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In this paper, which consists of two parts, an extension of the magneto-ionic theory is
systematically developed by employing the linearized, single fluid, continuum theory of
plasma dynamics. The cubic equation specifying the square of the phase velocity of a plane
wave, whose direction of propagation makes an arbitrary angle with that of the static ex-
ternal magnetic field, is derived. In the first approximation in which only the phase velocities
of the order of the velocity of the electromagnetic waves in free space or higher are sought,
the general cubic equation is found to degenerate into a variant of the well-known Appleton-
Hartree equation. The regions of the normalized source frequency @ and the normalized
gyromagnetic frequency R, in which the ordinary and the extraordinary, purely transverse
clectromagnetic modes propagate are discussed with the help of a construction in the Q*~R?
plane and with emphasis on the procedure used in the designation of the two modes. It is
found that the dispersion curves for the arbitrary direction of propagation do not continu-
ously go over to those for the direction parallel to that of the static magnetic field. An
inconsistency in the designation procedure for the modes is found to exist in the magneto-

ionic approximation.

1. Introduction

A vast majority of the investigations on the char-
acteristics of wave propagation in the lonosphere are
based on the application of the magneto-ionic the-
ory. An important assumption of the magneto-ionic
theory is that the plasma of the ionosphere is incom-
pressible, with the result its macroscopic properties
are adequately described by considering it to be a
dielectric medium characterized by a tensor dielec-
tric constant. The magneto-ionic theory has been
successful in explaining the variety of wave phenom-
enon in the ionosphere, especially in situations where
the effect of the alternating electric field predomi-
nates over that of the pressure gradient. This suc-
cess is to be expected since, in the above circum-
stances, the dielectric description of the plasma is
a reasonably good approximation. When the effect
of the pressure gradient is not negligible, the mag-
neto-ionic theory fails and consequentlv requires
extension. The extension of the magneto-ionic the-
ory by employing a linearized, single fluid contin-
uum_theory of plasma dynamics is systematically
developed in this paper by considering the plasma
of the ionosphere to be an unbounded, “collision-fr ee,
and macroscopically neutral mixture of cas of mobile
electrons and stationary ions.

At the outset, a brief discussion on the notation
used in this paper is in order, especially since it dif-
fers from the conventional notation employed in the
lonospheric literature [Ratcliffe, 1959; Budden, 1961].
In problems concerning the wave pr()p Lgatlon in the
ionosphere, three frequencies occur; namely, (i) the

source frequency, o, (ii) the plasma frequency, w,,
and (i) the gyromagnetic frequency, w,. In the
ionospheric literature, the following normalized
parameters are in common usage:

> (02 >
X=-—"and Y=
w?

In the analysis of the properties of wave propaga-
tion in the 1(;11()\1)11019 the determination of the prop-
agation characteristics explicitly as a function of the
source frequency, w, is almost always desired. Such
a determination is rendered unnecessarily cumber-
some by adhering to the normalized p(u(nnetels X
and Y, since the source frequency is mixed in both
of them. Therefore, instead of using the conven-
tional notation, the following normalized frequencies
are used:

=" and R=2¢

Wy Wp

In this notation, @ is the normalized source fre-
quency and R is the normalized magnitude of the
external magnetic field. The use of the normalized
parameters, @ and [2, has the additional advantage
of effecting considerable simplification of the coeffi-
cients in the dispersion equation, as will be seen in
the next section.

There have been previous investigations of the
nature of plane wave propagation in an unbounded,
homogeneous, compressible plasma with an e\ternal
magnetic field. These investigations are primarily
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restricted to two special directions of propagation;
namely, those along and across that of the static
magnetic field. An elegant presentation of the
results for these two special cases may be found in
the recent book by Allis, Buchsbaum, and Bers
[1962]. In this paper, first, a brief derivation of the
dispersion equation for the propagation of a plane
wave at an arbitrary angle to the direction of the
static magnetic field is given. The dispersion
equation, which is essentially a cubic, is found to
factor out into a linear and a quadratic equations
for the special cases of propagation along and across
the static magnetic field. These two special cases
are briefly reviewed in this paper, partly for the
sake of completeness and partly to emphasize the
new construction in the Q°—R* space, which is used
in elucidating the regions of Q@ and R in which the
two modes propagate. This new construction serves
to localize the regions in the Q— R space where the
validity of the magneto-ionic theory 1s of suspect.

