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In this part of the paper,
equation are considered.
also found to be
zero for that value of Q.

the higher order approximations to the general dispersion
It is shown first that the results of the first approximation arc
valid in the neighborhood of ©=0, even though the phase velocity goes to
The second approximation which gives correctly the phase veloe-

ities of the order of the acoustic velocity a, in the electron gas or lower and the third ap-

proximation which yields the phase velocities of the order vaCj are worked out.

A synthesis

of the results of the first three approximations yields the dispersion curves for the three
independent modes which propagate in an electron plasma.

The dispersion curves for the three modes obtained as a result of the first three ap-
proximations are not valid in the axial boundary layer, where the dispersion is found to

undergo rapid changes in the close nieghborhood of the frequencies @

= and @=1. Using

the boundary layer techniques, the dispersion equations in the axial boundary layer, for

the frequencies in the close neighborhood of Q=R

and Q=1 are obtained and analyzed.

The boundary layer analysis clarifies the mechanism of coupling between the purely longi-

tudinal plasma waves and the purely transverse electromagnetic waves.
edge of the above coupling that takes place in the axial boundary layer,

With the knowl-
the three inde-

pendent modes may be properly designated using a procedure which is found to be uniformly
valid for all directions of propagation and the inconsistency found in the magneto-ionic

approximation is removed.

1. Introduction

The characteristics of a plane wave propagating
in an unbounded, collision-free, compressible elec-
tron plasma along a direction which makes an
arbitrary angle with that of the static magnetic
field are studied in this paper. In part I of this
paper, the cubic equation which specifies the square
of the phase velocity of the plane wave was de-
rived and was shown to factor out into a linear
and a quadratic equation for the two special cases
of propagation, namely those along and across that of
the external magnetic field. This feature enabled
the dispersion relations for the above mentioned
special cases to be obtained exactly without any
difficulty. For the general case of propagation in
an arbitrary direction with respect to that of the
static external magnetic field, the exact dispersion
equation lent itself to be approximated by a quad-
ratic equation in the situation where only the
phase velocities of the order of the velocity (|
of the electromagnetic waves in free space or higher
are sought. The analysis of the dispersion equa-
tion obtained in the first approximation yielded
zero values for the phase velocity for the three
frequencies, 2=0, Q3 and @, Consequently the
validity of the first approximation becomes ques-
tionable in the neighborhood of the above three
frequencies.

In this part of the paper, it is shown that the
first approximation is accurate in the neighborhood
of the frequency Q=0 despite the fact that the
phase velocity becomes zero for that frequency.
A second approximation to the dispersion equation
is obtained which gives accurately the phase
velocities of the order of the acoustic velocity a
in the electron gas or lower. The sec (md approxi-
mation yields a linear equation and its analysis
shows that the phase velocity becomes infinite for the
same two frequencies @=Q; and Q, for which the
first approximation yielded zero values. The first
two approximations are obviously not accurate
in the neighborhood of the two frequencies Q=
and @, A third approximation which is valid
in the neighborhood of the two frequencies Q=
and Q, is obtained and it shows that the phase
velocities for those two frequencies are of the order
vaC,. Moreover, the results of the third ap-
proximation are found to merge continuously with
those of the first two appromnmhons, thus yielding
the overall dispersion curves for the three inde-
pendent modes that propagate in an electron plasma.

The dispersion curves for the three modes obtained
as a result of the first three approximations, change
as the direction of propagation is changed and
attain the known values for the propagation across
the static magnetic field but not for the case along it.
The reason for this behavior is shown to be due
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to the fact that in a small region about the direction
of the static magnetic field, called as the axial
boundary layer, the dispersion in the neighborhood
of the two frequencies Q=R and Q=1 changes
very rapidly. By employing boundary layer tech-
niques the dispersion equations in the axial boundary
layer in the close neighborhood of the frequencies
Q=R and Q=1 are derived and analyzed. This
analysis enables the proper understanding of the
mechanism of coupling between the purely longi-
tudinal plasma waves and the purely transverse
electromagnetic waves for the case of propagation
other than that parallel to the static magnetic field.
Once the mechanism of coupling is understood, it is
possible to designate the three independent modes
that propagate in an electron plasma using a
procedure which is uniformly valid for all directions
of propagation and the inconsistency found in the
magneto-ionic approximation is no longer found to
exist.

