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The idea that long radio waves propagating between th e earth and ionosphere via 
discrete hops ean be extended far into the shadow region by evaluating a series of complex 
in tegrals is exploit ed in t his paper. I llustrative calcu lations of LF and VLF hops and total 
fields are shown as a function of distance. The second and higher hops show a pseudo­
Brewster angle just before the caust ic and attenuate like ground waves in the shadow region. 

The form of the series of in tegrals for an an isotropic ionosphere is given , and a model 
anisotropic ionosphere varyin g with height is used in a sample calcu lat ion . 

On ly a s rnaJl error is caused by writing eac h hop as the product of an e ffective ionosph"rie 
r eflection coefficient and an integral which is a function only of the other characteris ties of 
the path . 

1. Introduction 

In low-frequency radio propagation t heory, it seems natw-al to consider t be field at a 
point as t he sum of rays or hops: t he direct, or grou ndwave, plus the ray t hat has been reflected 
once from the ionosphere, plus the ray t hat has been reflected twice from the ionosphere (and 
once from t he ground), eLc. [see, for example, Johler, ] 962]. This point of view is especially 
convenient for t he propagation of pulses, since the different rays arri lre at t he receiver at 
different t imes because of the different length paths they have traveled. The hops are some­
t imes called time-modes to indicate this separation in time. 

More precisely, for a vertical electric dipole so urce, the vertical electric field is written 
(with time factor exp iwt suppressed) [Wait and Murphy, 1957; Johler, 19621: 

'" E , ocEo+:L: exp (-ilc,Dj)Dj1ctjFjOj, (1 ) 
j= l 

where Eo is the groundwave, D j is the length of the ray path of thejth hop, ct j is a convergence­
divergence coefficient which corrects for focusing at the ionosphere and defocusing at the earth, 
Fj accounts for the presence of the earth at the receiver and transmitter, and OJ is the effective 
reflection coefficient. For homogeneous isotropic plane earth and ionosphere [Wait and 
Murphy, 1957], 

(2) 

where Re and Tee are Fresnel reflection coefficients at the ground and ionosphere, respectively, 
and 

(3) 

The form of OJ is more complicated if the ionosphere is anisotropic [Johler, 1962], and Pj must 
be modified near grazing incidence on the earth for a spherical model [Wait and Murphy, 1957; 
Johler, 1962]. Johler [1964] indicates t hat (1) is adequate within about 2500 km of the source 
if FI is modified neftr the caustic and in the shadow region. 

1 This work was begun as part of Ad vanced Research Projects Agency (ARPA) Project No. 85411 and completed on NBS Project No. 85111. 
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Bremmer [1949] showed that the geometric-optic series, (1), could be obtained from the 
full-wave solution by using the saddle point approximation for certain integrals. A complete 
and very clear derivation of this connection was given by Wait [1961], who suggested that the 
field can be found at great distances with a series analogous to (1) if the integrals are evaluated 
numerically. In section 4, this series of integrals is derived for an inhomogeneous, anisotropic 
ionosphere. The derivation of the solution for the homogeneous isotropic case is outlined first 
to give the reader insight into the problem. Some sample calculations presented in section 5 
illustrate the behavior of the hops. 

FIG U RE 1. Geometry used. 

2 . Homogeneous Isotropic Ionosphere 

The geometry is shown in figure 1 [Johler, 1962]. The center of the earth is the origin of 
a spherical (1', 8, 1» coordinate system. The surface of the earth is 1'= a, and the bottom of the 
ionosphere is 1'= g=a+h. An elementary vertical dipole source is located at S(b, 0, 1» , a< b< g, 
and the field is to be found at 0(1',8,1», a< 1'< g. The paths taken by the first two hops are 
shown. The angle of incidence of the jth hop on the earth is T j, and1>i. j is its angle of incidence 

on-the ionosphere. The region Tj<~ is the lit region for the jth hop, Tj=~ (grazing incidence 

on-the earth) is the caustic, and beyond the caustic is the shadow region. 
The media are characterized by their wave numbers. In the air, 