It is found that, except in a boundary layer about
the direction of the static magnetic field, in the first
approximation wherein the phase velocity of the
order of the velocity of the electromagnetic waves in
free space, ¢, or higher, is sought, the exact dispersion
equation degenerates into a quadratic equation
which is just a variant of the well-known Appleton-
Hartree equation. The analysis of the above
quadratic equation shows that the phase velocity is
everywhere of the order ¢, or higher, except in the
vicinities of the frequencies @=0, Q5 and Q,, where
it goes to zero. It is shown that Qi and Qf are,
respectively, the smaller and the larger of the two
roots of the equation Q'— Q*(1+4 R?) + R?[*=0, where
l=cos 6 and 6 is the angle which the propagation
direction makes with that of the static magnetic
field. Therefore, the results of the first approxima-
tion may not be valid in the neighborhood of the
three frequencies, Q=0, Q,, and Q.

A closer examination of the exact dispersion
equation for Q@=0 shows that the validity of the
results of the first approximation is not impaired
even though the phase velocity goes to zero at that
frequency.

In the second approximation wherein the phase
velocity of the order of the acoustic velocity @, in the
electron gas or lower, is sought, the exact dispersion
equation reduces to a linear equation. The study
of the above linear equation shows that the dispersion
curve has two branches. The first branch starts
with a value of infinity for Q=g reduces progres-
sively as @ is increased, and goes to zero for Q=—=i?l.
The second branch starts again with a value of
infinity for Q=@ reduces progressively as Q is
increased, and attains asymptotically the value a
for Obviously the results of the second
approximation are also not valid in the neighborhood
of the frequencies Q=Q,; and Q=Q,.

A third approximation wherein the phase velocity
is of the order vyac, is, therefore, sought, and the
exact dispersion equation degenerates then into
another quadratic equation. The analysis of this
quadratic equation yields finite, nonzero values for

Q= .

the phase velocity for =, and Q,, and these phase
velocities are of the order yac, and hence are an
excellent approximation for the phase velocities at
Q=05 and 2, Moceover, it is found that the phase
velocities obtained in the third approximation merge
with those given by the first and the second approxi-
mations, as the frequencies are sufficiently removed
from the values Q; and Qj, to the lower or the higher
sides, respectively. From a synthesis of all the re-
sults given by the first, the second, and the third
approximations, emerge the complete dispersion
curves which are valid for all directions of propaga-
tion except very close to that of the static magnetic
field. In all, there are three modes and these have
been named as the modified plasma mode, the modi-
fied ordinary electromagnetic mode, and the modified
extraordinary electromagnetic mode, rvespectively.
Only the modified extraordinary electromagnetic
mode has two branches.

In the axial boundary layer, which is a narrow
vegion in which the propagation direction is very
close to that of the static magnetic field, the dis-
persion curves undergo very rapid changes as a
result of the decoupling of the plasma mode. Con-
sequently, dispersion curves which are obtained for
the arbitrary direction of peopagation to that of the
magnetic field do not uniformly go over to those for
the propagation direction along that of the static
magnetic field. It is found that the dispersion in
the axial boundary layer undergoes rapid changes
in the neighborhood of the two frequencies Q=P
and Q=1. By using boundacy layer techniques, the
dispersion equations in the boundary layer in the
close neighborhood of the two frequencies Q=R and
Q=1 are derived and analyzed. This analysis clari-
fies the manner of coupling between the longitudinal
plasma waves and the transverse electromagnetic
waves for the case of propagation in the directions
other than that of the static magnetic field. When
the propagation direction is changed from that of
the magnetic field, for the case R*<1, the ocdinary
electromagnetic mode couples into the plasma mode
and vice versa, in the close neighborhood of the
frequency =1, and when the phase velocity is
approximately equal to ¢, For the case R?>>1, in
addition to the above coupling, the plasma mode
couples into the extraordinary electromagnetic mode
(Whistler mode) and vice versa, in the close neighbor-
hood of the frequency Q=1 and when the phase
velocity is slightly lower than ¢, Also in the neigh-
borhoodof the frequency Q= I, when both the extraor-
dinary electromagnetic mode and the plasma mode
are slowed down to approximately the acoustic ve-
locity a in the electron gas, they couple back into
each other. The smaller and the larger of the two
frequencies @=1 and Q=R are found to be respec-
tively the approximations to the frequencies Q= Q;
and 2=, in the axial boundary layer. As the
propagation direction is changed so as to approach
that perpendicular to the static magnetic field, the
only essential changes in the dispersion are the de-
crease of Q, and the increase of Q.

