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Under cer tain co ndi t ions i t is useful to exchange Maxwell's equations for a n .infinite set 
of coupled total differential equations; the set takes t he form of generalized telegraphist's 
equations. This is done for a pa rallel-plate wavegu ide with impeda nce walls and varying 
plate separation. The characteristic modes of t he waveguide a re used in order t hat cou­
plin g between equ at ions depends only on geometric per turbations of t he guide walls. The 
ut ili ty of the techn ique is demonstrated by evalu ating t he mode con vers ion in an over­
moded wavegu ide co ntaining a geometric p ert urbation. A co mpa rison wi t h experimental 
work is presented fo r t he perfectly co nd ll eting case. 

1. Introduction 

In recent years there h as been 11 tendency to search for ways of obviating the difficulty 
which arises when }Vlaxwell's equations are not separable in the chosen coordinates or when 
the bOlmdary condi tions are not simple. This is particularly true for the problem of propagation 
of electromagnetic energy in tubes. Schelkunofl' [1937], perbaps more than any other person , 
has contributed considerably to that work, having shown that :Maxwell 's equations with 
appropriate boundary condi tion s can lead to equations an alogous to telegrflpbist's equations . 
Other workers have contributed to th e tendency to convert :Maxv.rell's equa tions to ordin ary 
differen tial equations [Marcuvi tz and Schwin ger , ]951; Stevenson, 1951; SchelkunofI , 1952; 
R eiter , 1959; Unger , 1958 , 1961a, 1961 b) and in the most general case, the equations found fire 
of the form 

(1 ) 

These equations are more general than the classical telegraphist's equations fo r coupled trans­
mission lines since they contain current and voltage transfer coefficients, in addition to the 
usual distributed impedance and admittance . . 

The voltages, V k , and currents, h , are related to the amplitudes of the kth mode. To each 
subscript k there corresponds a certain electromagnetic field pattern in the transverse plane 
of the waveguide. To a large extent, the choice of these field patterns is arbitrary, the form 
b eing representative of the solut ion s of Maxwell 's equations in media with variable dielectrics, 
dissipative walls, and other features which might con tribute to mode coupling. 

It is sometimes convenient to choose modes associated with the perfectly condu ctin g wave­
guide [Schelkunofl', 1955) . The boundary conditions of the imperfectly condu cting guide are 
then satisfied by the introd uction of cross-couplin g terms . 'Vhile the complete se t of modes 
is then immediately available, the difficul ty of the problem comes about through tllC infini ty of 
coupled equations which must resul t. The determination of the mode voltages and currents 
is made correspondingly more difficult by choosin g simple mode flll ctions. In contrast to Lhis 

1 A portion of this work was performed as part of N BS P roject 8510-11-85111. In ad dition, partial support is acknowledged under ARPA 
Order No. 183-62. N BS OOlltract 08'l.'-7348. 
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method, one may use characteristic modes or eigenmodes for the structure. Such functions 
individually satisfy the source-free Maxwell's equations and the desired boundary conditions. 
This choice leads to uncoupled transmission line equations and the mode voltages and currents 
can be found more readily. In this case the difficulty usually lies in finding the characteristic 
modes. 

Reiter [1959] treats, in a very general way, the transformation of Maxwell's equations, 
with appropriate boundary conditions, to generalized telegraphist's equations. His work is 
restricted to the case of opaque boundaries, and he uses characteristic modes to reduce cross 
coupling to a minimum. Schelkunofi' [1955] treats the imperfectly conducting case, but does 
not use characteristic modes. Unger [1958, 1961a, 1961b] has treated the helix waveguide 
using characteristic modes. The waveguide is made of closely wound insulated conducting 
wire covered with a lossy material and a conducting sheath. The resultant anisotropic sheath 
exhibits a nonzero surface impedance in the axial direction only. 

The primary purpose of this paper is to develop the generalized telegraphist's equations 
for the parallel-plate waveguide. The walls are assumed lossy and may be characterized by a 
surface impedance. The equations found will represent the case of minimum coupling due to 
the use of characteristic modes to represent the field in the waveguide. 

