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Under certain conditions it is useful to exchange Maxwell’s equations for an infinite set
of coupled total differential equations; the set takes the form of generalized telegraphist’s
equations. This is done for a parallel-plate waveguide with impedance walls and varying
plate separation. The characteristic modes of the waveguide are used in order that cou-
pling between equations depends only on geometric perturbations of the guide walls. The
utility of the technique is demonstrated by evaluating the mode conversion in an over-
moded waveguide containing a geometric perturbation. A comparison with experimental
work is presented for the perfectly conducting case.

1. Introduction

In recent years there has been a tendency to search for ways of obviating the difficulty
which arises when Maxwell’s equations are not separable in the chosen coordinates or when
the boundary conditions are not simple. Thisis particularly true for the problem of propagation
of electromagnetic energy in tubes. Schelkunoff [1937], perhaps more than any other person,
has contributed considerably to that work, having shown that Maxwell’s equations with
appropriate boundary conditions can lead to equations analogous to telegraphist’s equations.
Other workers have contributed to the tendency to convert Maxwell’s equations to ordinary
differential equations [Marcuvitz and Schwinger, 1951; Stevenson, 1951; Schelkunoff, 1952
Reiter, 1959; Unger, 1958, 1961a, 1961b] and in the most general case, the equations found are
of the form

I"’Yi 7z mvYr
i(ll— _IZ Aih'lli_; [i‘ls i ky

11, 5 - :
o= YV, Th L. (1)

These equations are more general than the classical telegraphist’s equations for coupled trans-
mission lines since they contain current and voltage transfer coeflicients, in addition to the
usual distributed impedance and admittance.

The voltages, V3, and currents, 7, are related to the amplitudes of the £th mode. To each
subseript £ there corresponds a certain electromagnetic field pattern in the transverse plane
of the waveguide. To a large extent, the choice of these field patterns is arbitrary, the form
being representative of the solutions of Maxwell’s equations in media with variable dielectrics,
dissipative walls, and other features which might contribute to mode coupling.

It is sometimes convenient to choose modes associated with the perfectly conducting wave-
guide [Schelkunoff, 1955]. The boundary conditions of the imperfectly conducting guide are
then satisfied by the introduction of cross-coupling terms. While the complete set of modes
is then immediately available, the difficulty of the problem comes about through the infinity of
coupled equations which must result. The determination of the mode voltages and currents
is made correspondingly more difficult by choosing simple mode functions. In contrast to this

1 A portion of this work was performed as part of NBS Project 8510-11-85111. In addition, partial support is acknowledged under ARPA
Order No. 183-62, NBS Contract CST-7348.
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method, one may use characteristic modes or eigenmodes for the structure. Such functions
individually satisfy the source-free Maxwell’s equations and the desired boundary conditions.
This choice leads to uncoupled transmission line equations and the mode voltages and currents
can be found more readily. In this case the difficulty usually liesin finding the characteristic
modes.

Reiter [1959] treats, in a very general way, the transformation of Maxwell’s equations,
with appropriate boundary conditions, to generalized telegraphist’s equations. His work is
restricted to the case of opaque boundaries, and he uses characteristic modes to reduce cross
coupling to a minimum. Schelkunoft [1955] treats the imperfectly conducting case, but does
not use characteristic modes. Unger [1958, 1961a, 1961b] has treated the helix waveguide
using characteristic modes. The waveguide is made of closely wound insulated conducting
wire covered with a lossy material and a conducting sheath. The resultant anisotropic sheath
exhibits a nonzero surface impedance in the axial direction only.

The primary purpose of this paper is to develop the generalized telegraphist’s equations
for the parallel-plate waveguide. The walls are assumed lossy and may be characterized by a
surface impedance. The equations found will represent the case of minimum coupling due to
the use of characteristic modes to represent the field in the waveguide.

An important problem which seems well suited to study via the generalized telegraphist’s
equations and which has taken on added significance in recent years is the problem of VLF
propagation. While the mechanics of VLE propagation have been understood quite well for
many vears, it was only recently that advantage was taken of the waveguide character of the
region between the earth and ionosphere [Budden, 1952, 1957a, 1957b; Wait, 1957, 1960]. Thus
for waves that travel a considerable distance, it is convenient to turn to the mode theory of
propagation; for it is the mode theory of propagation at VLF which has proved quite successful
in treating many of the problems of major interest. It is, in fact, the mode theory that causes
the problem to be put in that class of problems adaptable to the generalized telegraphist’s
equations. Foritis precisely the characteristic modes which are taken for the modal functions.
We will restrict ourselves to the case of a flat earth and a sharply bounded homogeneous iono-
sphere. While this model is rather rough by today’s standards [Johler, 1962 ; Johler and Harper,
1962], it serves well the purpose of this initial study on this method of attack.