The general dispersion equation is briefly derived
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in section 2. In sections 3 and 4, the two special
cases corresponding to the direction of propagation
along and across that of the static magnetic field are
discussed. The first order approximation to the
exact dispersion equation is treated in section 5.
The higher order approximations for the region ex-
ternal to the axial boundary layer as well as the
dispersion in the boundary layer are contained in
part 1T of this paper.

2. Formulation of the Problem

Consider an unbounded, homogeneous plasma
which, for the sake of simplicity, is assumed to be a
lossless and macroscopically neutral mixture of gas
of mobile electrons and immobile ions. It is proposed
to restrict attention only to the linear, time-harmonic
problem; the harmonic time dependen('e of the form
et is implied for all the field components. Tt is
further assumed that the drift velocity of the electrons
is zero so that the plasma as a whole may be consid-
ered as stationary. A uniform magnetic field B, is
assumed to be impressed externally throughout the
plasma region in the z-direction, where z, y, and
form a right-handed rectangular coordinate system
(fig. 1).

Let N, be the average number density, /2 the
S
pressure deviation from the mean, and V' the velocity

- -
of the electrons. Let £ and 71 be the alternating
electric and magnetic fields. The linearized time-
harmonic hydrodynamic equation of motion for the
electrons is

—wm]\ U(f(L—I-\ X2By)—vP (1)
where e is the charge and m is the mass of an electron.

The equation of continuity after being linearized and
combined with the equation of state is given by

-
@*mNw-V=10P (2)

where a is the velocity of sound in the electron gas.
In addition, the electric and the magnetic fields
satisfy the following time-harmonic Maxwell’s equa-
tions

= -
VX E=iwuH 3)
> Fo -
| VX H=—iwer E+NoeV 1)

where u, and ¢, are the permeability and the dielec-
tric constant of free space.

It is desired to investigate the characteristics of a
plane wave propagating in the plasma medium

s
Let k& be the propagation vector such that ~><Ic
coincides with the y-axis and let 0 be the angle that

>
k makes with the direction of the static magnetic
field, so that k,=k sin 6=kn, k,—=0 and k.=Fk cos
6=kl. 'Therefore all the field components will have

> Y

Fraure 1. Geomelry of the problem.

the spatial dependence of the form ¢ @+ g0 that

O o 0 : s :
‘a";‘*’ 7kl1, ’a}/’*oy a:’ LAZ (’))

The elimination of P from (1) with the help of (2)
and the use of (5) leads, after some rearrangement, to
the following simultaneous equations spculymg
V,, V,, and V. in terms of /£, I/, and /.

lr an®y y, ka nl - €W, 1+
1— V=g Vim0 a7,
wma WMo

—@kQ(’;(’zVﬁ—V”—i‘—%k (1£{ Ve {:w( IL}—{——’-':(LE,,
w w w w a wma wmao
2 2
Ly (1B v~ B, (6a,b,0
where

2
a=1—2 (7)

w

eB, . .

and @ T8 the gyromagnetic frequency of the
electrons. The substitution of V,, V, and V,

obtained from the solution of (6) into (4) enables
the right-hand side of (4) to be rewritten as
-

—iwege - I, where ¢ is the dielectric tensor. Then,
from (3) and (4), it is found that
e 2
V><V><]’~(2 -E (8)
-0
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where ()=

is the velocity of electromagnetic
Mo€o

waves in free space. On writing (8) in component

form, the following set of equations specifying 2,

B, and E,is obtained:

Dll iDl? D13 Ez
_'iDZI Dy, —iD23 Ey :[D][E]:O
D31 /iD{i? D33 E2
9)
where
kle(YZ 0)2 k?aQZZ
Dy= o (1-E20)
Y O kZ_an_z
Dyp=Dy= —c-o? wal) L= w? )
BPlnC? 2 ka’nl
Diy=Dy=— w? —I_w;)apD oF
k2C? w3 ka?
Du="0"14 5D 1“7)
w2 w, ka*nl
Du=Dy=—8 5 =0
k? 20 kZ 2
Dag___ﬂ ZD 1_ﬂ>
2 2 2
D:l—iTa <1—‘°; l2> (10)

and w, is_the plasma frequency of the electron and is
2
]:Tnoj . The determinant of ) should be

