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An exact solution is found for the field of a dipole over plane, finitely conducting earth

through an

atmosphere in which the refractivity varies exponentially with height.

The

method of Hankel transforms is used, so that the final result takes the form of an integral

with infinite limits.

This integral is evaluated numerically for a typical profile and for sev-

eral wavelengths, and the results are compared with those for a homogeneous atmosphere.
At short wavelengths and large distances, the stratified atmosphere above a plane earth can

act as a very efficient waveguide.

1. Introduction

The solutions of Maxwell’s equations for a homo-
geneous, nonconducting atmosphere over both plane
and spherical finitely conducting earth have been
known for many years. Almost two decades ago
it was revealed by experiments that the field strength
at very short wavelengths and large distances is
greater than that calculated from “airless-earth”
theory by tens of decibels. The favorite theory for
explaining this excess is the scattering from randomly
located irregularities of refractivity in the air lying
within the beams of the two antennas [Booker and
Gordon, 1950]. Other authors have maintained
that the strong transhorizon fields can be explained
only by postulating a prominent contribution from
the ever-present stratification [Carroll and Ring,
1955]. An exact solution for a smooth spherical
earth and a smooth, continuous profile of refrac-
tivity (e.g., exponential) is inordinately difficult.
Much work has been done on the basis of solving the
wave equation by WKB methods, [Bremmer,
1960], and also by an extension of the latter to the
rigorous solution [Bremmer, 1962]. Other authors
have employed quasi-optical methods in an effort
to allow for the effects of stratification [Bullington,
1963]. A somewhat related problem involving
reflection from a stratified ionosphere has been dis-
cussed [Wait and Walters, 1963a and 1963b].

It is our opinion that the problem can be formula-
ted in such a manner, especially in the case of
“smooth’ profiles, that the mathematical difficulties
can be overcome with the aid of digital computers.
This paper illustrates such a method in the relatively
simple case of a plane earth and an exponential
profile.

2. Maxwell’'s Equations and Boundary
Conditions

A harmonic time function e’ is assumed, and
the MKS system of units is employed. Then for
a source-free region, Maxwell’s equations become

curl H=1iweE
curl E= —7wuH
div eE=0

div H=0

L. (1)
)

Following Bremmer [1949], we assume a vertical
electric dipole and express field strength in terms
of a scalar Hertz potential II:

E=(ko/k?) curl curl (akII), (2)
H=1(ko/ww) curl (akII), (3)

where a, is a unit vertical vector, k’=w’ue, and

t=w’ue,. (Zero subseripts designate vacuum val-
ues.) Assume u=upy, e=e(z). Substitution of (2)

and (3) into (1) yields the scalar wave equation which
must be satisfied:

VAT k=0, (4)

& ] )
bk g (p) Q

where
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It is readily shown that, for a smooth profile of
tropospheric refractivity, the second term in the
right-hand member of (5) is negligible for frequencies
greater than about 50 ke/s. For simplicity, we
assume k*=Fk.

For an elementary electric dipole located at the
point z=h, r=0, (cylindrical coordinates), (4)
becomes valid everywhere if we write

V4= S, (6)
where

c
S=58()8(:—H),

The solutions are subject to the boundary condi-
tions that the tangential components of £ and H
must be continuous at the boundary between air
and earth, and that the behavior at great height
is that characterizing free-space propagation. When
a refractivity profile is chosen with all derivatives
continuous, the latter requirement will be satisfied
by proper choice of the solutions of the differential
equation in z. The former requirement leads to the

equations
E’ T1— 14‘72 ( ) (7)
2=({)
11»1 =JZ 2

where 1 refers to air and 2 to earth. The com-
ponents of £ and H in terms of II are found from
(2) and (3). Specifically

k%)
E’#k2 ooz
ko O (KID)

}Id’:—?’ ;# or J

(8)

Therefore, the boundary conditions specified by (7)
require that
10(kIL) 1 o(k,IT,)
ki oz ki 0z
k1H1:k2H2

(2=0). (9)

It is necessary to find a solution of (6) which also
satisfies (9) and the radiation condition at infinity.
This is a unique solution.