The concept of surface impedance, so necessary to the successful completion of this method,
is likewise well adapted to the earth-ionosphere waveguide problem [Wait, 1957, 1960, 1961a].

2. Eigenfunction Problem

The main concern in this study is the detailed description of the fields in a parallel-plate
waveguide of varying plate separation. To facilitate this description it will be convenient to
employ a field representation which is characteristic of the waveguide region. At any cross
section of the waveguide, the electromagnetic field can be represented as a superposition of the
characteristic modes in question.

It is convenient, in treating the eigenfunction problem, to begin with a consideration of a
cylindrical waveguide of arbitrary cross section as shown schematically in figure 1. It consists
of a tube bounded by a surface such that any plane perpendicular to the z-axis cuts the surface

Freure 1. Cylindrical waveguide model.
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in a smooth closed curve L. The area interior to any cross section is denoted by A, which is
independent of z. The unit vector @, is normal to L and perpendicular to @,, the unit vector
in the axial direction. The unit tangent to L is designated @, and is in a direction such that
EZXEHZES'

In the case of time steady state with the time variation exp (jwt), the field in a source free
region must satisfy Maxwell’s equations:

VX E=—jouH, (2a)
VX H=jweE. (2b)

The £ and H fields and the del operator may be resolved into longitudinal and transverse
components:

== E +(—ZZEZ7 (3&)
H=H,+a,H,, (3b)
v=V,}a, abf ) (3¢)

where the subsecript ¢ denotes components transverse to the z-axis. On the guide walls the
fields are to satisfy the boundary condition

E=Z-OXa,, 4)

where 7 is an impedance dyadic. The choice in (4) is made in a manner which is compatible
with the definition of the positive sense of @,. For the purposes of this study it is convenient
to rewrite Maxwell’s equations as

JopH =V, - (@,X I,), (5a)

jwell, =V, - (H,Xa,), (5b)

OF, 1 J= = o

5, }wu([[ X,)— T Vol o (i 34a7), (6a)

—-aal Jwe(a, Y E )—’—: ey = (@ XE). (6h)

The transverse fields may now be expressed in terms of a complete set of vector functions as
[_Gt('r) yy 2) :ZI) T/k(z)zk (‘1'7 ?/)y (7“)

H(a,y, 2)=3 I(2)hu(, ), (7h)

where the voltages, V, and currents, I, are related to the amplitudes of the field quantities
assoclated with each mode. We adopt the characteristic vector mode functions for the cylin-
drical guide as the vector functions ¢; and hk They are required to satisfy Maxwell’s equations
and the appropriate boundary conditions. This requirement will prove to be useful when
considering the waveguide with varying cross section. The separability of the functional
dependence in the manner shown is a result of the assumed uniformity of the guide in the
z-direction. Inserting (7) into (6) and using standard separation techniques leads to the

results

'” 4 G0ZT =0, (Sa)

I, | s
/[.. +41.Y V=0, (Sh)
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where jT;.Z, and jT;Y; are separation constants.
For a eylindrical waveguide, the impedance dyadic is diagonal in an @,, @. sense and (4)
implies

Wik (_ﬁlxaz):_jwfzzan' ﬁtxﬁzv (1()&)
Vi @XE)=—2*T, 3. XE, (10b)

where Z, is the surface impedance * for the z-polarized field and Z, is the surface impedance for
the tangentially polarized field. Since each modal function is required to be capable of existing

independently in the waveguide, we require

Vo (hiX @) =—jweZ,[@, - h:XT.], (11a)
V.- @Xe)=—2F @, a.X7) (11b)

on the boundary. )

Equations (9) and (11) represent the complete characterization of the vector eigenfunction
problem. The solution is a mathematical problem which can be realized only in a few re-
stricted cases.

An important special case for which the vector eigenfunction problem separates and the
solution is tractable is the case wherein the cross section is unbounded in one transverse direc-
tion and there is no field variation in that direction (here taken to be the x-direction). In
that case, the orthonormality condition

I'f —én * I—l/n,><az(/f1 = I‘I En * 6z><.ém"’44 :60111, (12>
JJA JJA

holds [Gallawa, 1964] provided that the appropriate boundary condition holds on the parallel
plates. Here 6,, is the Kronecker delta and A is the area bounded by the parallel plates and
by imaginary planes at 2= -+5. The value of b is arbitrary, affecting only the normalization
constant.