2. Higher Order Approximations for the Re-
gion Exterior to the Axial Boundary Layer

[t will be shown now that even though the phase
velocity becomes zero for Q=0, the :1pp1()\1mut1<m
(25), which was derived from (24:1) on the condition
that the phase velocity is of the order (7, or higher, is
still valid in the neighborhood of @=0. In the limit
of @ tending to zero, (25) together with (24b, ¢)
become

MFAONL AP =0 (30a)"

where
AP =202+ R2(1+12)] (30b)
AP =— Q2C4R212. (30¢)

If @ is of the order a?/C;, the solution of (30a), on
omitting terms of the order ¢?/C; in comparison with
unity, is obtained as

N=y A0 =QC3RI. (31)
For @ of the order ¢*/Cj, (31) shows that the phase
velocity is of the order a.  In the limit of Q tending to
Zero, the exact dlspelsl(m equatl()n, after ()mlttlno
the te[ms of the order a*/C; in comparison with umt_v
becomes

N ADON ;- APNF AP =0 (32a)

where 4, and 4.® are the same as in (30b) and
(30c) respectively and

AP =—Q'Cta?R12. (32b)
When the phase velocity Nis of the order @ and Q is of
the order ¢?/C;, on omitting the terms of the order

IThe equations and the figures in parts T and II of this paper are numbered
consecutively for the sake of convenience.

a@*/C; and a*/C4 in comparison with unity, it is found
that only the first and the third terms, which are of
the order a°, need be retained on the left side of (32a)
with the result

)\2:\‘_Z§')_ (33)
Note that (33) obtained from the exact dispersion
equation (24a) is the same as (31) which was obtained
from the approximate dispersion equation (25).
Therefore, the validity of (25) in the neighborhood of
Q=0 is not impaired even though the phase velocity
goes to zero for that frequency. It is to be noted with
the help of (31) that the phase velocity goes to zero
as "2 1n the limit of Q tending to zero.

If the phase velocity is of the order a, it is seen
from (24a) that the fourth and the sixth terms on the
left side of (24a) are of the order Cia®> and the re-
maining terms are at least of the order a?/C; lower
than these two terms. Hence, only the fourth and
the sixth terms need be retained with the following
result

o AP @@ — R
ALY QP —Q*(1+R?) 4+ R*?
QA — R ,
(— o (P — ) co

Since Q<R Q;, (34) gives real phase velocities
only for Q< Q@*<R 22 and Q4< Q*< o, In figures 6a
and b, the dotted portion shows the real phase
vel()city given by (34). In the second approxi-
mation, the phase velocity diagram is seen to
have two branches, one of which goes to zero for
Q?=R** and the ()thel nsvmpt()tlcullv approaches the
acoustic velocity a in the electron gas as Q tends to
infinity. Since the approximation (34) is valid
strictly only for the phase velocities of the order of a
or lower and since the phase velocity given by (34)
becomes infinite for Q=Q; and Q= 1t is obvious
that (34) also, is not a valid approximation in the
neighborhood of the frequencies Q= Q; and Q=Q,.
A third approximation to the exact dispersion
equation (24a) can be obtained in the following way
to yield phase velocities which are reasonably
accurate for frequencies in the neighborhood of
Q=0Q; and Q=Q, If the phase velocity is of the

order va(C,, it is found that the terms on the left-
hand side of (24a) are of the order

Y5 a : Y5 a 15 ) a Y
SRR
, aC} ( >! and (1('5< >
() ( 0 (()

respectively. Hence only the second, the fourth,
and the sixth terms need be retained with the result

AP AP
2(1> z + -

Nt e

(35)
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The solution of (35) is

1((‘) 2V _AQ

= : 36
gt (ay) —ap @
From figure 4, it is evident that A{H<0 in the
neichborhood of @*=Q3 and that 41(1‘0>() in the

neighborhood of @*=0i  Also from (24c¢) and the
fact that QF<TR**<Q it is clear that A% >0 in
the neighborhood of @*=Q; and 1‘,‘0)<0 in the

neighborhood of @’=@Qi. Hence A /A <0 for

the value of @ near both Q; and Q,. Therefore
(1) < z (1 y | (1)
20
YJ i) T 2

and only the upper sign in (36) will lead to a real
value for the phase velocity and, consequently, the
lower sign may be disregarded.

When 2 is sufficiently removed from either Q3 or
Q2, it 1s found with the help of (24b-d) that A
A is of the order a?/Cf less than (AY)2/(2AW )%
The square root in (36) may, therefore, be expanded
vielding the following result:

2 4‘1;('») < 2((1)) < 150 41“)
G T : 37
245t pag| Tagnamr  ©7

For @203, it 1s seen from figure 4 that A% <0 and

A <0.  Similarly for S22>S2' AL >0, and A >0.
For @* sufficiently greater than 0E o @, A%
A® >0 and, therefore, (37) becomes
) AP o
N= T (38)

It is found, on comparing (34) and (38), that the
phase velocity (38) obtained from the third approxi-
mation becomes identical with that given by the
second approximation for 2 sufﬁ('iontl) greater than
Q2 or Q3.