(4) 

where w= 27rj is the angular frequency, c is the speed of light, and 1']1 is the index of refraction 
of air. In the earth, 

(5) 

where €2 and G"2 are permittivity and conductivity of the earth. In the ionosphere, 

~
-

w . Wr k3=- 1-t - ) 
C W 

(6) 

W 2 

where Wr=~) WN is the angular electron plasma frequency, and v is the collision frequency. 
v+tw 

The vertical electric field is (assuming 1'=a= b) [Johler and Berry, 1964] 

E - -iL i v3 P ( 8) (1) (2) ( + R S) l +pT~e d r-7:24 -- v-yo -cos ta la 1 e 1 R STs v 
/C l a c cos V7r -p e ee 

(7) 

(8) 
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where 

L = !J-oC J l 
47r° , (9) 

l ol is the dipole CUl'l'ent moment, C is a contour in the fourth quadrant enclosing the poles of 

the inLegrand, Pv(x) is the Legendre function , !;~K)= !;?!:.)J4 (lcla), !;Y!:.\, (x) = -J7r2X H~K) (X), and 

H~A.1 (x) is a Hankel function . 

where 

where 

!; (1)I_~ B (v-.!.) !; (I) 
s _ a lc2 ' 2 a !; ~2) 

B e(v) - - . ( ) -----co 

T~e (v) = 

)- (2 ) 1_!i:l B v-'!' r (2) !:a 
~ a lc2 2 ~ a 

r (2 ) I 

~ g 

r (l) 1 
~ g 

1; ~K) = !; ~~\, (lc]g). 

(10) 

(11 ) 

(12) 

B~ and T~e are called the spherical reflection coefficients since they r educe to the planar 
Fresnel reflection coefficients when the Debye approximat ions [Wait, 1960] 

1; ~'~~: (X) ~ (_ l )M+li 1 1 _(~)2 
!; ~~~ (x) -V x 

are used and !:!. is ident ified as the sine of the angle of in cidence: 
x 

. v 
sm4>i ~-' 

lc]g 
and 

v s:m T~-· 
lc1(t 

Finally, 
_ !; ~I) !; i2) 

p - !;~2) !;il) · 

If 
I pT~eB~I< l 

(13) 

(14) 

(15) 

(16) 

(17) 

on the contoUT C, then l/ (l-pB~T~e) can be expanded in a geometric series. Bremmer 
[1949] and Wait [1961] assumed that (17) held on some suitable contoUT, and this has been 
verified numerically for all cases shown in this paper. Figure 2 shows contours of I pB~T~el 
in the complex v-plane for a frequency of 100 kc/s and a particular model of the ionosphere. 
Ip T~T~el= l on the line of l's and is less than one above it. So, write 

l +pT~e (1 + T 8 )(1+--0 J( R' T 8 )J) 1- plC>' T ' P ee ~~p e ee "e ee )-1 
(18) 

a> 

= l + ( l +R~) .::s (B~)j-l(pT;e) J. (19) 
j~ 1 

Substitute (19) into (8) and integrate term by term: 

(20) 
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FIG U RE 2. Contoun of equal IpT:, R:I . 

The symbols, in order of decreasing magnitude, are +, 0, X, = , 2,3,4, 1, 5, with !pT!eR!=l for symbol 1. 

The fll'St integral in (20) is exactly the groundwave [Bremmer, 1949]. 
form, 

If the asymptotic 

Pv -y, (-cos 8) I 2 [ . ( 8+7r)] 
--".---'-'cc..:o'-s-V-7r---'- ~-V 7r(v+ t) sin 8 exp -~ v 4; , (21 ) 

for v> > 1, and 8 not near 0 or 7r, and the Debye approximations, (13), are used, the integrals 
in the series in (20) can be evaluated with the saddle point approximation. For more details 
of the evaluation and a discussion of the physical interpretation of the result, see Wait [1961]. 
The conclusion is that the jth term of the series in (20) is identified with the jth hop; (1 +R~) 2 

corresponds to Pj in (1) ; (R~)j-l(T ~e)j corresponds to OJ, (2) ; and the other factors in (20) 
supply the rest of each term in (1). The integrals in the series will be called wave hops since 
they are full wave solutions that reduce to the ray hops in the limit. 