An important problem which seems well suited to study via the generalized telegraphist's 
equations and which has taken on added significance in recent years is the problem of VLF 
propagation. While the mechanics of VLF propagation have been understood quite well for 
many years, it was only recently that advantage was taken of the waveguide character of the 
region between the earth and ionosphere [Budden, 1952, 1957a, 1957b; Wait, 1957, 1960]. Thus 
for waves that travel a considerable distance, it is convenient to turn to the mode theory of 
propagation; for it is the mode theory of propagation at VLF which has proved quite successful 
in treating many of the problems of major interest. It is, in fact , the mode theory that causes 
the problem to be put in that class of problems adaptable to the generalized telegraphist's 
equations. For it is precisely the characteristic modes which are taken for the modal functions. 
We will restrict ourselves to the case of a flat earth and a sharply bowlded homogeneous iono­
sphere. While this model is rather rough by today's standards [Johler, 1962 ; Johler and Harper, 
1962], it serves well the purpose of this initial study on this method of attack. 

The concept of surface impedance , so necessary to the successful completion of this method, 
is likewise well adapted to the earth-ionosphere waveguide problem [Wait, 1957 , 1960 , 1961a]. 

2. Eigenfunction Problem 

The main concern in this study is the detailed description of the fields in a parallel-plate 
waveguide of varying plate separation. To facilitate this description it 'will be convenient to 
employ a field representation which is characteristic of the waveguide region. At any cross 
section of the waveguide , the electromagnetic field can be represented as a superposition of the 
characteristic modes in question. 

It is convenient, in treating the eigenfunction problem, to begin with a consideration of a 
cylindrical waveguide of arbitrary cross section as shown schematically in figure 1. It consists 
of a tube bounded by a surface such that any plane perpendicular to the z-axis cuts the surface 

y 

as 

FIGURE 1. Cylindrical waveguide model. 
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in a smooth closed curve L. The area interior to any cross section is denoted by A, which is 
independent of z. The unit vector an is normal to Land perpendicuhr to aZ) the unit vector 
in the axial direction. Th e unit tangent to L is designated as and is in a direction such that 
a zX an = as. 

In the case of tim e steady state with the time variation exp Uwt), the field ill a source free 
region must satisfy Nlaxwell's equations: 

V' X E=-jWj.l.H, 

V' X H = jwtE. 

(2a) 

(2b ) 

The Ii and H fields and the del operator may be resolved into longitudinal and transverse 
components: 

E = Et+azEz, (3a) 

H = H ,+azHz, (3b) 

V'= V't + az ~z' (3c) 

where t he s ubscripL t denot es components transverse to the z-axis. Oll the guide walls tIl e 
ftelds are to satisfy the boundary condition 

(4) 

where Z is an impedance dyadic. The choice in (4) is Jl1<Lde in n, malmer which is compatible 
with the definition of the positive sense of as. For the purposes of t his sLud~~ it is convenient 
to rewrite 11axwell's eq uations as 

.iw!J.Hz=V't · (oz X E t ), 

.iwtEz= V' t · (Ht X az), 

oEt . ([-1 - ) I ([-1· - ) ---=;;-= Jw!J. tXOz - -. - V'S t ' /X oz , 
u Z .lwt 

oHt • (- E- ) 1 ( E- ) -~=.7W€ azX I t - -.-- V'SI' azX .!-, • 
u Z .7W!J. 

(5a) 

(5b) 

(6a) 

(6b) 

Th e Lransverse fi elds may now be expressed in terms of a complete set oJ vedol" ['um'tions as 

(7a) 

(7b) 

where the voltages, V k , and currents, I k , are related to the amplitudes of the field quantities 
associated with each mode. We adopt the characteristic vector mode functions for the cylin­
drical guide as the vector functions ek and hk • They are required to satisfy Maxwell's equations 
and the appropriate boundary conditions. This requirement will prove to be useful when 
considering the waveguide with varying cross section. The separability of the functional 
dependence in the manner shown is a result of the assumed uniformity of the guide in the 
z-direction. Inserting (7) into (6) and using standard separation Lechniques leads to tll e 
results 

(8a) 

(8b) 
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where .iriZi and jriYi are separation constants. 
For a o,Ylindrical waveguide, the impedance dyadic is diagonal in an as, a, sense and (4) 

implies 

(lOa) 

(- E) .7UJJ.I. - - -E v,· azX ", =- Z an·a,X "" 
.. 