0
equal to zero in order that (9) may have a nontrivial
solution and this condition, together with the help of
(10), after considerable manipulations leads to the
following cubic equations in N

given by w;=

N4 AN+ AN A;=0 (11)

where x:% is the phase velocity of the plane waves

propagating in the medium. The expressions for
the coefficients A;, A,, and Az in (11) may be simpli-
fied to yield the following:

2203

A== {20202+ B +2+ RA(1+12))
+6{Q4—Q2(2+l2132)+1}]=% (12a)
0
A 9203 4 2 2 2712
=g, (=R R
+292a{92—1—z?R2}]:§@ (12b)

Qi (2—12R?) Ay

Agz——To——A—o (12¢)
A= (2*—1)[Q'— Q*(2+ R?) +1] (12d)
where

(i,f a=2) B=2n (13)

3. Propagation Along the Static Magnetic
Field

Before proceeding to obtain the characteristics of
plane waves propagating at an arbitrary angle § with
respect to the direction of the external magnetic field,
the characteristics of plane waves propagating along
and across the static magnetic field will be briefly
reviewed. For propag ation along the magnetic
field, #=0 and the dispersion equation (11) may be
factored into the following two equations:

- Q-
N 0 (14a)
and
)\4+191)\2+B2:0 (14b)
where
_20°CE (*—1—R?_ By -
B,=— B B, (15a)
n O5(Q*—R?) By
Bg— T BO 4% (15b)
By=[Q*—Q*(2+ R*)+1]. (15¢)

The phase velocity obtained from (14a) is given by

al
_V/Q2_1

= (16)

The mode whose phase velocity is given by (16)
propagates only for ©>1 and has a phase velocity
equal to the acoustical velocity in the electron gas in
the limit of infinite frequency. This mode is
obviously the plasma mode. Note that (16) 1

independent of the static magnetic field and therefore
the same as in an isotropic plasma. This is to be
expected since the static magnetic field does not
exert a force in a direction parallel to itself.

The dispersion equation (14b) is independent of a
and hence is the same as in an incompressible plasma.
It may be solved using a procedure to be described
in connection with the case of propagation at an
arbitrary angle and the resulting phase velocities of
the ordinary and the extraordinary electromagnetic
modes are given by
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T 2@+R)

Vo=G| givan i (17)
N Qe—R)

Ve_Cl: {8 ] (17b)

In figure 2a, the regions of propagation of the ordi-
nary and the extraordinary modes are indicated.
The ordinary electromagnetic mode is found to prop-
agate for © >Q; and the extraordinary electromag-
netic mode for Q<R and Q >Q,, where

o ¢§+\/<§-)Z+1. (18)

An examination of figure 2a reveals a fact which
does not appear to have been emphasized previously
in the literature. For R?>1/2, there is at least one
mode propagating in the entire frequency range.
But for R*<1/2, there is a frequency band which lies
entirely below @*=1 and for which neither mode
propagates. As I? is reduced from the value 1/2,
this cutoff band increases progressively until finally
for the isotropic case, this cutoff band extends from
Q=0 to Q=1.

The phase velocities of the three modes, given
respectively in (16) and (17a, b) are sketched in
figure 2b for the case R°<1 and in figure 2¢ for the
case R?>1. The ordinary electl()magnetlc moede 1s
seen to have a phase velocity which starts with a
value of infinity for 2=Q,, becomes smaller as Q is
increased and attains asymptotically the free space
value () for infinite frequencies. The higher fre-
quency branch of the extraordinary mode has a
phase velocity which starts with infinity for Q=
and reduces asymptotically to the value (), for infinite
frequencies. The low frequency branch of the
extraordinary mode, usually referred to as the
“whistler mode,” has a phase velocity which starts

8

1t ——| ORDINARY

EXTRAORDINARY

Ficure 2a. Regions of propagation of the ordinary and the
extraordinary FEM modes for propagation along the static
magnetic field.
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Ficure 2b.  Dispersion curves for propagation along the

direction of the static magnetic field (R?=15).

with a value zero for Q=0, increases and reaches a
maximum value for Sl—]ﬂ/" and for further increase
in Q, the phase velocity reduces and finally becomes
zero for Q=ZR. The maximum value of the phase
velocity which is attained for Q=R/2 is equal to
(’11(132—1—4)‘”2 which 1is always less than (), but
approaches that value as R is increased. Only in
the frequency range 0<Q<R/2, the phase vel()( ity
increases with frequency. In figure 2a, the region to
the le[t of the critical line R2—=4Q2, is "the region of
the “whistler mode,” where the phdse vel()uty in-
creases with the frequency.
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Fraure 2¢c.  Dispersion curves for propagation along the
direction of the static magnetic field (R2=%).