The restrictions on the use of the Debye approximations and the location of the saddle 

point indicate that the saddle point approximation is inadequate near the caustics (Tj "'~) 
Since this paper is primarily concerned with propagation to great distances into the shadow 
region, the series will be left in the integral form, (20) . 

The variable of integration v has been related to the angle of incidence cf>i in (14), so the 
integration is essentially over the angle of incidence. Most of the contribution to the jth 
integral comes from a small part of the contour corresponding to the geometric angle of inci­
dence. Over this part of the contour, T~e(v) is a slowly varying function, and the Debye 
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approximations for !; ~lI!~ (klg) are adequate. So, to a good approximation, T~. (v) can be 
replaced with the constant Fresnel Tee, which is then written outside the integral [Wait, 1961]; 

(22) 

E ach wave hop is the product of two factors : the ionospheric reflection coefficient, which is 
the most variable factor of a propagation path ; and the path integral, I j, which is a function 
of the relatively constant path parameters: ground conductivity, distance, earth curvature, 
and reflection height. Presumably, reflection coefficients for more sophisticated (e.g., con­
tinuously varying) ionospheric models could be used in (22); indeed it is shown in the next 
section that the solution for the anisotropic case has the same path integral. Tn,bles of the 
path integrals, if available, could be used with the published tables and graphs of reflection 
coefficients [Johler, Walters, and Harper , 1960 ; Wait, 1962; Wait and W n,lters, 1963a, b , and c; 
W alters and Wait, 1963] to calculate fields with relatively littl e effort. A few such results 
were given by Wait and Conda [1961]. 

For simplicity , it has been n,ssumed that r= b= a, above. If the receiYer and/or trn,ns­
mittel' are elevated, the integrand of I j is multiplied by G,_Y, (klr)G._y, (kl b), where 

_ . -l { !; ~ l ) (X) !;~2) (X) . } 
G,(x) - (1 + R e) !; ~ J) (kla) + !; ~2) (lcla) Re 

is a height gain function. The integrand of the ground wave is multiplied by 

!; (2) 
!;!2) G.-s (lCl?'), if r< b, 

and 

3 . Homogeneous Anisotropic Ionosphere 

(23) 

(24) 

(25) 

N ow, the effect of the earth's magnetic field is considered. Assuming that o~ = 0, and 

t he ionosphere is locally plan ar, 

(26) 

where 

(27) 

The planar anisotropic ionospheric reflection coefficients Tee, T em, Tme, and Tmm [Johler 
and Walters, 1960] correspond to IIR II , IIR J.., J..R II , and J.. RJ.., respectiYely, in the notation of 
Wait [1962] and others. Explicit expressions [or the T's are given by Johler and Berry [1964]. 

Equation (26) was derived by Wait [1963], using impedance boundary conditions, and 
by Johler and Berry [1964], using other approximate boundary conditions. 

To write (26) more concisely, define the matrices 

[
RI 

rRe= 0 e 
OJ [ Tee T= 

- 1' T",e 
T J [I em ,and P= P 
T",m 0 

(28) 

Then 
r . 1[+ pTldv 

Err;;;, J c.f(v)(1 +R~) II - prR.T I' (29) 
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which looks much like (8). (I is the identity matrix.) If some norm, II II, of p[ReT can be 
found such that 

on the contour, then II - p[ReT I- 1 can be expanded [Finkbeiner, 1960], 

so that 

Let 

Then, since 

00 00 

II-p[R eT I- l=I I+2: (p[ReT) il=II+2: [Rt(pT) il, 

II-pTI 
11- [ReT I 

j= 1 j= l 

[l +R~ 
(I + [Re) = 0 

(30) 

