
RADIO SCIENCE Journal of Research NBSjUSNC-URSI 

VoL 68D, No_ II , November 1964 

Propagation Over Plane Earth Through an Exponential 
Atmosphere 

Irvin H. Gerks and Ronald M. Anderson 

Contribution From the Collins Radio Company, Cedar Rapids, Iowa 

(ReceivC'd M a rch 24,1964; revised M ay 28, 1964) 

An exact so lu t io n is fonnd for t he field of a dipolc ovcr p la ne, finitely co nductin g ear t h 
thr'oug h a n atmosp here ill which t he refractivity var ies exponentia lly wit h heig ht. The 
method of J l ankel t ransform s is used, so t hat t he fin a l l'esult t" kes t he form of a n in tegral 
wi t h infin ite limi ts. Th is integra l is evaluated numer ically for a typi cal pro fi le a nd for sev­
e ra lwavele ngths, a nd t he results a re compil rcd wit h t hose for a homogcnco us atmosphere . 
At s ho rt wavelcngths and largc distances, t he stratifi ed atmosp here abovc a planc cart h can 
act as a ver.v efficient \\·avC'guid C'. 

1. Introduction 

The solutions of Maxwell's equations for it homo­
geneous, nonconducting atmosphere over both plane 
and spherical f-in itely conducting earth have been 
known for many years . Almost two decades ago 
it was revealed by experiments that the field strength 
at very short wavelengths and large distances is 
greater than that calculated from "airless-earth" 
theory by tens of decibels . The favorite theory for 
explaining this excess is the scattering from randomly 
located irregularities of refractivity in the air lying 
within the beams of the two antennas [Booker and 
Gordon, 1950] . Other authors have maintained 
that the strong trans horizon fields can be explained 
only by postulating a prominent contribution from 
the ever-present stratification [Carroll and Ring, 
1955]. An exact solution for a smooth spherical 
earth and a smooth, continuous profile of refrac­
tivity (e.g ., exponential) is inordinately difficult . 
Much work has been done on the basis of solving the 
wave equation by WKB methods, [Bremmer, 
] 960], and also by an extension of the latter to the 
rigorous solution [Bremmer, 1962]. Other authors 
have employed quasi-optical methods in an effort 
to allow for the effects of stratification [Bullington, 
]963] . A so mewhat related problem involving 
reflection from a stratified ionosphere has been dis­
cussed [Wait and Walters, 1963a and 1963b]. 

It is our opinion that the problem can be formula­
ted in such a manner, especially in the case of 
"smooth" profiles, that the mathematical difficulties 
can be overcome with the aid of digital computers. 
This paper illustrates such a method in the relatively 
simple case of a plane earth and an exponential 
profile. 

2 . Maxwell's Equations and Boundary 
Conditions 

A harmonic time Jun ction eiwt is assumed, and 
LlJ e MKS system of units is employed. Then for 
a source-free region, :Maxwell 's equH,tions become 

curl H = i wtE I 
curl E = - iw/-tH I 

div tE = O rl . 
div H = O J 

(1) 

Following B remmer [1949], we assume a vertical 
electric dipole and express fleld strength in terms 
of a scalar Hertz potential IT: 

(2) 

(3) 

where a z is a unit vertical vector , Jc2 = w2/-t t, and 
k~= W2/-totO. (Zero subscripts designate vacuum val­
ues.) Assume /-t = /-to, t = t(z). Substitution of (2) 
and (3) into (1) yields the scalar wave equation which 
must be satisfied: 

(4) 

where 

(5) 
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It is readily shown that, for a smooth profile of 
tropospheric refractivity, the second term in the 
right-hand member of (5) is negligible for frequencies 
greater than about 50 kc/s. For simplicity, we 
assume k* = k. 