3. Solution of the Wave Equation

In this paper, we assume a smooth exponential
profile of refractivity such that

E(z)=ki(1+ae~*H),

1 More precisely, the wave equation is

(V2H-E*2)IT =i L0 — 8(r)3(z—h).

27rw Y €ge

(10)

where a=2N,X107% and H is the scale height. We
first find appropriate independent solutions of the
homogeneous equation
(V24-E?)II=0. (11)
The separation of variables is achieved by appli-
cation of the Hankel transform [Sneddon, 1951]

u(p, z):Lco w(r, z)Jo(pr)rdr. (12)

This leads to an ordinary differential equation in z,
which can be solved by any available method. Hav-
ing found %(p, z), we can determine the original
function by applying the inverse transform.

u(r, 2)— f " o, 2)o(or) pdp. (13)

To apply (12) to the wave equation (11), we
multiply by 7J;(pr) and integrate the result from
0 to «. The procedure requires integration by
parts, recognition of the fact that the functions

rdo(or) g—:f and prdy (pr)w must vanish at =0 and

r=o, and use of the Bessel equation of zero order.
The result is, for u=II,

i
dz?

+ (k*— pHii=0. (14)
It may be noted that the parameter p can be loosely
identified with £ sin 6, where 6 is the angle between
the wave normal and z-axis. The condition p*>k?
corresponds to the ray-theory concept of total in-
ternal reflection. The solutions of (14) should have
the nature of progressive waves when p*<k* and of
standing waves when p?> >k It is easy to derive
Sommerfeld’s solution for a homogeneous atmosphere
from (14) and (13) by assuming k£ constant.

When the exponential profile (10) is assumed, (14)
becomes

%I;[+ (112+BZG_Z/H)ﬁ:0) (15)

where
Ar=ki—p?, {6)
B =1I2q. (17)

By the change of variable »=¢=**# (15) is converted
to Bessel’s equation of imaginary order. We select

the solutions
J(o, 2)=d,({),

g(p, 2):)7v(§—)y

where »=12HA, {=2HBe **". It can be shown
readily that only f has the proper behavior as z—w.
A solution of this type was first discussed by Elias
(1931).

Consideration of the branch point at p=Fk, leads
to the conclusion that, on the appropriate Riemann

(18)
(19)
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sheet [Brekhovskikh, 1960],

v=2H~o’— I} p* >k,
A branch point at p==Fk,=nk, produces no difficulties.
Note that we define
7?/2: (kz/l{'ﬁ)z: 67‘—'7‘600?\0, (20)

where e, and ¢ are the dielectric constant and con-
ductivity of the earth.

When the Hankel transform (12) is applied to the
source funection S, we obtain

~ O

Since the boundary conditions (9) do not contain 7
explicitly, they become simply

1d .
kz{ (l('lul) A / (/.’1 .3) (22)

Ferity=keo 11

If the earth is assumed homogeneous, (14) yields
the solution

7727—6””

where
p*=n?k3—

yR—fa— (23)

dn
Then ZZW Iz, and equations (22) reduce to the

single equation

] 1
/( (/‘1111> kl“l

(2=0). (24)

We can drop the subseript on the symbol i1 and write

dn ,
%*DH ]I
where } (a=0), (25)
gk Lk
L=y Tk ke dzJ

Setting k,=k, except in the derivative

and using
(10), we get

Y
D*@M'{_ﬁ (26)
The second term in the rigcht-hand member can be
neglected except for very long wavelengths. Finally,
it is found that the integration with respect to p
suggested by (13) yields results only for p very close
to ko, so that we can employ the following condition
with negligible error:

thoyni—1

D=2, (27)

This approximation is equivalent to the introduction

of a surface impedance, [Wait, 1962].