4. Propagation Across the Static Magnetic
Field

For propagation across the magnetic field, 6=11/2
and the general dispersion equation (11) may be
factored into the following two equations:

e

2 0%
A Q:—1

0 (19a)

and

N4 B2+ B,=0 (19b)

where

B Bu__[2203@—1— R+ 9%ax(22—1)]
=p ,

B B, (20a)
_Bu_a'Cie
B B (20b)
By=*—Q*(2+R?) 1. (20¢)

The phase velocity obtained from (19a) is given by

G
Vo1

The mode whose phase velocity is given by (21) prop-
agates only for Q>1 and has its phase velocity
asymptotically approach the free space electro-
magnetic wave velocity. Also this mode is the same
as in an isotropic plasma. Evidently this mode is
the ordinary electromagnetic mode with its electric
vector parallel to the direction of the static magnetic
field.

The dispersion equation (19b) contains both «
and () and hence pertains to modes obtained as a
result of mixing of the extraordinary electromagnetic
wave and the plasma wave. These modes will be
designated as the modified extraordinary electro-
magnetic mode (MEM][z]) and the modified plasma
mode (MP) and will be denoted by the subscripts
mz and mp respectively. On solving (19b) and
simplifying the resulting expressions by exploiting
the fact that «*/C5<<1, the following expressions
for the phase velocities of the modified extraordinary
electromagnetic mode and the modified plasma mode
are easily obtained:

(20Q2(02— Q2) V2 )
I/ym.‘tr‘_‘ M] for 92<Q<°° (22}],)
By
where
2 R? .
Q=1+ i I-F-R2 (22b)
1-}-(—,;_;
It may be easily established that Q3<C02< 2.  Also,

1202(02_ O2)7]1/2
I"yrnp:[&(%—ﬂ] for Ql< Q< Q3 (232L)
0

/o nﬂ 2 2 1/2 i
= Qyacy| 5 (@ —95)+(—By)'"

for [2—Q3/<0(107%)  (23b)

0202

1/2
Vinp= (QT—?E)] for @, w. (23¢)

The phase velocity of the modified extraordinary
electromagnetic mode starts with the value infinity
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for Q=Q,, becomes smaller as Q is increased and
asymptotically approaches the free space electro-
magnetic wave velocity ), in the limit of infinite
frequency. The phase velocity of the modified
plasma mode starts with the value of infinity for
Q=Q,, becomes smaller as Q is increased and reaches
the value C, approaimately for Q=1. At about
Q=Q,, the phase velocity rapidly falls and reaches
the value of the acoustic velocity in the electron gas
in the limit of infinite frequency. It is not difficult
to verify that the modified plasma mode is a pre-
dominantly transverse wave for ,<Q<Q, and a
predominantly longitudinal wave for Q,<<Q<co.
Obviously the coupling between the transverse and
the longitudinal waves takes place in the close
neighborhood of Q= Q..

In figure 3a, the regions of propagation of the
modified extraordinary electromagnetic mode and the
modified plasma mode are indicated. Also the phase
velocities given by (21), (22a), and (23) are sketched
in figure 3b for the case R*=1/2.

MODIFIED PLASMA MODE

MODIFIED EXTRAORDINARY
EM MODE

Ficure 3a.

Regions of propagation of the modified plasma and
the modified extraordinary EM modes for propagation across
the static magnetic field.

5. Propagation at an Arbitrary Angle to the
Direction of the Static Magnetic Field
(First Approximation)

Except for the cases of propagation along and
across the static magnetic field, the dispersion equa-
tion (11) which is a cubic in N2, does not exactly factor
out into two simpler equations. Nevertheless, it is
possible to exploit the fact that a?(C3< <1 and
perform a perturbation analysis of (11), which in
essence leads to a separation of (11) into simpler
equations which are either linear or quadratic in A2.