For an elementary electric dipole located at the 
point z= h, 1'= 0, (cylindrical coordinates), (4) 
becomes valid everywhere if we write 

(6) 
where 

8 = 20 o(1')o(z-h) , 7rr 

The solutions are subj ect to the boundary condi­
tions that the tangential components of E and I-I 
must be continuous at the boundary between air 
and earth, and that the behavior at grea.t height 
is that characterizing free-space propagation. When 
a refractivity profile is chosen with all derivatives 
continuous, the latter requirement will be satisfied 
by proper choice of the solutions of the differential 
equation in z. The former requirement leads to the 

Erl = Er2 
equations 1 

I-Iq, l = I-Iq,2 J 
(z = O) (7) 

where 1 refers to air and 2 to earth. The com­
ponents of E and I-I in terms of IT are found from 
(2) and (3). Specifically 

E =~ 02(kll) 1 
r P o1'oz ~ 

I-Iq,=-i ko o (kll) I 
Wf..L or ) 

(8) 

Therefore, the boundary conditions specified by (7) 
require that 

(9) 

It is necessary to find a solu tion of (6) which also 
satisfies (9) and the radiation condition at infinity. 
This is a unique solution. 

3. Solution of the Wave Equation 

In this paper, we assume a smooth exponential 
profile of refractivity such that 

(10) 

1 More precisely, the wave equation is 

(v '+k*')U=i Jdl _ 5(r)5(z-h). 
21TTW..jEOf 

where a= 2N8 X 10-6 and I-I is the scale height. We 
first find appropriate independent solutions of the 
homogeneous equation 

(11) 

The separation of variables is achieved by appli­
cation of the Hankel transform [Sneddon, 1951] 

u(p, z) = Sa'" u(r, z )Jo(p1')1'clr. (12) 

This leads to an ordinary differential equation in z, 
which can be solved by any available method. Hav­
ing found u(p, z), we can determine the original 
function by applying the inverse transform. 

u(r, z)= Sa'" u(p, z)Jo (pr)pclp. (13 ) 

To apply (12) to the wave equation (11), we 
multiply by rJo(p1') and integrate the result from 
o to 00. The procedure requires integration by 
parts, recognition of the fact that the functions 

rJo(pr) ~u and prJ~ (pr)u must vanish at 1'= 0 and 
vr 

r = oo, and use of the Bessel equation of zero order. 
The result is, for u = l1, 

(14) 

It may be noted that the parameter p can be loosely 
identified with k sin fJ, where fJ is the angle between 
the wave normal and z-axis. The condition p2> P 
corresponds to the ray-theory concept of total in­
ternal reflection. The solutions of (14) should have 
the nature of progressive waves when p2< P and of 
standing waves when p2> Jc2. It is easy to derive 
Sommerfeld's solution for a homogeneous atmosphere 
from (14) and (13) by assuming k constant . 

When the exponential profile (10) is assumed, (14) 
becomes 

where 

(15) 

(16) 

(17) 

By the change of variable v= e- z /2H, (15) is converted 
to Bessel 's equation of imaginary order. We select 
the solutions 

j(p, z)= J,(n, 

g(p, z)= Y,(t), 

(18) 

(19) 

where v= i2H.A, t = 2I-IBe-z/2H • It can be shown 
readily that only j has the proper behavior as Z---'7 oo. 
A solution of this type was first discussed by Elias 
(1931). 

Consideration of the branch point at p= ko leads 
to the conclusion that, on the appropriate Riemann 
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sheet [Brekhovskikh, 1960], 

1l= 2H.,j p2- lc~, 

A branch point at p= le2 = n leo produces no difficult ies. 
Note that we defin e 

(20) 

where € r and (J are the dielectric constant and con­
ductivityof the earth. 

When the Hankel transform (12) is applied to the 
source function S, we obtain 

(21) 

Since the boundary conditions (9) do not contain r 
explicitly, they become simply 

Id - _ l d- I 
le2-l (lelTII) - 12 -l (lc21I2) >-

1 C Z IC2 G Z I 
kdI! = ledr2 .J 

(z = O). (22) 

If the earth I S assumed homogeneous, (14) yields 
the solution 

where 
(23) 

Th di'i2 . - d en -l-= ~'YIJ2' an equ ations (22) reduce to the 
GZ 

single equation 
1 d (7 -) i 'Y le --k2 - , ICI lI l = 12 In l 
,GZ IC2 

(z = O). (24) 

,Ve can drop the subscript on t he symbol n and write 

where (z = O). (25) 

Setting lei = lco except in the derivative and usmg 
(10), we get 

(26) 

The second term in the right-hand member can be 
neglected except for very long wavelengths. Finally 
it is found that the integration with respect to ~ 
suggested by (13) yields resul ts only for p very close 
to leo, so that we can employ the following condit ion 
with negligible error: 

D ilco~. 
1/ 2 

(27) 

This approximation is equivalent to the introduction 

of a surface impedance, [Wait, 1962] . 
We can now combine the results given by (18). 

