the plasllla in the ratio w/wH(wH = electron gyrofrequency). Hence, the 
limiting case of an infinite magnetic field is related to that for very low frequencies and therefore 
is instructive for these frequencies. 

Let the homogeneous external field be in the z direction, and the current element of nor
malized momentum. at the origin. Its current-density distribution is then given, once again , 
by (3). The dielectric constant of the medium under consideration is gi lTen by the tensor: 

1 

o 

o 

o 

1 

o 

This tensor involves the Maxwell equations: 

o 

o 

-> 
-> 1aH 

curl E+--=O 
c at ' 

The solution corresponding to (5) in the case witho ut magnetic field reads: 
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(iSb) 

(19) 



---> 
The first equation (19) is verified readily, wh en representing the H field as a curl Yectol', 

applying (7). Tn order to check the seco nd equation or (19), the curl curl operator then occur
ring in its first term may be split into curl curl = - \72+ grad di\'. The Laplace operator 
\72 operatillg on the quantity 

~.\1 ,,-2r2 - w /2p2 e P 

should next be transformeci with th e a id of Lbe relation: 

4 7f 
- -/_ a(x) a(y)a (z) ,a (20) 

for 

Th e Lerm wi th delta functions then leads to the right-hand member of the second equation 
(18) wh ereas the oUler terms prove to cancel. Thus the co rrectness of (19) depends first of 
all on the validi ty of (20), a relation which can be pro\recl , e.g., by jll teg r~Lting i t (apply ing 
the metJlOd leading to Gauss' integral theorem) over a volume element around the or igin; 
this relation constitu tes fLn extension , for a ~ 1, of the property (6) ror the point-so urce solu tion 
of the three-dimensional H elmholtz equation . 

4.2. Frequency Spectrum After the Start of the Field 

The derivation is completely similar Lo t llat in the case of the absence of a m agnetic fi eld , 
used wh en deriying (8) from (5). The situation is e \"en simpler since the bnwch poin t of 

co ns titutes the only singularity, as the pole is now Jlll SSlllg even for the electric field. Th e 
results can be r epresented by: 

1(" I (1 I 2 2 2.2) "'1 
~ u (t -~) r wpl sin e dw COS (w t ) COS 1 /~., wp l P - w / J' 
I c Jo ., W;Jlp2 - w2r2 

I.. 

---> 2 sin e ---> 02 
H~--- u --

- 7fC '" orot (21) 

Just as in the case without magnetic field , described by (8), the field starts at the moment 
t=r/c, but the cutoff frequency now equals Wpl sin e instead of Wpl' The amplitude is maximal 
near this cutoff. This implies a concentration of the lowest frequencies to direc tions very 
near to that of the magnetic line of force passing through the radiating source. Here we infer 
a similarity to "whistler" propagation. 

4 .3. The Field Expressed in Terms of Bessel Functions 

The expressions corresponding to (13) in the absence of the magnetic field are obtained 
here with the aid of the relation: 
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of which (15) constitutes the derivative with respect to T. Applying this relation for Wpl 

replaced by Wpl sin (J, we obtain from (21): 

~ ( - .... 0 ~2 (2){ ( r)Jo(wPlsin(J~t2-~)1 
E = grad - - -- U t-- r' oz c2 ot2 I.. c r J 

~ sin(J ~ 02 r ( T)JO(WP l Sin(J~t2-~)1 
H=-- u - ~ U t-- r· c 'P orot l c r j 

5. Disturbance Generated by a Charge Moving Along a Line of Force of an 
Infinite Magnetic Field Embedded in a Plasma 

5.1 . Discussion of the Frequency Spectrum 

H ere, again, the field for a moving charge can be deduced from that of the nonmoving cur
rent element, just as discussed in section 3.1 in the absence of a magnetic field. Starting from 
(19) we now have to evaluate the following in tegral over to: 

J 00 iwto+£ .v(w2- Wp ") p'+w'(z -vto)' 
L = dto e c • 

-00 ~(W2-W;I)p2+W2( Z -vto)2 

Again, this integral could be reduced with the aid of Sommerfeld integrals to Bessel and 
Hankel functions. However, it is impossible to get a single representation for all w-values of 
the integration path of (19) which, therefore, has to be split in to different sections. This 
splitting is sinlplest in the limit 0-70 and can then be reduced to the positive part of the real w-axis. 
The final results read as follows in terms of Neumann and K functions with positive arguments: 

These expressions can be verified most conveniently by showing that they do satisfy the 
Maxwell equations (18) , with the righ t-hand side of (18b) replaced by 

471' ~ ( Z) C uzo(x) o(y)o' t-v ' (23) 

The proof can be carried through, apart from the application of elementary rules of vector 
analysis, with the aid of the relations: 
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Once again, the predominant role of the lower frequencies in (22) is obvious. In fact, the 
amplitudes of the frequencies W < W pl depend numerically on an oscillating Neumann function, 
those of the higher frequencies W > WVI on the exponentially decaying J{o junction. 

We mention also the following alternative representations equivalent to (22): 

(24a) 

(24b) 

Tbe square root '\/W2_ W~1 is to be cons idered llere as positive for w2>w7JI' whereas in the 
section - Wp l< W < Wp l we have to take the average or the values of the J{ function Just abo \re and 
just below this crosscut of the square root. The average follows from the identity: 

The denominator in (24a) vanishes when performing the differentiations with respect to z and t. 

5 .2 . The Field Expressed in Terms of Elementary Functions 

Both the electric and the magnetic field can be reduced to elementary Junctions by applying 
further special formulas connected with Sommerfeld 's integrals. The final expressions obtained, 
VIZ: 

(25) 

CH,n also be verified straightforwardly by substitution into the Maxwellian equations (18), the 
right-hand side of (I8b) again being replaced by (23). The proof depends on the relation 

47r ( Z) = - 1) o(x) o(y)o t-v ' 
which results from the general relation (20). 
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According to (25) the plasma induces oscilla tions in the field existing otherwise in free 
space, which is in contrast with the exponential influence of the plasma in the case of a zero 
m agnetic field (described in section 3.3) . 

6. General Conclusions 

The described situations, referring either to a zero or to an infini te magnetic field , show 
that the field disturbances produced by a current element which is only effective at a special 
moment can, after their start at the poin t of observation , be decomposed into a spectrum con
taining exclusively lo,v frequencies. The corresponding disturbances produced by a charge 
moving along a rectilinear path (assumed as a line of force in the case of the infinite magnetic 
field) comprise predominantly low frequencies, though theoretically all frequencies occur . 
The limitation to low frequencies is particularly pronounced at large distances from the path 
of the moving charge. These general results are expected to hold also for a finite magnetic 
field. According to prelimin ary calculations the spectral density then becomes infinite at 
frequencies for which the phase velocity equals that of the moving charge; therefore these 
frequencies should be observable first of all. This is in accordance with Gallet's [1 959] theory 
concerning exospheric VLF emissions; in fact, the fr eq uencies rad iated from a charged par ticle 
moving through the exosphere are derived there from the condition expressing the equality 
of the t wo velocities mentioned . The general problem of a charge moving through a fini te 
static m agnetic field has also been approached, using a different analysis in the case of a spiral 
mo tion , by Pakhomov, Aleksin, and Stepanov [1962] . 
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