(31) 

(32) 

(33) 

(34) 

(35) 

Substitute (35) into (29) and integrate term by term (assuming integration and summation 
can be interchanged): 

ET ~J j(v)(l +R~)dv+ j; J j(v)(l +R~)2(R~) i- lpi"lidv. (36) 

The first integral in (36) is again the groundwave, and the second integral is the same as 
in (20) except that T~e has been replaced by "I;, the effective reflection coefficient. Indeed, if 
the magnetic field is zero, Tem= Tme= O, and "I j= T~e. Using (33), 

"11 = T ee, 

and 
(37) 

These are the effective reflection coefficients OJ used by Johler [1961] in the geometric 
series for anisotropic ionosphere. Equation (33) gives a numerically more satisfactory method 
of computing OJ than the usual formula [Johler, 1961]: 

(38) 

If the saddle point approximation is used for the integrals in (36), the geometric-optics 
series is obtained with the same limitations at great ranges as before. As in the isotropic 
case, "I; can be regarded as a constant (with respect to v) so the wave hops are written "IiI }, 
and height gain factors (23,24, and 25) can be included in the integrand. 

4. Inhomogeneous Anisotropic Ionosphere 

In the geometric-optic series, it is sometimes assumed that the ionosphere varies along 
the path and the reflection coefficients are calculated for the local values of the electromagnetic 
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parameters. This can be done form ally in (36) by writing (compare with Johler [1961]) 

(39) 

where R~. 0 is computed for the ground parameters at the observer, R~. s for the parameters 
at the source, and R~'k and Tk are computed for the values at the place where t he jth hop is 
incident on the boundary for the kth time. This is an approximate formula which should be 
u seful when the variation in the path is slow and smooth. Calculations using (3 9) will be 
made and reported in the future. 

5 . Calculations and Discussion 

The integrals in (20) and (36) can be evaluated numerically using existing subroutines for 
the Hankel functions [Berry, 1964]. Figures 3, 4, and 5 show the amplitudes of the total fi eld, 
the groundwalTe, and the first three Wfwe hops as a function of distan ce, d= a8, for 100 kc/s, 
30 kc/s, and 10 kc/s. Propagation is over land and for the given model of the sharply bounded 
ionosphere. The curves are normalized to Iol= 1, (9). The caustic (grazing incidence on 
earth) is marked on each hop . One interesting feature of t he second hop in figure 3 is the 
relati lre minimum at 3100 km- just before the caustic at 3700 km. This minimum is the 
pseudo-Brewster angle [Bremmer, 1949] of t he spheric:"l ground r eflection coeffi cien t, R~ , (10 ). 
In the third wave hop, R~ is squ ared , so the minimum in it is sharper. The minima occur at 
different distan ces in figures 4 and 5, and they are not as deep, because the pseudo-Brewster 
angle is frequency dependent. Figure 6 shows propagation of 100 kc/s waves oyer sea water, 
aJ)d the good conductivity nearly eliminates the pseudo-Brewster angle. 

At 10 kc/s, figure 5, the minimum at 2200 km in the second hop is reflected in the third hop. 
This is hard to explain with ray theory and shows that the identification of wave hops with 
rays is not complete. 

The first hop does not show the pseudo-Brewster angle b ecause it is not refl ect ed at the 
ground, but propagates into the shadow region very mu ch like a groundwave. This has been 
observed experimen tally (for example, see Belrose [1964]) , and was demonstrated theoretically 
by Wait [1961] . Wait and Conda [1958] showed how to calculate the efl'ecL for the first hop 
by modifying FI , (1 ) and (3), with a "cutback" factor. All the wave hops include this efl'ect 
implicitly . 
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FIGURE 6. Amplitude of the vertical electl ic field, 
and of the individual wave hops, l:sotropic iono­
sphere, f = 100 kc/s, sea. 