For @2<05 AT <0 and A% >0. Also for Q2<Q2,
A >0 and A% <0. Hence for Q*<Q3, and Q*< Q2
on omitting the terms of the order (zz/(/0 in com-
parison with unity (37) becomes

A(l)
A(i)'

A= — (39)

As @ approaches from below the close vicinity of
either Q3 or Q,, it is found with the help of (24c)
that the second term inside the radical in (26)
becomes very much smaller in comparison with the
first term, enabling the radical in (26) to be expanded
yielding the following result:

| 1]((1)) 1(1)
2dy TADT

s 1()
e, 0 - '7A:E

The upper and the lower signs in (40) correspond
respectively to the e\tmoidinaiv and the ordinary

electromagnetic modes. For the O™ mode and for

| @ slightly Jess than Qs, figure 4 shows that A{H<0
| and this reduces (40) to

(41a)

Since, as seen from figure 4, A% >0 for @*°< @3, (41a)
leads to real values for the phase velocity. In the
same manner, it is seen from figure 4 that A >0
for the ¢ mode and hence for @ slightly less than Q,is
found to yield
(1)
N2 —‘,1””~ (41b)
AP
Using figure 4, it is found that A% <0 for Q>< Q3
and therefore (41b) gives real values for the phase
velocity. A comparison of (39) with (41a, b) shows
that the phase velocities obtained from the first
approximation for Q? very close to but less than either
Q3 or Qf are identical with those obtained from the
third approximation.

Also the third approximation (35), as seen from
(36) and the argument following it, gives the follow-
ing (‘\])lC\\l()]l for the phase \(‘i()(ll\ for Q*=Q3 and
()~,Q4

— Ay

M=y (42)

Since A5 /A <0 for Q2= 03 and Q2= 03, (42) is seen
to yield real values for the phase velocities for
=05 and @*=QF. In addition, with the help of
(24b, d), (42) is found to give a phase velocity of the
order vaC, for @*=05 and @*=Q;. Consequently,
the third approximation (35) which was derived
from the exact dispersion equation (24a) on the
condition that the phase velocity is of the order
vaCy, is certainly very valid in the close vicinities of
both ©*= Q2 and @*= Q3.

The synthesis of the results obtained in the three
approximations shows that the dispersion curves
for the O' and the ¢' modes obtained in the first
approximation and thecefore strictly from the
application of the magneto-ionic theory are practi-
cally unaltered by the two higher order approxima-
tions which, in essence, include the effect of the
compressibility of the medium. However, the O
and the e modes are affected in the following
manner. The 0" mode as given in the first approxi-
mation, instead of going to zero for Q= Q,, continues
and goes to zero for Q?—R22. The dispersion for
the O mode is given by (29) for 0<Q*< Q5 by (36)
in the close neighb()rh()od of @*=0F and by (34)
for G<?<R?%  On the other hand, the ¢ mode
as obtained in the first approximation is modified
by the higher order approximations in such a man-
ner that the phase velocity instead of going to zero
for Q=1 levels off to the value of the acoustical
velocity @ in the electron gas and thus continues up
to Q= o for which value the phase velocity is
exactly equal to a. The dispersion for the modified
e mode 1s given by (29) for Q<2< 03, by (36) in
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the close neighborhood of @*=Q% and by (34) for
AP <o, The figures 6a, b are respectively re-
drawn in figures 7a, b wherein the third approxima-
tion (36) is included for the phase velocities in the
close neighborhood of Q*= 02 and Q2= Q? and thus the
complete dispersion curves for the arbitrary direction
of propagation of the plane wave are obtained.