We can now combine the results given by (18),
(19), (21), and (25) by using the Lagrange method
of variation of parameters [lnce 1944]

@)=y @) [ 98+ [ BEnd
Dg(0)—

(0)—g'(0) NE(
e O D i | 9

where 2z’ is a variable of integration and the Wron-
skian W is given by

1

Wif(@), 9()l=——7 (29)

Evaluation of the integrals in (28) gives different
results, depending upon whether z >k or z<h. For

z>h,
Dg(0)—g (0)

. (]]
2 /“[< DFO)—f (0

For z<h, z and L are reversed. Finally substi-
tution in (13) yields the solution, for z >,

/z)]~ (30)

n(r == [ 1
[ (/1)—2(;(83 e (0) (/')]Jo pr)pdp-  (31)

[t is understood that f and ¢ are functions of p as
well as z. Since p appears in the expression for »,
the order of the Bessel functions in (18) and (19), it
is seen that this order ranges from large imaginary

values to zero, then Lhmuoh positive real values to
111{11111\ as p goes from 0 to o along the real p-axis.
The integration with respect to p can be thought of
as an addition of rays propagated at various angles
relative to the z-axis. Small values of p (()uesp(md
to rays which escape from the atmosphere. The
condition p=Fk, corresponds to the onset of total
internal Ieﬂe( tion at a great height. As p continues
to increase, the rays are s reflected at lower elevations.

It may also be noted that the integrand in (31)
develops poles at values of p where Df(O)—f (0).
These poles lie on the positive real p axis when 1) is
real or zero and slightly below this axis when /) is
complex. These poles are associated with the physi-
cal concept of multiple reflection of rays between the
atmosphere and the earth. For long wavelengths
there may be but a single pole, whereas for short
wavelengths there may be many poles.

No serious effort has been made to evaluate the
integral in (31) by such familiar means as the saddle-
p()mt method. Much better control over the accu-

racy of the results can be achieved by numerical
integration. Also, it is not considered very impor-
tant at this stage to investigate the effect of antenna
height variations. Of much more interest is the
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variation of field strength with horizontal distance.
Accordingly, we let z=h=0, and obtain the relatively
simple result

_CH £(0)g’ (0)—7"(0)g(0)
T 1o DF 0)—F(0)

f _ Jolpr)pdp
D—17(0)/f(0)
We note that
J'(0)/f(0)=—BJ,(2HB)/J,2HB),

II(r, 0)=

Jo(pr)pdp

(32)

v=12H/k—p’ p<ky
=2Ho*— K% p>ko.
It is interesting to note that
N O - JEL AN v~y
‘1)1;2 L7 0)/f O))=—=B grrp=—+r'—ki,

and that the limiting form of (32) is the familiar
Sommerfeld solution for a homogeneous atmosphere.
Since 2Hk, is normally a large number

lim [f7(0)/f (0)] ~—ivki— 0%,

p—0
and a similar coincidence with the Sommerfeld solu-

tion results. In fact, for a homogeneous medium,
(32) takes the form

C (= Joylpr)pdp.

II(r, 0)* o7 ), D+V/2I{ (33)

Dimensionless forms can be obtained if we let p="/.
Equation (32) now becomes

I(r, 0)— (/lco f Jo(keorv) vdv ’
T (D/ko) +~ad,(2HB)/J,(2HB)
(32a)
where
v=12Hk"/1—0* <1
=2Hko\Vv*—1  ov>1.
A corresponding form is obtained for (33). Now
only the coefficient, Cky, has dimensions. If the

result obtained from (32) or (33) is divided by the
free-space value
0 —ikgr

0 — 5 . €
47r g

(34)
a_dimensionless ratio is obtained, which can be
plotted as a function of 7. The shape of such a
curve is essentially the same as if the vertical com-
ponent of /£ had been computed and compared with
its free-space value.