(lOb) 

where Z , is the surface impedance 2 for the z-polarized field and Z s is the surface impedance for 
the tangentially polarized field . Since each modal function is required to be capable of existin g 
independently in the waveguide, we require 

(lla) 

(- - ) :/W/l r- - - ] v" a,Xei =-2 a n ' a,X ei 
s 

(11 b) 

on the boundary. . 
Equations (9) and (11 ) represent the complete characterization of the vector eigenfunction 

problem. The solu tion is a mathematical problem which can be realized only in a few re­
stricted cases. 

An important special case for which the vector eigenfunction problem separates and the 
solution is tractable is the case wherein the cross section is unbounded in one transverse direc­
tion and there is no field variation in that direction (here taken to be the x-direction ). In 
that case, the orthonormality condition 

fJ e,, · h",X a,dA= fi' lin' a,Xe",dA= OIll Il 
, A •• A 

(1 2) 

holds [Galhtwlt , 1964] provided that the appropriate boundary condition holds on the parallel 
plates . Here Om" is the Kronecker delta and A is the area bounded by the parallel plates and 
by imaginary planes at x= ± b. The value of b is arbitrary, affecting only the normalization 
constant. 

3 . Parallel-Plate Waveguide 

We consider a waveguide which consists simply of two parallel plates. The plates are 
located a t the planes y = ± a and are characterized b~- a surface impedance dyadic. The plates 
are un bounded in the x- and z-directions. We seek a set of characteristic modes which are 
independen t of x with propagation assumed to be in the z-direction. 

When ~x ~ O, (9) reduces to the scalar equations 

r iZ iPXi=W/lhl/ i , 

r iZ.e!li=- w/lhx i-~ ~~h~i, 
W~ uy-

r iYJ~Xi= - W~ eyi. 

I T I + 1 02eX i r ; , l y;= wE exi W/l oy2 ' 

2 ~o confusioll should arise from thc various uses of the lettcr Z. A subscript in each case distinguishes the meaning intended. 
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(14) 

(15) 

(16) 



Inspection of these equations indicates the existen ce of two subsets of modes which are trans~ 
verse electric and transverse magnetic to t he x-direction. If we consider the first and the last 
of t hese four equations and then the rem ainin g two equations, the nature of the m odes becomes 
eviden t. Consider first the H-type mode design ated by a prime and characterized by the 
iden tity 

Then we have the combination 

where 

02h~i+ (P_ (r ')2z'.Y '.)h' = 0 oy2 i , . , n , 

oh~ i . Z h' ~= =t= JW~ z xi a t y= ±a, v y 

(17) 

(18) 

(19) 

(20) 

The E -type modes , designated by a double prime, can be determined in a similar manner . 
Begin by requiring 

Then t here evolves t he equa t ion 

subj ect to 
o e ~'i .iwp. " 
~-= =t= -Z eXi at y= ±a. 
v y s 

It is convenien t and entirely compa tible to let 

Y'.' =_1_= r ;'. 
t Z~' W ).J. 