It is convenient to redesignate these modes in such
a way as to fit in with the existing nomenclature for
these modes for the two special directions of propaga-
tion, namely those along and across the static mag-
netic field. The O' mode is obviously the modified
ordinary electromagnetic mode [MEM (0)] since it is

cutoff for @=1, asymptotically attains the velocity
C, of the electromagnetic waves in free space and
has always a phase velocity greater than C,. The
modified ¢ mode is redesignated as the modified
plasma mode (MP) since its phase velocity asymp-
totically approaches the acoustical velocity in the
electron gas. The e mode is redesigned as the modi-
fied extraordinary electromagnetic mode [MEM (X7?)]
since its phase velocity also asymptotically ap-
proaches (), in the limit of infinite frequency. The
modified O™ mode for large values of R may overlap
with either the MP or the MEM(0O) modes and
therefore, should be another branch of the modified
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Complete dispersion curves for the arbitrary

direction of propagation (R2=1/2, 2=1/2).
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extraordinary electromagnetic mode [MEM(X™)].
The reason for naming the second modified electro-
magnetic mode as extrs wrdinary is perhaps due to
the fact that it has a branch” wherein the phase
velocity has considerably lower values than (.
Also unlike the other modes, the first part of the
MEM (X™) mode has a phase \(’l()(lt)’ that increases
with frequency.

In the absence of the external static magnetic
field, the plasma and the electromagnetic modes are
unwuplcd. The plasma mode is entirely longitudinal
and the electromagnetic mode is totally transverse.
However in the presence of the static external mag-

netic field, the modes of isotropic plasma get mixed
so that all the modes in an anisotropic plasma have
both longitudinal as well as transverse field compo-
nents. Hence all the three modes in an anisotropic
plasma are designated as modified in order to be able
to distinguish them from the corresponding modes in
an isotropic plasma.

Even though the three modes in an anisotropic
plasma have both longitudinal and transverse field
components, it is found that each of the modes is
predominantly longitudinal in certain ranges of fre-
quency and pr edominantly transverse in the remain-
ing ranges of frequency. The modified ordinary
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electromagnetic mode is predominantly transverse
throughout its propagation range 1<Q< . The
modified extraordinary electromagnetic mode is pre-
dominantly transverse in the frequency ranges
0<Q<Qy and <2< o and is predominantly
longitudinal in the frequency range Q,<ZQ<_Rl and
in the neighborhood of Q= the rapid transition
from a transverse to a longitudinal wave takes place.
The modified plasma mode is predominantly trans-
verse in the frequency range ,<Q<Q,, rapidly
changes character in the neighborhood of the fre-
quency Q= to become predominantly longitudinal
in the remaining frequency range 2,<<Q< =,

As the direction of propagation of the plane wave
is changed so as to approach the direction per-
pendicular to the static magnetic field, /* becomes
smaller and this has effect only on the values of
Q,, Rl and Q. It is found that [* approaches zero
both @, and Rl tend to zero and ©, tends to the value
V1-+R2 Tt follows therefore that as the propaga-
tion direction is changed so as to approach the
direction perpendicular to the static magnetic
field, the MEM (0) and the MEM (X") modes remain
practically unaltered whereas the propagation range
of the MEM (X) mode gets continually diminished
until it finally vanishes in the limiting case of
propagation across the static magnetic field. For
the MP mode, the only effect is the frequency €
around which it changes from being predominantly
transverse to predominantly longitudinal, continually
increases as [* is decreased and approaches the value
of /14 R? in the case of propagation across the
static magnetic field. A comparison of these
results with those obtained for the special case of
propagation across the static magnetic field, as
depicted in figure 3b shows that the dispersion for
the three modes obtained here for the case of prop-
agation at an arbitrary angle to the direction of the
static magnetic field, attains the proper limiting
values for propagation across the static magnetic
field.

On the other hand, as the direction of propagation
is changed so as to approach that of the static
magnetic field, /* increases continually and attains
the value unity. As /? increases to the value unity,
Rl approaches R and Q3 and Q, approach respectively
the smaller or the larger of the two values, 1 and .
It is found that the dispersion curves for the propa-
gation direction at an arbitrary angle to the direction
of the static magnetic field do not in the limiting
case of [>=1, become identical with those for the
case of propagation along the magnetic field as
depicted in figure 2b. Consequently the results of
the higher order approximations obtained in this
section hold good everywhere except in a small
boundary region about the direction of the magnetic
field and, therefore, are said to pertain to the region
exterior to the axial boundary layer. In the axial
boundary layer, the dispersion curves undergo
rapid changes due to the decoupling of the plasma
mode. A different type of higher order perturba-
tions is therefore called for in the case of propagation

vefy close to the direction of the static magnetic
field.