It is often convenient to use complex variable
theory to evaluate the integral. Tt is first necessary
to extend the path of integration along the entire
real axis by a familiar transformation of the inte-

orand [Sommerfeld, 1949]. Equation (32a) takes
the form
Cky f H®Q (kyrv)vdo
r, 0)=—— 35
OO0 ~« (Dfko)++aJ,2HB)/J,(2HB) )
If we divide (35) by (34), we get finally
o ( 5
B ket f Holarood - (55
11, J-a (Dfky) ++aJ,(2HB)/J,(2HB)

One method of evaluating the integral is to choose
a path along the real axis. Then we use (32a),
employ an asymptotic form for </, similar to (38),
let » be an integral number of wavelengths, and
obtain

o, 2kor cos (kyrv—m/4)vdy . @)
0, N 7 Jo (D/ky)+~aJ,2HB)/J,(2HB)

Since the cosine term varies rapidly with » when
kor becomes large, it is very helpful to choose a step
size Vo such that all of the integrand except the
cosine term can be accurately represented by a
second-degree polynomial, then integrate analyti-
cally. In this way, the cosine term may execute
many cycles within one step without degrading the
accuracy of the computed value of the integral.

A second method 1s based upon Cauchy’s integral
theorem. The integrand in (36) is an analytic
function of » except at the poles, which are located
in the second and fourth quadrants of the complex
v plane. The path of integration is distorted into
the lower half-plane (fiz. 1), where the integrand
vanishes sufficiently far off the real axis. However,
the path must be taken around the branch points
at »=1 and w»=n. The contribution from the
second branch point is negligible for normal values
of n. The cut from the branch point at »=1 is
drawn downward, and the path of integration is
collapsed onto opposite banks of this cut. The
total value of the integral is the sum of this branch-
cut integral and of the sum of the residues multiplied
by 2.

Let II, be the contribution from the branch point
at v=1, and let »=1—16 along this part of the path.
The integrand on the two banks of the cut differs
only in that », the order of the Bessel function,
changes sign. In the definition »=i2Hk,1—v'=
12Hky +/6°+126, the radical must be taken with a
positive sign on the left bank and a negative sign
on the right bank of the cut. For simplicity in
writing a formula, we always take the positive sign
and change » to —» on the right bank. Now, if we
take advantage of the fact that the significant
range of » is in the vicinity of 1 and decide to keep
the minimum value of 7 about 10 wavelengths, we
can use a simple asymptotic form for the Hankel
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Ficure 1. Path of integration in complex v-plane for (36).

function:

ILEZ)(korv)%\//z g~ re=x/®

T

2 . " .
— \/,".k- . (3—1(""7_”/4)6”‘07(1_0). (58)
0:

Equation (36) leads to the form

L_, \/E
HON/ m™

where the brackets are to be filled by the expression

¢ f il 1ds (39)
JO

1
(D/ko)+aJ,(2HB)/J,2HB)

This integral converges rapidly when kg is large.

The location of a pole may be defined by the
following relation which corresponds to a zero of
the denominator of the integrand:

J,(2HB)==J,,2HB),

Van?

'\‘/nz S

(40)
where

(41)

=i

Since 7 is normally small, the poles are located
just below the positive real » axis, and near the
real-axis zeros of J,(2HB). Furthermore, the real-
axis zeros must lie in the range 0<»<2HB, i.e., In
the range where v is slightly greater than 1. Equa-
tion (40) may be solved for », by an iterative
method. Then
Vo= 12 [A Hk2. (42)
Let II, be the contribution of the poles. This is
made up of 274 times the residues at these poles.
The residue at a pole is obtained by differentiating
the denominator of (36) with respect to », then

substituting »=»,.  We obtain

(2Hk)*Vav d

d : ,
o (denominator)= . & [J,(2HB)/J,(2HB)]
_ (2Hko)*av d
y7? dy
[J,(2HB)/J,(2HB)],
—? v?

T Rk (0 T T 22 k)

I, . 272 \/EZkT,r‘ o
—=—g —————— f—— ¢
I (2Hkp)*\a ¥V ™
vs exp [—ikorvy/2(2Hk)?]
X; d ,
7 [J.(2HB)/J,(2HB)],-,

(43)

Since », normally has only a small negative imagi-
nary component, the damping factor for the residues
tends to remain near unity, even for large values of
kgr.  This means small attenuation of the trapped
modes.