Then (18) a nd (22 ) become, respectively, 

02h~i + (k')2J ' .=0 oy2 e, ~x, , 

02 " ~+(k".)2 " .= 0 oy2 0 en , 

where 

4. Nonuniform Parallel-PJate Waveguide 

(21) 

(22) 

(23) 

(24) 

(25) 

(18a) 

(22a) 

(26) 

(27) 

H aving developed the eigen value-eigenfunction problem for the parallel-plate waveguide, 
it is appropriate t o consider the parallel-plate waveguide with variable plate separation (2a). 
T o do so i t is n ecessary to define th e Hare angle e. If an is taken to be the uni t normal to the 
g uide surface, e is the :mgle between an and an. The sense of e is such t hat anXah is in the 
direction of as. Thus e is positive if th e cross section flares ou tward as we move in the posit ive 
z-direc tion . We also req uire 

738-927--64----4 
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For varying plate separation the boundary conditions become 

(29) 

(30) 

on the bounding impedance surfaces. 
In order to convert Maxwell's equations to the form desired , (6a) and (6b) may be scalar 

post-multiplied by (h'tX az) and (azX en, respectively, and integrated over the cross section. 
In so doing, a is first taken to be prime and then double prime. The result is 

IL -00:· (h~ X a z)dA=jw!J. IL (it x az)· (hi Xa.)dA-j~f IL [VtVt · (lIt X az)]· Oii Xaz]dA, 

(31) 

It -O!t. (a zXe't)dA= jwfIIA (a zX Et)· (a zXe't)dA- j~!J.II[VtVt. (a zX Et)]· [azX e~]dA. 
(32) 

After considerable ado , these equations may be expressed as 

--(fzJI}lt. e;dA=[jw!J.+~:~]II/It . h;dA- II}!:t. ~!; dA 

+ .Fe [c~z e-ZzJr (Ht · as) (h; . as) ]dl-.Fe (Et· as) (e; . as) tan edl , (33) 

-d~I[Ht. h:dA=jwf ILEt.e:dA- ILHt. ~:; dA 

+ r z 1 e(Et· fLs)(e;·as) dl- r (Ht·as)(h;·as) tanedl , (34) Jc s cos Jc 

- d~ I LEt. e;' dA=jw!J. Ie Ht· h;' dA - I L Et . o;~' dA 

+ r Z z e (Ht· as) (h;' . as) dl - r (e;' . as) (Et· as) tan edl , (35) Jc cos Jc 

d If lCT -," -1A [ . + (k~;)2] If E -" -IA If lCT 0 -h"dA - dz A :L t· ~ i (~ = JWf jWJ.L A 1 t . ei U - • A :L t· OZ i 

+ r[z 1 e-z1][ (E t.as)(e;' .as) ]dl- r (Ht· a.)(h;' .as) tanedl. (36 ) .J c s cos " s J c 

Using L to designate the path enclosing A, c is that portion of L which is represented by the 
y-bound:uies (the impedance planes ). The remainder of the path need not be considered 
because the field quantities are independent of x . 

The last four equations may be redu ced to their final form by expanding th e transverse 
field quantities as a sum of the vector modal functions, 

1206 



H,= L:; IJik • (37b) 
k 

Th e summ fttion is ,over ftIl possible modal fun ctions. This permits the following for (:3:3)- (36). 

where 

dV; . ' Z'I' ""P'V + ""R' I - - l - = Jr i ~i i- L.J ki k L.J ki k, 
C Z k It 

ell; . ' IT' V' "" S' I - -l- = Jr i i i- L.J ki k, 
GZ k 

- elV;' = J'r" Z"I" - "" P",V l 'I. t 'I. L...J kt k, 
C Z It 

- ell;' = 'r IYIV" - "" Sil l +"" G",V 
l J"" L.J k' k L.J k' k, 

C Z k k 

(38) 

(39) 

(40) 

(41) 

(42) 

(43) 

(44) 

(45) 

(46) 

( 47) 

Eqllfttions (38)- (4 7) represen t t he desired telegrap hist's equations for the waveguide und er 
consideration . The form t ha,t they take justifies their designation as genemlized telegraphist's 
equ ations with the V i and I i terms representing mode vol tage and curren t terms, designating 
the magnitude of a pftrticular characteristic field pattern. Each of the differen tial equations 
may be associated with a transmission line, the characteristic wave number and characteristic 
impedance being determined by the waveguide cross section. There is coupling between the 
various transmission lines which is associated with mode coupling in the waveguide. 