3. Parallel-Plate Waveguide

We consider a waveguide which consists simply of two parallel plates. The plates are
located at the planes y=+a and are characterized by a surface impedance dyadic. The plates
are unbounded in the z- and z-directions. We seek a set of characteristic modes which are
independent of 2 with propagation assumed to be in the z-direction.

When %i 0, (9) reduces to the scalar equations

FiZf()fijwﬂhm; (13)
\ 7 1 0%y,

r; JA(}'z/i"_wﬂhJ:L_;;; 7@?‘_}" (14)
[.Y hyi=—weey (15)

1 bze“-'
wp OY°

F,-)"Jlg{:wfpri‘}' (16>

2 No confusion should arise from the various uses of the letter Z. A subscript in each case distinguishes the meaning intended.
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Inspection of these equations indicates the existence of two subsets of modes which are trans-
verse electric and transverse magnetic to the z-direction. If we consider the first and the last
of these four equations and then the remaining two equations, the nature of the modes becomes
evident. Consider first the I/-type mode designated by a prime and characterized by the
identity

ezy=0. (17)
Then we have the combination
2 "
Ot (12— (T2 Dl =0, 1
9;—?7: FjweZ by at y==+a, (19)
where
k= w’ue. (20)

The E-type modes, designated by a double prime, can be determined in a similar manner.
Begin by requiring

=0, (21)
Then there evolves the equation
az()’;‘,i 2 NIINQIZIINT I rr
a]/’-_f‘i‘(k _(I i ) A ) 1)ez=0. (22>
subject to
O(;;’i /.w:“ ’
——=F - €,y & = I 2
a]/ q: Z.\' €ri lt?/ ia ( '5)

It is convenient and entirely compatible to let

. 1
Y’ we

= (24)
,r//,ﬁrl l‘;/_ or
) i ’Z;/ Wi (2:))
Then (18) and (22) become, respectively,
aahf (ke)*hz=0, (15a)
2P
S (=0, (220)
where
(keo)*=k*—(T7)%, (26)
(k&)*=k*—(T7)* (27)

4. Nonuniform Parallel-Plate Waveguide

Having developed the eigenvalue-eigenfunction problem for the parallel-plate waveguide,
it is appropriate to consider the parallel-plate waveguide with variable plate separation (2a).
To do so it is necessary to define the flare angle 6. If @, is taken to be the unit normal to the
cuide surface, 0 is the angle between @, and @,. The sense of 8 is such that @, <@, is in the
direction of @,. Thus 6 1s positive if the cross section flares outward as we move in the positive
z-direction. We also require

6] <% (28)
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For varying plate separation the boundary conditions become

E~—"%2:(H,Xa, a,)—E, @, tan 0, (29)

cos 0

H,= (@, X E,-a,)— H,-,a tan 0 (30)

Z cosﬁ

on the bounding impedance surfaces.

In order to convert Maxwell’s equations to the form desired, (6a) and (6b) may be scalar
post-multiplied by (he<a,) and (@,X %), respectively, and integrated over the cross section.
In so doing, « is first taken to be prime and then double prime. The result is

= . (R X ) d A= o [ @@y @xaraa— ([ v @xan fixalia,
A A

(31)

O, (G Xz dA—jue f f (@ XE) - (@Xe7dA——— f f [VVe- (@XE)]-[@.Xe5ldA.
0z JJa JOu
(32)

If.-

After considerable ado, these equations may be expressed as

o o e o
& Jf E,'e;d,A:[jmeg?i]f H,-h;dA—ff %, %% g4
dz ) J)a Jwe 4 4 oz

+ L [(,OZ;rZz] [(H.- a)(Rh-a,)dl —_L(E @)@ a,) tan 0dl, (33)

4 ”TI,.E;M:J‘M ”'E,.z;dA-Hﬁ,.%dA
z2JJa WA JAa 0z

1 =4 - —_— - T — T = ¢
+Lm (E,- ay)(e; - (ls)dl—L(Hz'Gs)(hi ) tan 0dl, (34)

-4 UE T dA=jou ”H hrdA— ff B, % a4

AL f e (n, a)(hi - .)([l—f@i-'-ﬁs)(i’rﬁs) tan 6dl,  (35)
JC

rr 1 (k:*;)z T = 2
H B dA= Jwet-=° E,.-e;'d l— H, Ah dA
(L Jou {JJ 4 0z

+L[£ Clos 0—%][@.@)(2;'ﬁg]dl-ﬁ(ﬁ,.ag(ﬁg"as) tan 6dl.  (36)

Using L to designate the path enclosing A, ¢ is that portion of 7 which is represented by the
y-boundaries (the impedance planes). The remainder of the path need not be considered
because the field quantities are independent of .

