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It is shown that the formula, given by Crary [1964] for the convergence coefficient for
whistler signals propagated by multiple reflection between a convex earth and a concave

ionosphere, can be considerably simplified.

The simplified formula shows that the con-

vergence coefficient for a given number of reflections is independent of the height of the

ionosphere, and that antipodal focusing would be expected.

The convergence takes place

entirely in a horizontal direction transverse to the plane of propagation.
A very simple first-order approximation to the formula is found to be adequate for most

practical calculations.

A second-order approximation shows that the convergence coeficient

for a given propagation distance is almost independent of the number of reflections.

1. Introduction

Crary [1964] has recently derived an expression
for the convergence coefficient in the ray theory
equations for the field strength near the surface of
a sharply bounded ionosphere due to a radio trans-
mitter on the ground. His paper has served a
useful purpose in showing that the convergence
coefficient 1s indeed close to unity. This, as Crary
points out, would intuitively be expected, since
there are an equal number of reflections from the
concave ionosphere and the convex ground. How-
ever, equation (17) of Crary’s paper, which he has
used for his illustrative calculations, 18 by no means
in its simplest form, which we here derive.

In figure 1 we have redrawn the first half-hop
portion of Crary’s figure 2, labeling the ground-based
transmitter position @, the point of incidence of the
ray on the ionosphere 7, and the center of the earth
0. We now construct OZ verpendicular to IG,
ZY perpendicular to O@G, and IX perpendicular
to OG. Then

OX=(a-+1) cos ( 52 ) (1)

Also, since /OZY = /ZGV=¢,
O0Y =07 sin ¢=a sin?® ¢. (2)

Combining (1) and (2),
O B 2 W S YV
(a+h) cos (\‘211—H> a sin? ¢=0X—0Y =X}
=[Z cos ¢
=(a-+h) cos b, cos ¢. (3)

Frcure 1. Geomelry for simplification of convergence coefficient
formula.

A]S(),
a sin ¢—=0Z=(a-+h) sin 6,,. 4)

We can now substitute (3) and (4) in Crary’s
equation (17), which reads
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A wp—

7((177—7!—/1,) sin 6,

C sing

which reduces to

4(2n+4>$n(§iii>}ju 5)

L sin y

Awp=—

This formula can also be derived analytically, though
more laboriously, from Crary’s equation (17), by
applying the sine and cosine rules to the triangle
1G0, and thence expressing the functions of ¢ and

o 2n:—1>'

2. Approximate Formulas for Distances Less
Than 6000 km

We can further simplify (5) for use at short dis-
tances. Upon reference to figure 1, it can be seen
that, for the case of VLK propagation where A is 90

km or less, cos( >Will always be greater than

v
2n-+1
a . .
<m>, except when propagation is tangential to the
earth’s

surface. Therefore

less than 0.168
approximation

> will always be
the

(’ 0%
2n—+1
(9.6°),

radian and thus

(PO Y
st <2n+l> (2n-+1) )
will always be correct to within 0.5 We

percent.
can also write

3
sin y~y—L- (7)
6
to 1 percent accuracy for vy less than 1 radian, i.e.,
for great-circle distances ) less than 6370 km.
Using approximations (6) and (7), (5) becomes

2
~1T
~1+]2

DY .
~1+55 (2 ®)

The nature of the approximations is such that (8)
will be correct to within about 1 percent for distances
less than 6000 km.

1/2
a JL(Qn%—I) sin ¢ tan ¢ sin (2, +1>|: a+h) cos (2 _H)—a sin? qb:llr
J

(a+h) sin vy cos 6,

v - . v 1/2
{ (2n—+1) sin? ¢ sin 2n+1> (a+h) cos B, cos ¢}
cos ¢p(a-+h) siny cos 6, J

It is seen from (8) that, to a first approximation,
the convergence coefficient is independent of n, the
number of reflections. A close estimate of the varia-
tion of aun with n is obtained by taking a second
approximation

ﬁ“<m;4>z<mﬁ4>_%<5%ﬁ>3 ©

instead of (6), and proceeding as before.
we get

This time

o nnt1)y?
=1t ont1y
n(n-+1) (/D
=l 3 2n—§—1)2< > o

which is equivalent to (8) for n= . The error in
using this approximation is less than 0.1 percent for
distances up to 4000 km, and less than 0.5 percent
at 6000 km. The dependence of awr on n is ex-

1 s o g .
pressed by the term - PSR . which is almost in-

32n+1)
variant, having the value 0.07407 for n=1, and
increasing slowly to 0.08333 for n= . The sole
exception is the case where n=0, i.e., the transmitter
and receiver are in direct line-of-sight. Here, as
would be expected from elementary considerations,
n(n+1)
3(2n+1)2
The results of calculations of aw, for distances
up to 6000 km are shown in figure 2. 'This shows
graphically the virtual independence of a., on n.

=0, and aw=1 exactly.

3. Discussion

One feature which is shown by (5), but which was
not evident in Crary’s equation (17), is that the
convergence coefficient in the whistler case is inde-
pendent of the height of the ionosphere, except
msofar as the minimum value of n 18 determined
by the tangency condition ¢=90. For a daytime
ionospheric height of 70 km, the maximum values of
D for n=0, 1, and 2 are marked by vertical stops
in figure 2.

Equation (5) can also be derived ab initio by
considering the geometry of a spreading bundle of
rays with rectangular cross section, as used by
Rawer [1952]. This approach shows that the net
convergence in the whistler case takes place entirely
in a horizontal direction transverse to the plane of
propagation. By contrast, for the case of ground-
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FIGURE 2.

to-ground transmission, it is seen that a term similar
to (5) appears in the formula for the convergence
coefficient. [Crary’s equation (1).] The remainder
of the terms in the ground-to-ground formula, viz,

o h
I=F=
a
state the amount of convergence taking place within
the plane of propagation, in a direction perpendicular
to the ray path.

An examination of (5) shows that aw becomes
infinite when sin  y=0, provided that sin

1/2

(\,l —}—2)— cos (D/2an)
(1+hfa) cos (D/2an)—1

0 o e -
(2n+1>¢0’ i.e., infinities occur for y=/kr (k=1,

2, 3 ...). The principal value y== represents
the case of antipodal focusing, already well known
for ground-to-ground propagation.
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Convergence cocflicient as a function of propagation distance.

Finally, it should be emphasized that the above
discussion has been confined to geometrical optics.
No account has been taken of diffraction near grazing
incidence, nor of other factors which enter into the
saleulation of field strength, such as the reflection
coefficients of the ionosphere and the earth’s surface,
and the polar diagram of the transmitting antenna.
This aspect of the problem has been discussed
thoroughly by Wait [1961].
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