The dispersion curves for the three modes are
drawn in figures S8a and b for two values of the param-
eter 2, namely (1) R?=% and (i1) R*=% for the case
in which the direction of propagation is very close to
that of the static magnetic field. Specifically the
value [?=0.95 is used. An examination of figure S8a
shows that for the case R*<1, the dispersion curves
for the modified plasma mode and the modified
ordinary electromagnetic mode approach very close
to each other in the neichborhood of the frequency
Q=1. Similarly from figure 8b, it is seen that for
the case R?>>1, the dispersion curve for the modified
plasma mode approaches both the curves for the
modified extraordinary and the modified ordinary
electromagnetic modes in the neighborhood of the
frequency Q=1. Also the dispersion curves for the
modified plasma mode and the modified extraordinary
electromagnetic mode approach each other again
in the neighborhood of the frequency Q=R. It may
therefore be anticipated that the dispersion in the
axial boundary layer might undergo rapid changes
in the neighborhood of the two frequencies Q=R
and Q=1.

3. Dispersion in the Axial Boundary Layer

For the purpose of obtaining the proper approxi-
mations in the axial boundary layer, it is convenient
to start by rewriting (12a—d) as follows:

A=—Ci0] 2@ —1)(@— 1= R+ R 1)
a?

. {<92—1)2—sz2z21z2}] (43a)

AzO:(’392[(&22—1)(92—1{2)+1{2(12—1)

+202 %2 (Q—1—2R? }] (43D)
Agy—— C2 0 @2 — R+ R2(1—12)] 430)
and
Ay = (—1)[ @ — Q2+ R +1] 43d)

The axial boundary layer may be easily shown to
be defined by those values of 6 for which

a2

2 L
=1t 75 (44)

where ¢ >0 and is of the order unity. First, it is de-
sired to restrict attention to the neighborhood of the
frequency Q@=Z£R. For this purpose, let

Q=R s

(45)

a2
)
Y2
&

where s is of the order unity. The substitution of
(44) and (45) in (43a—d) and the rearrangement of
the terms in powers of ¢?/(3, yields the following
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Ai=—C3| AR+AR Fr+ AR G+

0
(46a,)
6
A= Cla? [ AR+ AR S+ AR A AR 0y | aSD)
Ag=—Cit[ A8 +48 E 448 (46)
and
A= AL+ AW Z’ +AR at +A(3) a*g (46d)
where
AP =2R*(1—R?) (47a)
A =R (s—t—2)— R (47b)
AL =Rt + R's (47¢)
AP =—2R*+3R*— (47d)

The expressions for all the other A’s are not needed in
this analysis and hence are not reproduced here.
The exact dispersion equation (11) may be rewritten
with the help of (46) and (47) as follows:

(“_}_ 1(2) _+_ 1 ),(,IT(_CI A6
0 0

6
a
2| 40 1) (2) (3) (4)
_(Vn [11 1‘()1 +A(m (u+/1m (M‘f’ 10 (", 10 (n;jl N
0 0

[ 4p+4p

2 72 0) @ 7
_i‘(yu'L)I:/{‘(zo 40 (y)+f1zo (v4+‘/12(l (“':I
0

—Oir | Ag+ag Lt az & 0. @)
0 (0F;
Note that all the A’s are of the order unity.

If the phase velocities of the order a or lower are
only sought, it is legitimate to retain on the left side
of (48) only the leading terms which are of the order
(3a* and neglect all the other terms which are at least
of the order a?/C; lower than the leading terms,
resulting in the following quadratic equation in A\*:

A AD
N — A(o) o At 4A;E§’:O

(49)

provided A% 0. Using (47) in (49), it is found

that
)\ 4 )\ 2
45 TN r_ .
(a> +2U <(L> +W=0 (50a)
where
s(R*—1) —R*(1+2) . RAR4s)
U= (1?1— 1) o " *’_‘m' (50b)

For t=0, which corresponds to the case of propaga-
tion along the static magnetic field, the two modes
whose phase velocities are specified by (50a) are de-
coupled as evidenced by the fact that (50a) factors

] c 5 : IN S
into two linear equations in <5) yielding the follow-

ing solutions:

X 2—- ’S) v —
)\ 2 2 f b
(6)37ﬁ or t=0. (51 )
For t#0, the solutions of (50a) are given by
N\ e
Q) —_UT=W  fort=0.  (52)
asy, 2

It may be easily shown that (/>—W can never vanish,
with the result, the two phase velocities specified by
(52) are always different.