The free space electromagnetic wave velocity C,
is approximately equal to 3>10° m/sec and the

10
10 T 3
F 3
r R%=1/2 ]
0 =
o 3
- a
I = =
C ]
10 =
E 3
A P -
L _
0k .
C ]
5 —
- .
10° J
& 3
. ]
o ) ]
i . ]
L 4
10* b J_
+ 4
L §

103 | |
0 2 4 L}

Ficure 3b.  Dispersion curves for propagation across the
direction of the static magnetic field (R2=15).

acoustic velocity in the electron gas is of the order 10*
m/sec and may be taken for convenience to be equal
to 3X10* m/sec. Hence 6=0a?/C;=10"% which is
negligible in comparison with unity. It is conven-
ient to rewrite (11) together with (12) as follows:

2

2 2
LEBY [Af“+%,2 Af”}w [A5‘>+% ;2>]+Az=0
0 ~0

(24a)
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where
VA )
A0 =0 90120204 B o+ R2(1 +12)] =
4, A
(24b)
2,14 6]
4P =208 191 go(1 4 Rr) 4 Ro12— A8 (24c)
110 AO
9404(12(92—Z2R2) A(l)
(1) . 0 = ==80)
AP =A, A A, (24d,
2772
szb_%fﬁur—9%2+3%%+1] (24e)
0
and
274
Ap="00 por 1 —12py), (24f)
0

If the phase velocity is of the order C,, it is seen from
(24a) that there are three terms of the order ¢ and
the other three are of the order Ci(a%C%). Hence
only the terms of the order C§ in (24¢) need be re-
tained resulting in the following quadratic equation
in N

M+ ADNH AP =0. (25)
It is to be noted that on setting a equal to zero in
(11) and (12), (25) results. This is equivalent to
saying that had the magneto-ionic theory been used
from the outset, the dispersion equation (25) will be
obtained. It is therefore obvious that (25) is a
variant of the well-known Appleton-Hartree equa-
tion. It is proposed to analyze the dispersion equa-
tion in a more systematic way than has hitherto been
done and then proceed to determine the perturbation
caused by taking into account the compressibility of
the medium.

L R2=0%0% )2

iy L. 2- 2%
10°5 -7
‘ A0 < R2 = @)

It m :
1\ gase Ay <0 T [c‘- \7.[_‘]
|

[T

ORDINARY EM MO DE

2
1 | , EXTRAORDINARY EM MODE
|

Frcurr 4.  Regions of propagation of the ordinary and the
extraordinary EM modes for the arbitrary direction of propaga-
tion (first approximation).

The solutions of (25) are given by

AD 1 [ADN .
() s
0

The lower and the upper signs in (26) correspond
respectively to the ordinary (0) and the extraor-

(26)

dinary (e) electromagnetic modes. When
1 AOANS AD
(1) 10 - (1) 10
AP 4,0, ”"Ao\/< : ) AD Ay >|2A0

and hence the solution (26) which corresponds to the
positive sign in front of the radical will yield a posi-
tive value for N\ resulting in the propagation of the
corresponding mode. In order to find out the region
in the Q*— R? space in which A% A4,< 0, the critical
lines corresponding to 4,=0 and A% =0 are drawn
in figure 4. The critical lines corresponding to
Ay=0 are given by 9°=1 and R*=Q2(2°—1)? and
that corresponding to A% are given by 9*=0 and
RP=Q*(*—1)/(*—1?). 1t may be easily shown
that the Jine R*=Q*(Q*—1)/(2*—{?) is above the line
R*=Q72(2*—1)? for @>1. The signs of A, and
A% in the various regions into which the Q*—R?
space is divided by the above mentioned critical
lines are indicated in ficure 4. In the regions
marked 1, 2, and 3, A% A,<0. In the regions 1
and 3, A4,<0 and hence, the propagating mode will
correspond to the lower sign in (26) and is the
ordinary electromagnetic mode. This is indicated
by shading with the horizontal lines. In the
region 2, A,>0 and the propagating mode will
correspond to the upper sign in (26) and is the
extraordinary electromagnetic mode which is indi-
cated by shading with the vertical lines.
Using (24a, b) and (12d), it can be shown that

1)\ 2
<A2w> — AW A,=C;Q%R?
22
[<92—1>?l”+L = (1—l2>2]>0 (27)

and hence \j ., are always real. If A% A,>0,

1 [7ADN | A |
Bl ==10. —AS)) ’ =0 |
’AO\/< 2 ) - < | 24‘14) |

and hence the signs of both N2 and A} will be the
same as Afy/A,. It is therefore evident that both
the ordinary and the extraordinary electromagnetic
modes will propagate if A%/A4,<0. In figure 4,
the critical lines corresponding to A,=0 and A% =