The total field at 30 kc/s, figure 4, shows an interference pattern. In mode t heory, this 
is interpreted as interference between the first two modes [Johler and Berry , 1964]. Here, the 
minimum at 3500 km is seen to be interference between the first and second hops, and the 
minimum at 5600 km is interference between the second and third hops. 

For the model chosen, the wave hops are dominant for a considerable distance into their 
shadow regions. In contrast, geometric-optics cuts off the hop in the shadow region. 

Equations (20) and (36) were derived for a sharply bounded , homogeneous model iono­
sphere. N o mathematical justification has been given for replacing the ionospheric reflection 
coefficients in them with ones for a model that varies with height. There are obvious un­
certainties; e.g., what is the effective reflection height (if there is one)? Even so, such replace­
ment seems reasonable, especially for long radio waves. 

As an illustration, reflection coefficients for a stratified , planar, anisotropic ionosphere were 
calculated [Johler, 1962} for the daytime noon electron density profile shown in figure 7 [Pierce, 
1963}. These reflection coefficients, Tee, Tem, Tm., and Tmm, were then used in (36) to calculate 
the propagation of the wave hops into the west over land. The earth's magnetic field vector 
was assumed to dip 60° with magnitude 0.5 G. Figure 8 shows the total field and the first 
three wave hops. The amplitude of the hops in the lit region shows that this model ionosphere 
reflects about as well as the model used in figures 3, 4, and 5. The greater attenuation of the 
total field is prob ably due to the lower assumed ionosphere height. 

The wave hop theory will be especially useful in the form 

(40) 

where "( i is the effective ionospheric reflection coefficient (33) and I f is the path integral (22). 
To investigate the accuracy of (40), reflection coefficients were calculated for the sharply 
bounded, isotropic model ionosphere used in figures 3, 4, and 5 using the Fresnel formula 
[Bremmer, 1949], 

kt-J (k1. )2 cos -1- .. --- 1- - SIn -1- .. 
'I-" .) k k 'l-' 1.} 

T = 3 3 • 

ee k -J (k )2 cos cf> i. i+ k: 1- ~ sin cf> i. j 

(41) 
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The angle of in cidence, 1>{,j, was calculated geometrically [Johler, 1961] : 

sin 1>" j 

, e 
a Sill 2'" 

.7 

~2ag (I-COS ~)+h2 
(42) 

up to the caustic, where sin 1>i"= 0. and was held constant at this valu e in the shadow region . 
9 

Figure 9 compares the "field at 10 kc/s and 100 kc/s with the answers given by (40) using 
'¥J= TJ ee , (4 1) _ The error is negligible for most applications, so the path integrals will be calcu­
lated for a range of path parameters to complement the recent extensive reflection coefficient 
calculations [Johler, Walter , and Harper, 1960; Wait, 1962; Wait and Walters, 1963 a, b , c; 
Walters and Wait, 1963]. 

6 . Conclusions 

The wave hop tlJeory of propagation extends the useful notion of geometric-optics to great 
distances- deep into the shadow region. The theory lends itself readily to physical interpreta­
tion, especially in the propagation of low-frequency pulses. 
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The sample calculations show the characteristics of the hops as a function of distance. 
The second and higher hops have a relative minimum just before their caustics caused by the 
pseudo-Brewster angle of the spherical ground reflection coefficient. In the shadow region the 
hops propagate much like a groundwave. 

Each wave hop can be written as the product of an ionospheric reflection coefficient and a 
path integral. The path integrals are the natural complements of the ionospheric reflection 
coefficients sin ce they have the same form for each model of the ionosphere. They will be 
calculated for a range of parameters in the frequency range 10 kc/s to 100 kc/s and will be 
made ilxailable in the near future. 

The author is greatly indebted to J. R. Johler for initiating the research reported here and 
for guidance in its development. 
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