The phase velocity given by (51a, b) and by (52)
for t=1 are sketched in figures 9a and 9b for (1) <1

S . B A
and (1) R*>1, respectively. For R*<1, ((L does
2
" A
not lead to real phase velocities and " corresponds
/1

e . A
to real phase velocities for s<_ —R*. Also <a—1>:0

for s=—R%. For R*>1, (51a) for s< 0 and (51b)
for all s leads to real phase velocities. Also (Ma),
in (52) for all s and (Ma), for s<— % leads to real
phase velocities. Also (M a), >(Na), for s<—R%
and (Ma),=0 for s=—R%. From (44) and (45),
it is clear that s=—R% corresponds to Q=PRI[. For
R?*>1 and t=0, the two phase velocities are found
to be equal for s=—2R*/R*—1

In the axial boundary layer, in order to understand
the physical significance of the variation with respect
to s of the phase velocities of the order of the acoustic
velocity @ in the electron gas or lower, for the fre-
quencies in the close neighborhood of Q=2ZR, it is
necessary to compare figure 9a with that portion of
figures 2b and 8a enclosed by a solid line. The
portion of the dispersion curve enclosed by a solid
line in figure 8a is just the modified extraordinary
electromagnetic mode, MEM (X'), whose phase
velocity, according to (34), goes to zero for Q=~FRl.
The phase velocity in ficure 9a, according to the fore-
going discussion, goes to zero for s=—R 21 or Q=1Fl.
Therefore the phase velocity diagram for >0 in
figure 9a is just the expanded Version of the dispersion
curve of the MEM (X™) mode near Q=R and A=a.
When ¢ approaches zero, figure 9a shows that the dis-
persion curve for the MEM (X™) mode just shifts to
the higher frequency side and has its zero now at
s=0 or Q=R. A comparison with figure 2b shows
that the phase velocity diagram in figure 9a for the
for the case t=0, is the same as the purely transverse

extraordinary electromagnetic mode propagating
along the direction of the static magnetic field.
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R2 = 1/2

-16

=112

-20

Figure 9a.

Summarizing the above results, it follows that for the
case R?*<1, the modified extraordinary electro-
magnetic [MEM(X™)] mode in the neighborhood of
Q=R continuously goes over to the uncoupled,
purely transverse electromagnetic mode as the direc-
tion of propagation approaches and finally coincides
with that of the static magnetic field.

The portion enclosed by the solid line in figure 2¢
has two dispersion curves. 'The phase velocity curve
which goes to zero for Q=R belongs to the purely
transverse extraordinary electromagnetic mode and
the other curve which is nearly horizontal belongs
to the purely longitudinal plasma mode. These
curves refer to propagation in the direction of the
static magnetic field. From (16), the phase velocity
of the plasma mode for Q=R is seen to be equal to

all
VRE—1
phase velocity in figure 9b for the case =0, which
refers to propagation along the static magnetic field.

There are two intersecting curves for the

S

Dispersion in the axial boundary layer in the neighborhood of Q=R and A=a (R2=1/2).

The curve for \;, obviously, is a part of the purely
transverse extraordinary electromagnetic mode since
it has a value zero for s=0 or Q=R. The other
curve, namely that for \,, as seen from (51a), has the
same phase velocity as that of the plasma mode for
Q=R and hence is a part of the dispersion curve for
the purely longitudinal plasma mode. Note that
these two dispersion curves intersect and hence have
the same phase velocities for s=—2R?*/R*—1. The
portion enclosed by the solid line in figure 9b has
two, nonintersecting dispersion curves. Obviously,
the one on the low frequency side is a part of the
modified extraordinary electromagnetic mode, since
it has zero value for Q=F/[. The other curve, which
lies on the higher frequency side, is a part of the
modified plasma mode. These two nonintersecting
dispersion cucves refer to propagation in a direction
which makes a small angle with that of the static
magnetic field. On comparing the two dispersion
curves enclosed by the solid line with the two curves
in figure 9b for the case {70, it is evident that the
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Ficgure 9b.

phase velocity curves for A, and \, belong to the
modified plasma mode and the modified extraordi-
nary electromagnetic mode [MEM(X™)] respec-
tively. The results depicted in figure 9b show the
transition that takes place in the axial boundary
layer for the case R*>1. From an examination of
figure 9b, it is clear that as the direction of propaga-
tion approaches and finally reaches that of the static
magnetic field, the higher frequency side of the dis-
persion curve for the modified plasma mode merges
with the lower frequency side of the dispersion curve
for the MEM (X™) mode to form a continuous curve
which belongs to the uncoupled, purely longitudinal
plasma mode. On the other hand, the higher fre-
quency side of the dispersion curve of the MEM (X™)
mode crosses that of the uncoupled plasma mode,
merges with the lower frequency branch of the modi-
fied plasma mode to form a continuous dispersion
curve which obviously belongs to the uncoupled,
purely transverse extraordinary electromagnetic

Dispersion in the axial boundary layer in the meighborhood of Q=R and x=a (R2=4/3).

mode.  Simple evaluation of the generalized
Poynting vector may be made to establish that the
two modes whose dispersion curves cross each other
for £=0 near Q=R and A=a are uncoupled. Thus
in the axial boundary layer, for the case R*>1, a
part of the decoupling of the plasma mode takes
place in the close neighborhood of Q=R and \=a.