0, and also the ecritical lines Q*=0 and R?*=(Q*—
2
1) /<S22—1—gi) corresponding to Af)=0 are drawn.
2
For R? >0 the line ]1’22522(92——])2/<92—]_;—l ) may

be shown to be always above the line R*=Q~?
(@2—1)% Also the line R*=0Q2(Q*—1)/(2*—0?) 1is
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found to be above the line 11’2:(92—1)2/<Q?—

5
)

1412
for @*>1. Furthermore, *<— + —<1. In the
regions for which A% A, >0, tlle signs  of both

O and A, are indicated in ficure 4. It is found
that A()/A;<0 in the regions marked 4, 5, and 6
and, therefore, both modes propagate in those
regions. The line R?’=constant intersects the line
R*=Q*(*—1) /(2*—?) for two values of @* given by

. 1+R2 \/<1+1{2 _pop

(28)

In (28), @3 and @ correspond to the upper and the
lower signs respectively and are always real. Also
the line 7[?=constant intersects the line R*=Q*
(Q*—1)? for two values of ©° namely Qf and Q3
whose expressions are given in (18). From figure 4,
it is clear that the ordinary electromagnetic mode
propagates in the two frequency ranges 0< Q< Q3
and 1< Q*< o,and the extraordinary electromagnetic
mode in the ranges Qi< Q*<Q; and AP ».
For the sake of convenience in the redesignation of
these modes after the modification resulting from the
inclusion of the effect of the compressibility of the
medium, the ordinary electromagnetic modes propa-
cgating in the frequency ranges 1< Q*<  and
0<Q*< Q5 are denoted by O and O", respectively,
and the extraordinary electromagnetic modes propa-
cating in the frequency ranges ..,<<> < @ and
Q<2< Q2 are denoted by ¢" and ¢ respectively.

With the help of figure 4, at least one mode is seen
to propagate in any hcquon(v range, for R*>1/?
(1+2%). When R2<1/2(1-+/%), there is a frequency
band which lies entirely below Q=1 and in which
there is no ])mlmnutl(m As R?i1s decreased from the

ralue 1/1°(1+ this cutoff band increases progres-
sively in w 1(lth until finally for the isotropic plasma
this cutoff band extends from Q=0 to Q*=1.

As the direction of propagation of the plane wave
is changed so as to approach the direction normal to
the static magnetic field, /? becomes smaller and as a
consequence Qi becomes smaller and Qf becomes
larger. In the limiting case of the propagation
across the static magnetic field, /=0 and therefore,

2—=0 and Q3=1-+R% Note that Qf and @ do not
depend on [? and therefore, on the direction of propa-

cation of the plane waves. Therefore, as the propa-
0‘1[1011 direction of the plane waves approaches the
direction perpendicular to the static magnetic field,
the frequency range of propagation of the ordinary
electromagnetic mode O decreases and that of the
extraordinary electromagnetic mode ¢ increases pro-
eressively until for the llmltlnu case of propagation
across the static magnetic field, the O mode dis-
appears completely and the ])1()})ngullon ange of the
e™ mode extends from Qi< Q*<1-+R% It 1s to be
noted that the frequency bands of propagation of
both the O' mode and the ¢! mode remain unaltered
as the propagation direction is changed.

Frcure 5. Variation of the critical frequencies Qs and Q4 with 1.

As the direction of propagation of the plane wave is
changed so as to approach the direction of the static
magnetic field, /* becomes progressively larger and
reaches the limiting value of unity. As /* becomes
larger, @ increases for all values ol /2? in such a way
as to approach the value which is equal to the smaller
of the two quantities, 127 and 1, as shown in figure 5.
Also, QF decreases (()nllnu()u\l\' ‘or all values of R?
in such a way as to approach the value which is
equal to the larger of the two quantities, 2% and 1.
In the limiting case of propagation along the static
magnetic field, the critical line umosp(m(lmo to
Q2 for R2<1 and that corresponding to QF for R°>1
join to form the critical line Q*=/R* whereas the
critical line Q*=1 corresponding to that of Q2 for
R*<1 and of @ for R*>1 disappears. It is found
with the help of (12d) and (26) that when the critical
line Q*=1 disappears, the sign in front of the radical
in (26) will be reversed for Q2< 1, with the result in
the limiting case of propagation along the static
magnetic field, the O™ and the ¢ mode will become
the extraordinary and the ordinary electromagnetic
modes respectively. Finally the situation depicted
in figure 2a is obtained and the ordinary electro-
magnetic mode propagates in the range Q< Q<
and the extraordinary electromagnetic mode in the
two frequency ranges 0< Q<R and Q< Q< ». The
reason for the discontinuous disappearance of the
critical line @*=1 for the case of propagation along
the direction of the static magnetic field is clarified
when the compressibility of the plasma is taken into
account and is essentially due to the decoupling of
the plasma mode, which remains coupled to the
electromagnetic mode for all directions of propagation
other than that of the static magnetic field.