The last four equations may be reduced to their final form by expanding the transverse
field quantities as a sum of the vector modal functions,
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E=>"V.e, (37a)

E:;ah (37b)

The summation is over all possible modal functions. This permits the following for (33)—(36).

~T iz — 33 PuVit 3 RUL, (39)
—‘(’,{ Y V= Sl (39)
(lV,, // ! l/ )/l 7
O A 2 (40)
([1;’ Y XYy ’’ r’ r
- ([;:'in ) i Vi _Z Ski[k+AZ Gki" ky (41)
where
f f F (42)
e f E 6;@—22]1@-&)(/7:-a.ow, (43)
n;.,.—r”a.. Z //H—f(lh (bt - @,) tan 6dl, (44)
JJA .
% f f a-*r- dA+ f e ) (45)
v (- a"-' .
O i .I:[l(//\-' a; ([A‘ (4())
rr 1 ol o oA 4 A e lyd
(e .”:Z.\- o 0—7S] (e - ay)(ei - ag)dl. (47)

Equations (38)-(47) represent the desired telegraphist’s equations for the waveguide under
consideration. The form that they take justifies their designation as generalized telegraphist’s
equations with the V; and /; terms representing mode voltage and current terms, designating
the magnitude of a particular characteristic field pattern. Each of the differential equations
may be associated with a transmission line, the characteristic wave number and characteristic
impedance being determined by the waveguide cross section. There is coupling between the
various transmission lines which is associated with mode coupling in the waveguide.

Upon examining the coupling terms appearing in these last equations, it is clear that much
has been gained by choosing to employ a modal representation which is charasteristic of the
waveguide region. At any cross section of the waveguide region, the electromagnetic field
has been represented as a superposition of the characteristic modes. The result is that there
is no coupling between modes when the cross section becomes z-independent. This is in con-
trast to the work of Schelkunoff [1955] who reduced this same problem to a system of generalized
telegraphist’s equations using modal functions characteristic of the perfectly conducting case
(the familiar sinusoidal functions). The resulting equations are continuously coupled, even
in the cylindrical case. In the case of the metallic waveguides, Schelkunofl’s equations are to
be preferred because the surface impedance is so small as to be negligible, reducing the coupling
to a usable form. In addition, the modal functions used are obtained by inspection. In
contrast, the modal functions used in this paper are not easily found and constitute a major
hurdle in the final solution to any problem. Nevertheless, this is a mathematical problem
which can be solved in any given instance and our results are predicated upon a knowledge of
the dependence of T, Z and Y on the structure of the cylindrical waveguide. On that basis

1207



the equations are minimally coupled and in fact reduce to uncoupled equations in the case of
the cylindrical waveguide. It would therefore seem that these equations are to be preferred
in the general impedance case (impedance not necessarily small).

5. Forward and Backward Traveling Waves

Considerable physical significance can be injected into the generalized telegraphist’s
equations by introducing the familiar forward and backward traveling waves.®> This concept
has been used successfully by Morgan [1957] and by Solymar [1959], among others, and can
lead to useful approximate solutions for the amplitudes of spurious modes in a nonuniform
waveguide. Because of the complexity of the equations encountered here, it seems appropriate
to make the change of variable which formulates this concept.

We introduce as new variables the amplitudes of the forward (A¢) and backward (A7)
traveling waves:

Vi=+Z, (At + A7), (48a)

1
N ( ) (48b)
The radical is introduced for convenience. It is implicitly assumed that Z; is finite and non-
zero. 'The equations to be satisfied by the new variables can be obtained by inserting (48)
into (38)—(41). The result is

—dAF . 1

L jrAt g A7 1L (n Z)+ (M df +Maady), (49a)
-—(ZA;i . _ 1 Jt, d uL, — = i

dz *_JFiAi +§ A g?: (ln Zz)+zk:[M1L2Ak +Mzk2AL ] (49b)

The primes are omitted since the equations have the same form in each case. Here M7, and

M, are the forward and backward coupling coefficients, respectively. The subscript 1 or 2 is

attached to designate the 7th mode as being forward or backward traveling, respectively.
The coupling coefficients take the form

e [ilimﬁ i 7’¢S \/g] (50)
éﬁ—;ﬁ‘g/z, Pil\,?ﬂFS“ Z] (51)
M;;f—2 | arzz -, \/féfxs \/j::] (52)
mig=L| — BT~ P [ Bowst 2 | (53)

Equations (49a) and (49b) are in a form well suited to approximate solution based on the
assumption that the mode conversion comes predominately from the main mode.