Upon examining the coupling terms appearing in these last equations, it is clear that much 
has been gained by choosing to employ a modal representation which is charasteristic of the 
waveguidt region. At any cross section of the waveguide region, the electromagnetic fi eld 
has been represented as a superposition of the characteristic modes . The result is that there 
is no coupling between modes when the cross section becomes z-independent. This is in con­
tmst to the work of Schelkunoff [1955] who reduced this same problem to a system of generalized 
telegmphist's equations using modal functions characteristic of the perfectly conducting case 
(the familiar sinusoidal functions). The resulting equations are con tinuously coupled, even 
in the cylindrical case. In the case of the metallic waveguides, Schelkunoff 's equations are to 
be preferred because the surface impedance is so small as to be negligible, reducing the coupling 
to a uSfLble form. Tn fj,ddi tion , the modal fun ctions used are ob tained by inspection. In 
contmst, t he modal fun ctions used in t his paper fLre not easily fouod and co nstitute a m ajor 
hurdle in the final solution to any problem. Nevertheless, this is a mathematical problem 
which can be solved in fL ny given instfLnce and our results are predicated upon a knowledge of 
the depend ence of r , Z, a nd Y on the structure of t he cylindrical waveguide. On t hat basis 
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the equations are minimally coupled and in fact reduce to uncoupled equations in the case of 
the cylindrical waveguide. It would therefore seem that these equations are to be preferred 
in the general impedance case (impedance not necessarily small). 

5. Forward and Backward Traveling Waves 

Considerable physical significance can be injected into the generalized telegraphist's 
equations by introducing the familiar forward and backward traveling waves. 3 This concept 
has been used successfully by Morgan [1957] and by Solymar [1959], among others, and can 
lead to useful approximate solutions for the amplitudes of spuri:ms modes in a nonuniform 
waveguide. Because of the complexity of the equations encountered here, it seems appropriate 
to make the change of variable which formulates this concept. 

We introduce as new variables the amplitudes of the forward (At) and backward (At) 
traveling waves: 

Vi=-JZi (At+An, 

J i = ~ (At-A n . 
-yZt 

(48a) 

(48b) 

The radical is introduced for convenience. It is implicitly assumed that Zi is finite and non­
zero. The equations to be satisfied by the new variables can be obtained by inserting (48) 
into (38) - (41). The result is 

(49a) 

-dA; _ . A - + 1 A + cl (1 Z )+ "'[M+ A -+M - A +] --Z-- -Jr i i -2 i d- - n i L-.J ik2 k i k2 k • 
G Z Z k 

(49b) 

The primes are omitted since the equations have the same form in each case. Here M tk and 
It/I0, are the forward and backward coupling coefficients, respectively. The subscript 1 or 2 is 
attached to designate the ith mode as being forward or backward traveling, respectively. 

The coupling coefficients take the form 

(50) 

(51) 

(.52) 

(53) 

Equations (49a) and (49b) are in a form well suited to approximate solution based on the 
assumption that the mode conversion comes predominately from the main mode. 

We assume that the mth mode (the main mode ) is traveling in the positive z-direction and 
encounters at z= o a changing cross section. It is of interest to know the amplitude of the 
spurious modes at z=zo(zo> O) and the amplitude of the mode reflected at z= O. The constant 
Zo may be taken to be the end of the nonuniform region. 'Ve assume that all mode conversion 
comes from the main mode, neglecting the interaction between the pth and the nth modes when 
p,cm, n,cm. We also neglect the interaction between the spurious modes and the main mode 

3 'fhe teml forward traveling refers to propagation in the z-direction; backwa rd traveling refers to the negative z-dircction. 
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(the reflection of the main mode is here consid ered a spurious mode). The amplitude of the 
incident main mode is taken to be Ao. ·'vVe thus seek the solu tion to the following system of 
equations: 

dA,;' +. A +- O dz- Jr m m- , 

A ,;t; (O) = A o, 

dA,;; . A - + lA+ d (1 Z )+M· - A +--;rz-.J r rn >n 2" mdz n m mm2 m-O, 

A,;; (zo)=O, 

dAt . A ++M+ A + Tz+.Jri i iml m= O, 

A t (O)= O, 

dA; . A -+M - A +- O dz - .J r i i im2 m - , 

(54a) 

(54b) 

(55a) 

(55b) 

(56a) 

(56b) 

([;7 a) 

(57b) 

The boundary condition on the backward traveling waves insures that all reflection takes place 
between z= O and Z=Zo. 