The total Hertz potential relative to its free-space
value is the sum of (39) and (43). For long wave-
lengths, where 2/1B is small, there may be only one
root of eq (40), therefore only one pole. For short
wavelengths, there are many roots of (40) and many
poles. This behavior is somewhat similar to that of
a metallic wave-guide, in which many modes can
propagate at sufficiently short wavelengths.

4. Computations

Only a few comments are required with regard to
the computation of numerical results. The evalua-
tion of the integral in (37) or (39) by an application
of Simpson’s method is routine except for the rapid
oscillation of the cosine function in (37). This is a
common problem in Fourier analysis. It is generally
somewhat easier to use complex-plane integration,
especially when 2/ B is large and /,(2H{B) has many
zeros on the real v-axis.

Perhaps no other functions have been so exten-
sively investigated as the solutions of Bessel’s
equation. The work of Langer [1931] and Watson
[1944] is especially noteworthy. Since both the
argument and order of the Bessel function are often
large in this application, and since the order may be
complex, asymptotic formulas must be used and care
must be exercised in choosing the formula which is
appropriate to the particular region of the complex
plane (Stokes phenomenon). It is also to be noted
that computation tends to be difficult in the region
where the order and argument of the Bessel function
become equal, i.e., the region where the coefficient of
it in (15) becomes zero. In the present problem,
this difficulty occurs only when integration along the
real axis is employed, since the argument of the
Bessel function is always real. It can be avoided in
the simple case of zero antenna heights, because a
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familiar recursion formula can be used for computing

J’[J. A useful form is the following:
S () _ v I
== e 44
J»(f) ¢ V‘|"1+ u+1(§‘) ( )
¢ v+1<§)

The ratio J’/J is first computed for a larger order
v—+mn, where n is an integer, from a simple asymptotic
formula, and an iterative procedure is used to reach
the final result. The location of the poles », in
accordance with (40) also presents some difficulties.
The general procedure is to obtain a first estimate of
v, and then make corrections by an iterative method
until (40) is satisfied. Two cases may be distin-
guished, viz, 2HB small and 2HB large. In the
former case a first estimate of »; can be obtained from
the formula

1_Ju@2HB)  »
7 J,,(2HB)

HB.
ri+1

~oIB (&9

In the latter case, numerous poles exist, so that
[|<<2HB, and we can use a simple asymptotic
formula for a first estimate:

1 J, (2HB)

- J,,QHB)~ (46)

™
—tan <2H 5 1)
The iterative method for improving upon such an
estimate is based upon the numerical determination
of the derivative of J/J’ with respect to ». In this
process, the derivative appearing in (43) is also
computed. Where several poles occur, extrapola-
tion methods can be used to good advantage for a
first estimate after the pole of lowest order is located.
In the following numerical examples, both real-
axis and complex-plane integration have been em-
ployed, and the results were found to agree.

5. Numerical Examples

(a) f=100ke/s, \y=3000m, ,=10, ¢=10"% mho/m,
n’=10—171800, a=6X10"*, H=6000 m, 2HK,=8r=
25.1327, 2HB=87+/6 X 10~*=0.615624.

Vertical electric dipole on the surface:
7=1.03924 exp 10.78846, v=125.1327~/1—22.

Location of pole:

first estimate from (45) . . . »,~0.535—10.390, cor-
rected location . . . »,=0.53581—10.38902.

The ratio of the Hertz potential to that in free
space was computed with the aid of a large digital
computer as a function of horizontal distance from
the source. The results are shown in figure 2. The
effect of the stratified atmosphere is discernible at
long distances but is too small to be important
practically.