(19), (21), and (25) by using the Lagrange method 
of variation of parameters [Ince, 1944]: 

n (z) =~l~(Z) ,LZg(z ' ) S( z ' )dz ' + g(z ) f oo j(z ' )S(z ')dz ' 

Dg(O) - g' (0) f( ) r OOj( ')S- ( ')d 'J (28) 
D}(O)- f(O) ' z .1 o z z z , 

where z' is a variable of integration and the ,Vron­
skian W is given by 

1 
W [j(z), g( z )]= - _ · 

7rH 
(29) 

E valuation of the integrals in (28) gives different 
results, depending upon whether z>h or z<h . For 
z>h, 

11(P, z )= - °2I1j '( z) [ g(h) D g(O) - g' (O)j(l )J. 
D j(O)-f(O) , 

(30) 

For z<h, z and h are reversed. Finally substi­
t ut ion in (13) yields t he solut ion, for z>h, 

OH r oo 
nCr, z )= -2 .1 0 j (z) 

[ D g(O)- g'(O) - ] 
g(h) D leO) - f (o/(h) J o(pr) pdp· (31) 

r t is understood that j and 9 are functions of p as 
well as z. Since p appears ill the expression for Il, 

the order of t he B essel functions in (18) and (19), it 
is seen that t his order ranges from large imaginary 
yalues to zero, then t hrough positive real values to 
infinity as p goes from 0 to 0) along t he real p-axis. 
T he integration with respect to p can be thought of 
as an addition of rays propagated at yarious angles 
rela tive to t he z-axis. Small "alLIes of p conespond 
to rays which escape from t he atmosp here. The 
condition p= lcc corresponds to the onset of total 
internal reflection at a great height. As p continues 
to increase, the rays are reflected at lower elevations. 

It may also be noted that the integrand in (31) 
develops poles at values of p where D.f(O) = f (0) . 
These poles lie on the positive real p axis when D is 
real or zero and slightly below this axis when D is 
complex. These poles are associated with the pil ysi­
cal concept of multiple reflection of rays between t he 
atmosphere and the earth. For lon g wavelengths 
there may be but a single pole, wh ereas for short 
wavelengths there may be many poles. 

No serious effor t has been made to evalu ate the 
integral in (3 1) by such familial' means as the saddle­
point method. Much better control over the accu­
!'ftey of the results can be achieved by numerical 
integrfLtion. Also, it is not considered very impor­
tant at this stage to investigate the effect of antenna 
height variations. Of much more in terest is the 
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variation of field strength with horizontal distance. 
Accordingly, we let z= h= O, and obtain the relatively 
simple result 

_ OH ( oo j(O)g'(O)-.1'(O)g(O) 
II (r, 0) - -2 Jo j(O) Dj(O) - 1' (0) Jo(pr)pc!p 

o r a> J o(pr)pc!p 
= 27r Jo D-1' (O) /j(O) 

We note that 

l' (0)1f(0) = -BJ; (2HB)jJ.(2HB), 

=2H.Jp2_ k~ 

It is interesting to note that 

!~~ [1'(O) /j(O)] = -B 2lIB= -..,!p2_ k5, 

(32) 

and that the limiting form of (32) is the familiar 
Sommerfeld solution for a homogeneous atmosphere . 
Since 2Hko is normally a large number, 

lim [f' (O) /j (0)] ~ -i.Jk~- p2, 
p--'>O 

and a similar coincidence with the Sommerfeld solu­
tion results. In fact, for a homogeneous medium, 
(32) takes the forln 

II ( 0) = 0 r a> J o( pr)pc!p. 
r, 27r Jo D+ v/2H (33) 