We assume that the mth mode (the main mode) is traveling in the positive z-direction and
encounters at z=0 a changing cross section. It is of interest to know the amplitude of the
spurious modes at z=2(2o>0) and the amplitude of the mode reflected at z=0. The constant
z, may be taken to be the end of the nonuniform region. We assume that all mode conversion
comes from the main mode, neglecting the interaction between the pth and the nth modes when
p#m, n#Zm. We also neglect the interaction between the spurious modes and the main mode

3 The term forward traveling refers to propagation in the z-direction; backward traveling refers to the negative z-direction.
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(the reflection of the main mode is here considered a spurious mode). The amplitude of the
incident main mode is taken to be A,. We thus seek the solution to the following system of
equations:

! dlm + T, A =0, (54a)

A (0)= Ao, (54b)

Ul jPudz 4542 L (0 Z,)+ Midi =0, (550)
A, (20)=0, (55b)

L) W TR Ve (56m)
Af(0)=0, (56b)

"(/4 T AT+ Mia At =0, (57a)

A5 (20)=0. (57b)

The boundary condition on the backward traveling waves insures that all reflection takes place
between z=0 and z=z,.

The first equation may be easily solved after a rearrangement of terms. The remaining
equations can be solved by the method of Green’s function. Concentrating on the solution for
the magnitude of the spurious modes, it is found that

At (2)=—Aq exp(—j f (1)) f M) exp(J f 00—t ) dy, (5%)

A7 (2)=Ayexp (] f Tu(1)dt ) I “Mia(y) exp (-.j j "Iy(f)df,) e <—j j I/I‘m(t)r/i>(/g/. (59)
- J g /Jz . / Jo /

6. A Numerical Example

In this section the results of the preceding sections are used in a numerical example. Tt
would of course be convenient if the example to be considered had some significance;i.e., if it
could be related to a physical problem. Such a relation does in fact exist if we consider the
parallel-plate waveguide as representing the earth-ionosphere waveguide and focus attention
on the problem of VLF mode conversion due to a localized ionosphere height perturbation.
Some work has already been done on this general problem by J. R. Wait [1961b, 1962a, b].
The approach used here differs from that of Wait, who used three essentially independent
methods of attack on this problem.

Although the methods developed in the preceding sections are applicable to surface im-
pedances which are different on the two bounding surfaces, much simplification can be realized
when they are identical. The simplification comes about through the integrals representing the
mode conversion. When the surface impedance terms are identical, several of the integrals
vanish. Further, the case of identical surface impedance on the two bounding walls can be
related to a useful first approximation to the earth-ionosphere problem. For if the earth is
taken to be perfectly conducting, the method of images can be used to remove the (perfectly
conducting) earth and to place another ionosphere below the earth-plane.* The finite con-

4 The application of the method of images to the earth-ionosphere problem was originally suggested by J. R. Wait in connection with a model
study of the problem under consideration in this section.
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ductivity of the earth plays a significant role in VLF propagation, but Wait [1957] has shown
that the lower boundary may be taken to be perfectly conducting for an over-sea path. In
the problem to be considered here, then, we consider a parallel-plate waveguide with identical
values of surface impedance on the two walls. In so doing, the earth (or sea) corresponds to the
center of the waveguide. The ionosphere, then, is assumed to be homogeneous, isotropic, and
sharply bounded. For the TM modes (which are the only modes of interest and the only
modes to be considered) the surface impedance of the ionosphere is taken to be [Wait, 1960]

7 \/@3%_31. (60)

Ficure 2. Configuration — of  ionosphere  height
anomaly.

The nature of the ionosphere height anomaly to be used in this example will be sinusoidal.
The configuration is shown in figure 2. The analytic expression for a(z) is

a(?.):(’o‘i‘%{! [*] +-cos ?;‘r 2:" (61)

where a, is the depression magnitude, a, is the unperturbed ionosphere height, and L is the
length of the disturbance.