10 T !
5 = =3 -.\
I
N
0 . \ |
N T
\\ ‘ |
\ |
-5
] [ \ \
1 |
£ |
Q
£ -0 | | HEANN
E | | N
3 ] | STRATIFIED \"HOMOGENEOUS
4 15 MEDIUM \MEDIUM
o NN
~ VERTICAL POLARIZATION | [\ \ ‘
Xo=3000 METERS | ‘Jr \ |
-20— <, =10 o =0.0l MHO/M 1 i S nr
H=6000 METERS a=6 X 10 [ \
ZERO ANTENNA HEIGHTS {11 \
-25 ‘ ‘ : 71—‘7 = N
| ‘ N
30 | | \ |
100 200 500 1000 2000 5000 10,000 20,000 50,000
DISTANCE-km
Ficure 2. Hertz potential relative to free-space value.

Ao=3000 m

(b) f=10 Mc/s, A\o=30 m, ¢,=10, s=10"? mho/m,
n=10—i18. a=6x10", H=6000 m, 2HK,
=800r=2513.27, QHBZSOOWV/GX 107*=61.5624.

Vertical electric dipole on the surface:
7=0.11243 exp 1 1.06065, y=1 2513.27 v/ 1—~.

Location of poles:
first estimate from (46)—»; =1.6565—4 0.06247,
corrected location—»; =1.6697—= 0.063495.

3.7271—17 0.064808
v3 5.8313~i 0.066138
vy 7.9857—17 0.067486
vs =10.1942—17 0.068856
vs =12.4616—17 0.070251
v; =14.7932—17 0.071672
vg =17.1954—12 0.073123
vg =19.6762—17 0.074610
pio=22.2447—1 0.076132

v =24.9130—2 0.077705
12 =27.6957 —7 0.079327
ri3=250.6126 —z 0.081015
via=033.6901 —z 0.082779
v1;=236.9658 —7 0.084639
15 =40.4966 —7 0.086658
vi;=44.3770—17 0.088816
v1s=48.7895—7 0.091324
v19="54.2070—12 0.094847

125

J H [

The results in the form of relative Hertz potential
versus distance are shown in figure 3. In this case,
the effect of the stratified atmosphere is very prom-
inent at long distances. 1t is apparent that the
trapped modes account for a slowly decaying field
in this distance range. The fluctuations due to
mode interference become so numerous and irregular
for distances greater than 1500 km that only the
square root of the sum of the squares of mode
amplitudes was plotted. 1In this region, the ampli-
tude is a very sensitive function of distance or of
variations in the parameters of the refractivity
profile. Temporal variations of these parameters
can be expected to produce fading at a fixed distance.
The situation is somewhat similar to that believed
to exist in short-wave transhorizon propagation.
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Fiaure 3. Hertz polential relative to free-space value.

Ao=30m.

6. Conclusions

A practical method has been developed which
allows computation of the Hertz potential produced
by a vertical dipole over a finitely conducting earth
and in an atmosphere with an exponential profile of
refractivity. The mathematical solution 18 an in-
tegral, which must be evaluated by numerical
methods. The Cauchy integral theorem may be
applied to show the existence of one or more trapped
modes. For long wavelengths, such as 3000 m, the
attenuation of the one trapped mode is rather large,
and the influence of the stratification of the atmos-
phere is slicht. In the range of 10,000 km and
beyond in figure 2, the result comes almost entirely
from the branch-cut integral (39). For shorter
wavelengths, such as 30 m, numerous trapped modes
exist and the attenuation as a function of distance is
amazingly low. Beyond 600 or 700 km in figure 3,
the field results in large part from the residues (43).
At long distances, these residues interfere to produce
rapid fluctuations of field strength as a function of
distance. This could lead to fading at a fixed dis-
tance if the atmospheric structure varied slightly
with time. The situation seems somewhat analogous
to that encountered in scatter propagation.

This paper deals with a case which is not in keep-
ing with the spherical geometry of the real world.

However, the wave equation can be solved readily
for this case, whereas the same is not true in a
spherical system. Tt is believed that certain of the
concepts developed here may be useful in an attack
on the more difficult problem of propagation in a
stratified medium surrounding a sphere.
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