It is now desired to examine the behavior of the
dispersion in the mneighborhood of the frequency
2=1. For this purpose, let

o B (53)
7

where s is of the order unity. Employing the same
procedure as before and making use of (44) and (53),
it may be easily derived that the phase velocities of
the order C, or higher are specified by the following
cubic equation in N:
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s—]n’z(a+t+2) R2—|-1)
((,) +EETD o (59

For =0, which corresponds to the case of propaga-
tion along the static magnetic field, the three modes
whose phase velocities are specified by (54), are
decoupled as evidenced by the fact that (54) factors
into three linear equations in (Ma)? yielding the
following solutions:

M1
<(—11)) =3 for t=0 (55a)
N\ R+1 -
o) ' for t=0 (55b)
and
2 —
—z\,—z :I—%,—l for t=0. (55¢)

For the case t0, it may be verified that the discrimi-
nant of the cubic equation (54) in (A/C})? is negative
and as a result all the three roots are real and unequal.

The phase velocities given by (54) for t=1 and
those given by (55) are plotted in figures 10a and b
for the case (1) R*<1 and (1) ]2>1 respectively.
For R*<1, (55a) for s >0 and (55b) yleld real phase
velocities whereas (55¢) does not give rise to real
phase velocities. Also, it may be proved that the
number of positive roots of (54) is either one or two
according as s is less than or greater than zero.
Note that only positive real roots will yield real
values for the phase velocity. For R*>1 (55a) for
s>0, (55b) and (55c) yield real phase velocities.

3

2-1/2

1.552

—— -
-

(1) PLASMA MODE
@ ORDINARY EM MODE °
(3) MODIFIED ORDINARY EM MODE

(4) MODIFIED PLASMA MODE

Dispersion in the axial boundary layer in the
Co (R2=1/2).

Ficure 10a.
neighborhood of Q=1 and N=

Also the number of positive real roots of (54) giving
rise to real phase velocities is either two or three
depending on whether s is negative or positive.

For R*< 1, a comparison of figure 10a with those
portions of figures 2b and Sa enclosed by a broken
line shows that for the case t=0, which corresponds
to propagation parallel to the static magnetic field,
the curves marked 1 and 2 in figure 10a are the
portions of the dispersion curves for the purely
longitudinal plasma (P) mode and the entirely
transverse ordinary electromagnetic (EM) mode
respectively. The phase velocities of these two
modes are equal for s=R/R4-1. Similarly for t=1,
which corresponds to a direction of propagation very
slightly inclined to that of the static magnetic field,
the curves labeled 3 and 4 in figure 10a are the sec-
tions of the dispersion curves belonging to the
modified ordinary electromagnetic mode and the
modified plasma mode 1espect1x ely. Tt follows then
from figure 10a that as the direction of propagation
approaches and finally coincides with that of the
static magnetic field, the branch of the modified
ordinary electromagnetic mode for s >R/R-1 joins
with that of the modified plasma mode for s<Z R/R+1
to form a continuous curve which belongs to the
uncoupled, purely transverse, ordinary electro-
magnetic mode and the branch of the modified P
mode for s >R/R-+1 joins with that of the modified
ordinary EM mode for s<_ R/R-+1 to form a smooth
curve which is part of the dispersion curve of the
uncoupled, purely longitudinal plasma mode. It
may be easily verified that N\/Cy;=1 is a solution of (54)
for s=1 for any value of R? or . From this fact, 1t is
evident that the modified plasma mode has its phase
velocity equal to the free space velocity of electro-
magnetic waves for the frequency given by =1+

a*/Cs.