Dimensionless forms can be obtained if welet p= kov. 
Equation (32) now becomes 

( ) _ Oko r a> J o (korv) vc!v 
II T, 0 - 27r Jo (D/ko) +~aJ;(2HB)jJp (2HB)' 

where 
(32a) 

A corresponding form is obtained for (33). Now 
only the coefficient, Oko, has dimensions. If the 
result obtained from (32) or (33) is divided by the 
free-space value 

(34) 

a dimensionless ratio is obtained, which can be 
plotted as a fmlction of T. The shape of such a 
curve is essentially the same as if the vertical com­
ponent of E had been computed and compared with 
its free-space value. 

It is often convenient to use complex variable 
theory to evaluate the integral. It is first necessary 
to extend the path of integration along the entire 
real axis by a familiar transformation of the inte­
grand [Sommerfeld, 1949]. Equation (32a) takes 
the form 

II(r 0) - 0 ___ ~o~-,,-o -,---____ _ Ok f a> H (2) (k TV) vdv 
, - 4; -'" (D/ko) +..,IaJ~(2HB) /Jp(2HB)· 

(35) 

If we divide (35) by (34), we get finally 

II = -k reikorf '" I-JC~)(koTv)vdv . (36) 
IIo 0 _ a> (D/ko) +..,IaJ~(2HB) /J p(2HB) 

One method of evaluating the integral is to choose 
a path along the real axis. Then we use (32a), 
employ an asymptotic form for J o similar to (38), 
let T be an integral number of wavelengths, and 
obtain 

!! ~ _ ') j2koT r '" cos (korv-7r/4)vdv . 37 
IIo ~ "'-Y 7r Jo (D/ko) +..,IaJ~(2HB)jJp(2HB) ( ) 

Since the cosine term varies rapidly with v when 
kor becomes large, it is very helpful to choose a step 
size Vv such that all of the integrand except the 
cosine term can be accurately represented by a 
second-degree polynomial, then integrate analyti­
cally. In this way, the cosine term may execute 
many cycles within one step without degrading the 
accuracy of the computed value of the integral. 

A second method is based upon Cauchy's integral 
theorem. The integrand in (36) is an analytic 
function of v except at the poles, which are located 
in the second and fourth quadrants of the complex 
v plane. The path of integration is distorted into 
the lower half-plane (fig. 1), where the integran d 
vanishes sufficiently far off the real axis. However, 
the path must be taken around the branch poin ts 
at V= 1 and v=n. The contribution from the 
second branch point is negligible for normal values 
of n. The cut from the branch point at v= l is 
drawn downward, and the path of integration is 
collapsed onto opposite banks of this cut. The 
total value of the integral is the sum of this branch­
cut integral and of the sum of the residues multiplied 
by 27ri. 

Let III be the contribution from the branch point 
at v= l , and let v= 1-i8 along this part of the path. 
The integrand on the two banks of the cut differs 
only in that v, the order of the Bessel function, 
changes sign. In the definition v= i2Hko .J1 -v2= 
i2Hko ..,102+ i28, the radical must be taken with a 
positive sign on the left bank and a negative sign 
on the right bank of the cut. For simplicity in 
writing a formula, we always take the positive sign 
and change v to -von the right bank. Now, if we 
take advantage of the fact that the significant 
range of v is in the vicinity of 1 and decide to keep 
the minimum value of r about 10 wavelengths, we 
can use a simple asymp totic form for the Hankel 
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FIGU RE 1. Path of integmtion in complex v-plane for (36) . 

function: 

Equation (36) leads to the form 

where the brackets are to be fill ed by the expression 

1 

(D/leo) + ..JaJ _~(2HB)/J _v(2HB) 

1 

(D/leo) + -raJ~(2HB) /J v(2HB) 

This integral co nverges rapidly wh en koT is large. 
The location of a pole may be defined by the 

followin g relation which cOlTesponds to a zero of 
the denominator of the integrand: 

where 
J ,s (2HB) = 1'J~. (2HB), 

. ..Jan2 
1' = 1,---' 

.Jn2 1 

(40) 

(41 ) 