The fu·st equation may be easily solved after a rearrangement oJ terms. The remaining 
equations can be solved by the method of Green's function. Co ncentrating on the solution for 
the magnitude of the spurious modes, it is found that 

A ; (z)=Aoexp(.j.(ri(t)dt)iZOi\l!i;n2 (Y) exp ( - ji:r i(t )dt)exp( -j .fr ",( t)dt)dy. (59) 

6. A Numerical Example 

In this section the results of the preceding sections are used in a numerical example. It 
would of co urse be convenient if the example to be considered had some significance; i.e., if i t 
could be related to a physical problem. Such a relation does in fact exist if we consider the 
parallel-plate waveguide as representing the earth-ionosphere waveguide and focus attention 
on the problem of VLF mode conversion due to a localized ionosphere height perturbation. 
Some work has already been done on this general problem by J . R. Wait [1961b, 1962a, b). 
The approach used here differs from that of IVait, who used three essentially independent 
methods of attack on this problem. 

Although the methods developed in the preceding sections are applicable to surface im­
pedances which are different on the two bounding surfaces, much simplification can be realized 
when they are identical. The simplification comes about through the integrals representing the 
mode conversion. When the surface impedance terms are identical, several of the integrals 
vanish. Further, the case of identical surface impedance on the two bounding walls can be 
related to a useful first approximation to the earth-ionosphere problem. For if the earth is 
taken to be perfectly conducting, the method of images can be used to remove the (perfectly 
conducting) earth and to place another ionosphere below the earth-plane. 4 The finite con-

• The application of the method of images to the earth.ionosphere problem was originall y sugges ted by J. R . Wait ill connection with a model 
study of the problem under consideration in this secLion. 
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ductivity of the earth plays a significant role in VLF propagation, but Wait [1957] has shown 
that the lower boundary may be taken to be perfectly conducting for an over-sea path. In 
the problem to be considered here, then, we consider a parallel-plate waveguide with identical 
values of surface impedance on the two walls. In so doing, the earth (or sea) corresponds to the 
center of the waveguide. The ionosphere, then, is assumed to be homogeneous, isotropic, and 
sharply bounded. For the TM modes (which are the only modes of interest and the only 
modes Ito be considered) the surface impedance of the ionosphere is taken to be [Wait, 1960] 

z = 11!!!3+ jl. 
Z -V EO 5 

F rc U RE 2. Configuration of ionosphere height 
anomaly . 

I 1 'i' ~! 
I 
I 

(60) 

----_ .. z 

----------~----------

The nature of the ionosphere height anomaly to be used in this example will be sinusoidal. 
The configuration is shown in figure 2. The analytic expression for a (z ) IS 

( ) ad [ 271" ] a z = 00+2 -1 + cos L z , (61) 

where ad is the depression magnitude, ao is the unperturbed ionosphere height, and L is the 
length of the disturbance. 

Using a frequency of 16 .6 kc/s and letting ao be 70 km, the integral for mode conversion 
(58) was evaluated to determine the magnitude of the forward traveling second, third, and 
fourth modes generated in a height anomaly one wavelength long and one wavelength deep . 
The solution, as obtained on the IBM 709 computer, leads to results given in table 1. The 
results are tabulated for half of the depression (A t (L /2) , i= 2, 3, 4) as well as for the entire 
depression (A t (L ), i = 2, 3, 4). 