3

(1) PLasma mODE
@ ORDINARY EM MODE

T
|
]
|
| O EXTRAORDINARY EM MODE
| (WHISTLER MODE)
|
|
|

@ MODIFIED ORDINARY EM MODE
@ MODIFIED PLASMA MODE

(&) MODIFIED EXTRAORDINARY EM
MODE

1.365

0,366

Ficure 10b. Dispersion in the axial boundary layer in the
neighborhood of Q=1 and x=C, (R2=4/3).
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For the case R?>1, a comparison of figure 10b
with that portion of figures 2¢ and 8b enclosed by a
broken line enables the understanding of mechanism
of coupling of the various modes in the axial bound-
ary layer in the close neighborhood of Q=1. From
figure 10b it is seen that as the propagation direction
is changed from that of the static magnetic field,
the branch of the dispersion curve for the plasma
mode for s<2/R+1 joins with that of the ordinary
EM mode for s >R/R+1 to form a smooth curve
which belongs to the modified ordinary EM mode.
And the branch of the dispersion curve of the ordi-
nary EM mode for s<_R/R-1 joins with that of the
plasma mode for s>R/R+1 and which in turn
merges with that portion of the dispersion curve of
the extraordinary EM mode for s>R/R—1 to form
the dispersion curve corresponding to the modified
plasma mode. In a similar manner the branch of
the dispersion curve of the extraordinary EM mode
for s<R/R—1 merges with that of the plasma mode
for s >R/R—1 to form a smooth dispersion curve
belonging to the modified extraordinary EM mode.
From the foregoing discussion, the manner in which
the plasma mode gets decoupled in the axial bound-
ary layer in the close neighborhood of Q=1 and
A=0C,, is made clear.

With the understanding of the behavior of the
dispersion of the three modes in the axial boundary
layer, it is evident that the whistler mode corre-
sponds to the modified extraordinary electromagnetic
mode for all directions of propagation and no incon-
sistency in the nomenclature of the whistler mode
arises as in the magneto-ionic approximation.

4. Concluding Remarks

It is appropriate to make the following remarks in
conclusion. The diagrammatic representation in the
Q*—I? space used in this paper for elucidating the
regions of propagation of the various modes is very
similar to the one first introduced by Clemmow and
Mullaly [1955] and extensively used by Allis, Buchs-
baum, and Bers [1962]. The two parameters used
by these authors both contain the source frequency.
Only one of the two parameters used in the repre-
sentation of the parameter space employed in this
paper, contains the source frequency and this feature
facilitates greatly the determination of the propaga-
tion characteristics explicitly as a function of
frequency.

The simple explanation that the compressibility of
the plasma merely introduces a lower cutoff in the
phase velocity curves obtained as a result of the
magneto-ionic approximation, is frequently advanced.
From the results of this paper, the magneto-ionic
theory is seen to yield zero phase velocity for the three
frequencies, @=0, Q3 and 2, The compressibility
of the plasma does not affect the phase velocity
near @=0 and merely shifts the zero near Q; to the
high frequency side with the result that the zero
phase velocity now occurs at @=/£R[.  Only the phase
velocity near Q= ,, instead of going to zero has a

cutoff value equal to the acoustical velocity in the
electron gas. Consequently the frequently advanced
simple explantion of the effect of compressibility is
not fully correct.

Kieburtz [1963] has investigated the same problem
that is treated in this paper using the coupled-mode
theory and has found, for the range of frequencies
given by Q«R<1 in which the whistler phe-
nomenon is observed, that there is coupling between
the extraordinary electromagnetic mode (whistler
mode) and the purely longitudinal plasma wave.
The results obtained in this paper show that for
R<1, there is no coupling between the whistler mode
and the purely longitudinal plasma wave. There-
fore, the results reported by Kieburtz appear to be
incorrect.

The frequency Qi in the close neighborhood of
which there is a sharp transition of the character of
the wave from being predominantly transverse to
being predominantly longitudinal is referred to in
the literature [Allis, Buchsbaum, and Bers, 1962] as
the frequency of plasma resonance. The results of
this investigation show that for <1, the frequency
of the plasma resonance is equal to the plasma fre-
quency w, in the direction of the static magnetic
field and increases gradually to the value /o’ -} o
for the propagation across the static magnetic field.
On the other hand, for 2>1, the frequency of the
plasma resonance is again equal to the plasma fre-
quency w, for propagation along the static magnetic
field, “jumps” to the value of the gyromagnetic
frequency w, as soon as the propagation direction is
changed ever so little from that of the static mag-
netic field and increases gradually and attains the
same value v w; +w? for propagation across the static
magnetic field.

An important and a satisfying result of this in-
vestigation is that the magneto-ionic theory is sur-
prisingly accurate over a wide range of the parameters
of interest. Where it fails and where inconsistencies
set in as a result of its application, the present theory
may be used to obviate the difficulties.

The author is grateful to Ronald V. Row for the
many valuable discussions and to N. Ciccia for the
assistance with the numerical computations.
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