Using a frequency of 16.6 ke/s and letting ay be 70 km, the integral for mode conversion
(58) was evaluated to determine the magnitude of the forward traveling second, third, and
fourth modes generated in a height anomaly one wavelength long and one wavelength deep.
The solution, as obtained on the IBM 709 computer, leads to results given in table 1. The
results are tabulated for half of the depression (A; (L/2), 1=2, 3, 4) as well as for the entire
depression (A} (L), 1=2, 3, 4).

TasrLe 1. Mode conversion from main mode

Half depres- | Entire de-

} sion length | pression
| | length
[ [
- R
2d Mode: | |
Amplitade_____________________ | 0. 204 0.017
2SO NSRS radians . _ 3.04 | .57
3d Mode: ‘
Amplitude - ______________ . | 0. 095 0. 0254
Phase ... ___ radians . _ | 2.8 | .54
4th Mode: |
Amplitade__ .. 0.0507 | 0. 0297

Phase.. .. __.radians _ 2.85 ‘ 2.05

In terms of the earth-ionosphere waveguide, the results in table 1 suggest that the mode
conversion for propagation across a night-day transition is not negligible, the magnitude of the
generated second mode being 0.2 of the magnitude of the incident mode. We assume, of
course, the proper ionosphere-height function in the transition so the results of this study apply.
When considering propagation across a depression such as might be produced by a nuclear
explosion in the atmosphere, the mode conversion is small. Again we must assume the proper
form for the manmade ionosphere depression in order that the results given here apply.
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The conclusion to be drawn from these results is that, in a perturbation which is symmet-
rical with respect to length, the energy coupled from the main mode to a higher order mode
over half the length may be partially cancelled by the energy coupled over the last half of the
length. In that regard it must be emphasized that coupling between only two modes is con-
sidered in each case. The two values of amplitude of the second mode (for example) given in
table 1 reflect only the interaction between the forward traveling first and second modes. The
amplitude differences cannot be due to coupling from or to the third mode (say). Likewise,
the values do not include the coupling from or to the reflected main mode, which must be con-
sidered as yet another spurious mode.

7. Experimental Results

Some work has been done [Gallawa, 1964| using the method outlined here to evaluate the
accuracy of the technique. Work was restricted to the perfectly conducting waveguide to
simplify the experimental procedure. The configuration consisted of a rectangular waveguide
eight wavelengths wide and of sufficiently small height to exclude any variation of the field
quantities in that direction. The width of the waveguide was perturbed in the manner shown
i figure 2. The perturbation depth and length were taken to be one wavelength and ten
wavelengths, respectively.

In figures 3 through 6 are plotted the electric field pattern across the waveguide width,
taken to be the y-axis, for various values of distance from the end of transition. The two
eraphs in each case represent the theoretical pattern, based on this study, and the experimental
pattern taken at the University of Colorado. The experimental curve given in figure 5 is the
averaged curve of figure 6; i.e., the asymmetrical nature of the experimental curve of figure 6
was eliminated by averaging the values of the ordinate for conjugate values of the abscissa.
This was done in order to maintain a reasonable balance between the intended philosophy of
the experimental work (the waveguide was intended to be symmetrical about the axis) and the
theoretical work.

The graphs in figures 3 through 5 indicate that the theory given here is in substantial agree-
ment with expermental work. Yet there is a detectable discrepancy which suggests that the
actual mode conversion is more extensive than that predicted by the theory. One would ex-
pect the experimental mode conversion to be greater than the theoretical, but the extent of
the discrepancy is difficult to predict. The imperfections which are surely present in the wave-
cuide and which lead to further mode conversion must also be considered. These imperfec-
tions are excluded from theoretical consideration.
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Fraure 3. Normalized transverse field pattern at a Frcure 4. Normalized transverse field pattern at a
plane 21.906 in. from the end of a sinusoidal 10 plane 24.094 in. from the end of a sinusoidal 10
wavelength perturbation. wavelength perturbation.
The perturbation changes the waveguide width from 8 wavelengths The perturbation changes the waveguide widthfrom 8 wavelengths
to 6 wavelengths. to 6 wavelengths.
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pattern at a plane 45.000 in. from the end of a
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plane 45.000 in. from the end of a sinusoidal 10
wavelength perturbation.

The perturbation changes the waveguide width from 8 wavelengths

The perturbation changes the waveguide width from 8 wavelengths
to 6 wavelengths.

to 6 wavelengths.
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