TABLE 1. Mode conveTS1:on fro m main mode 

lIa lf del'res- Entire de-
sion length pression 

len gth 

2d M ode: 
Aml'litnde _________ ___ __________ __________ _____ _ 0.204 0. 017 
Phasc __________________________________ radians __ 3.04 . 57 

3d Mod e: 
Ampli t ude _____________________________________ _ 0.095 0.0254 
Phase ____ ______________________________ ra.dia ns ._ 2.86 .54 

4th M ode: 
Am pli t ud e _______________________________ . __ _ 0.0507 0. 0297 
Phasc _________________________________ rad ians __ 2. 8.5 2. 05 

In terms of the earth-ionosphere waveguide, the results in table 1 sugges t that the mode 
conversion for propagation across a night-day transition is not negligible, the magnitude of the 
generated second mode being 0.2 of the magnitude of the incident mode_ We assume, of 
course, the proper ionosphere-height function in the transition so the results of this study apply . 
When considering propagation across a depression such as might be produced by a nuclear 
explosion in the atmosphere, the mode conversion is small. Again we must assume the proper 
form for the manmade ionosphere depression in order that the r esults given here apply. 
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The conclusion to be drawn from th ese results is that, in a perturbation which is symmet­
rical with respect to length , the energy coupled from the Jnain mode to a higher order mode 
over half the length may b e par t ially cancelled by the energy co upled over the last half of the 
length. In t hat regard it m.ust be emphasized that co upling between only two modes is con­
sidered in each case. The two valu es of amplitude of t he second mode (for example) given in 
table 1 reflect only the interac Li on between the forward traveling first and second modes. The 
ampl itude differences cannot be due to co upling from or to the third mode (say). IJikewise, 
the va,}ues do not include the coupling from or to the reflected main mode, which must be co n­
sidered as yet another spurious mode. 

7. Experimental Results 

Some work has been done [Gallawa, 1964] using the method outlined here to evaluate the 
accuracy of the technique. Work was restricted to the perfectly conducting waveguide to 
simplify the experimental procedure. The configuration co nsisted of a rectangular waveguid e 
eigh t wavelengths wide and of sufficiently small heigh t to exchlde any variat ion of the field 
qu antit ies in that direction. The widtll of the waveguide was p er t urbed in the Inanner shown 
ill figure 2. The perturbation dep th and length were taken to be one wavelength and ten 
wavelengLhs, respectively. 

In figures 3 th rough 6 are plotted the electric field pattern across the \Va veguide wid th , 
taken to be the y-ax is, for various values of distance from the end of trans ition. The two 
graphs in each case r epresent the theoretical pattern, based on this study, and t he experimental 
pattern taken at the University of Colorado. The experimental curve gi vell in figure 5 is t he 
averaged curve of figure 6; i.e. , the asymmetrical nature or t he experimental eurve of figure 6 
was eliminated by averaging the values of the ordinate for conj ugate values or the abscissa . 
This was done in order to main ta in a reasonable balance between t he in tended philosophy of 
th e experim ental work: (the waveguide was in tended to be symmetrical a bouL Lhe ax is) and the 
theoretical work. 

Th e graphs in fi gures 3 through 5 indicate that t he t lleory given here is in substantial agree­
menL with expennental work. Yet there is a detectable discrepancy which suggests that the 
actual mode conversion is more extensive t lla n that predicted by the theory. One would ex­
pect the experim en tal mode co nversion to be greater than the theoret ical, buL the extent of 
the discrepancy is difficulL to predict. The imperfections which are surely present in t he wa ve­
guide and whi ch lead to furth er mode conversion musL also be considered. These imperfec­
tions are excl uded from t heoretical co nsiderat ion. 
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FIGURE 5. Normalized transverse field patlem at a 
plane 45.000 in. from the end of a sinusoidal 10 
wavelength perturbation. 

The perturbation changes the waveguide width from 8 waveleugths 
to 6 wavelengths. 
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FIGURE 6. Normalized experimental transverse field 
patlem at a plane 45.000 in. from the end of a 
sinusoidal 10 wavelength perturbation. 

The perturbation changes the waveguide width from 8 wavelengths 
to 6 wavelengths. 
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