The expressions for the phase velocities of the
ordinary and the extraordinary electromagnetic
modes may be written down explicitly with the help
of (12d), (24b, ¢), (26), and (27) as follows
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Q205

“02(Q2—1)[9*—Q2(R?+-2) +1]
[252‘-292(2+1»”)—|—2+R?(1+l?)
T P 12)21\] (29)

The upper sign in (29) corresponds to propagating
e\tmmdmaly modes in the frequency ranges
Q<< and 2,<Q< e« and the lower sign in

TeeTaTatey

T

|
9 _
10 E | 3
! 3
o -
- 4

|
Eo A 4

|

10 |

|

Ll

©
¢ 5 |Ill
H
It

f||ll'|’[
Lol

1'
I

L1l

TR TR Tl

T
|

107 \ gn
o \ a
- N —
L \\\ 4
| | e e .
\
4
L \ 2
L) ]
L | o
|
|
|
10° n | 1
0 ) N\ 1.144 2 4 6
(0F, 5
0.437 Q

Fraure 6a. Dispersion curves for the arbitrary direction of
propagation in the first two approximations (R?=15).

(29), to the ordinary electromagnetic mode in the
frequency ranges 0<Q<Q; and 1<Q< ». The
phase velocities of the two modes as obtained from
(29) are plotted (solid line) in figure 6a and b for
for/?=1/2 and for two values of 1?2, namely (1) R*=1/2
and (ii) R?=4/3. The phase velocities of both the
O" and the ¢! modes are seen to start with a value of
infinity for Q=1 and Q=Q, respectively, decrease
continuously as Q is iner cased and dswnptotluillv
approach the velocity ¢ and hence are always
higher than (,. The phase velocities given by (29)
are obtained from (25) which is an approximation
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Ficure 6b. Dispersion curves for the arbitrary direction of

propagation in the first two approximations (R2=4%).
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to the exact dispersion equation (11) for the case in
which the phase velocity 1s of the order (), or higher.
Consequently the phase velocities of the O and the
e modes are excellent approximations to the actual
values obtained from the solution of (11).

The phase velocity of the O™ mode starts with a
value zero for Q=0, increases as Q is increased till a
maximum value of the order of €/, is reached and
thereafter decreases for further increase in Q and
reaches the value zero for Q—Q,. Note that in the
first part of the frequency range 0< Q< Qs the phase
velocity of the O™ mode increases with frequency.
The phase velocity of the e mode starts with a value
of infinity for @=Q, (which is always less than 1),
decreases as Q is Increased, attains the value ()
approximately for =1 and rapidly decreases to the
value of zero at Q=Q,. Since the phase velocity of
the O mode in the vieinity of =0 and Q=9, and
that of ¢" mode in the vicinity of Q=Q, are con-
siderably below (', and since these values are derived
from (25) which is a valid approximation to the exact
dispersion equation (11) only if the phase velocity is
of the order (', or higher, it follows that the phase
velocity obtained from (25) is of doubtful validity in
the vieinity of the frequencies Q=0, Q3 and Q, and
therefore a second approximation to (11) is needed
to examine and obtain the phase velocities in the
neighborhood of @=0, Qi and Q. This is carried
out in part I of this paper.

If a uniform procedure is used in designating the
modes, it is found that due to the discontinuous

disappearance of the critical line Q*=1 for the case of
propagation in the direction of the static magnetic
field, the “whistler mode” has its nomenclature
changed from extraordinary to ordinary as soon as
the direction of propagation differs from that of the
static magnetic field. This inconsistency appears
only in the first approximation and therefore charac-
teristic only of the magneto-ionic theory. With the
higher order approximations to the exact dispersion
relation and with the effect of the compressibility
of the plasma thus taken into account, the three in-
dependent modes which propagate in an electron
plasma are capable of being designated using a pro-
cedure which is uniformly valid for all directions of
propagation. The discontinuous disappearance of
the eritical line @*=1 is shown in part 11 to be the
consequence of the decoupling of the purely longi-
tudinal plasma wave for propagation in the direction
of the static magnetic field.
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