Since l' is nonnally small, the poles are located 
just below the positive real v axis, and near the 
real-axis zeros of J v(2HB). Furthermore, the real­
axis zeros must lie in the range o < v< 2I-IB, i.e., in 
the range where v is slightly greater than 1. Equa­
tion (40) may be solved for Vs by an iterative 
method. Then 

(42) 

Let II2 be the contribution of the poles. This is 
made up of 27T'i times the residues at these poles. 
The residue at a pole is obtained by differentiating 
the denominator of (36) with respect to v, then 

substituting V = Vs . We obtain 

cl . (2Hleo)2jav cl 
-d (denomll1ator)= -I [J :(2HB)/J v(2HB )] 

v v G v 

(2Hleo)2..Jav d 
V1' 2 dv 

[Jv(2HB)/J~(2HB) ], 

lI2"" -i 271'1'2 /2leoT ei1r/4 

lIo (2Hko)2..Ja -V 71' 

2 
V 8 

2 (2 Hko/ 

X~ V S exp [-ikoTv;/2(2l-11co)2] . 

8 ~ 1 Gll [Jv (2HB)/J~(2HB) ]v ~.s 
Gv 

(43) 

Since V s normally has only a small negative imagi­
nary component, the damping factor for the residues 
tends to remain near unity, even for large values of 
leoT. This means small attenuation of the trapped 
modes. 

The total H ertz potential relative to its free-space 
value is the sum of (39) and (43) . For long wave­
lengths, where 2EIB is small, there may be only one 
root of cq (40), therefore only one pole. For short 
wavelengths, there are many roots of (40) and many 
poles. This b ehavior is somewhat similar to that of 
a metallic wave-guide, in which many modes can 
propagate at sufficiently short wavelengths. 

4. Computations 

Only a few commen ts are required with regard to 
the computation of numerical results. The evalua­
t ion of the integral in (37) or (39) by an application 
of Simpson's method is routine except for the rapid 
oscillation of the cosine function in (37). This is a 
common problem in Fourier analysis. It is generally 
somewhat easier to use complex-plane integration, 
especially when 2EIB is large and J ,(2HB) has many 
zeros on the real v-axis. 

Perhaps no other functions have been so e:den­
sively investigated as the solutions of Bessel 's 
equation. The work of Langer [1931] and ,'Vatson 
[1944] is especially noteworthy. Since both the 
argument and order of t he Bessel function are often 
large in this application, and since the order may be 
complex, asymptotic formulas must be used a nd care 
must be exercised in choosing the formul fl, which is 
appropriate to the particular region of the complex 
plane (Stokes phenomenon). It is also to be noted 
that computat ion tends to be difficult in the region 
where the order and argument of the Bessel function 
become equal , i.e ., the region where the coefficient of 
IT in (15) becomes zero. In the present problem, 
this difficulty occurs only when integration along the 
real axis is employed, since the argument of the 
Bessel function is always real. It can be fl,voided in 
the simple case of zero antenna heights, because a 
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familial' recursion formula can be used for computing 10 

I 
J' /J. A useful form is the following: 

(44) 

The ratio J' jJ is first computed for a larger order 
lI+n, where n is an integer, from a simple asymptotic 
formula , and an iterative procedure is used to reach 
the final result . The location of the poles V8 in 
accordance with (40) also presents some difficult ies. 
The general procedure is to obtain a first estimate of 
li s and then make corrections by an iterative method 
until (40) is satisfied. Two cases may be distin­
guished, viz, 2HB small and 2HB large. In the 
former case a first estimate of III can be obtained from 
the formula 

1 J~J2HB) III HB 
7 J pI(2HB) ""' 2l-IB- 111 + ( 

(45) 

In the latter case, numerous poles exist, so that 
111] 1< < 2HB, and we can use a simple asymptotic 
formula for a first estimate: 

(46) 

The iterative method for improving upon such an 
estimate is based upon the numerical determination 
of the derivative of J /J' with respect to II. In this 
process, the derivative appearing in (43) is also 
computed. Where several poles occur , extrapola­
tion methods can be used to good advantage for a 
first estimate after the pole of lowest order is located. 

In the following numerical examples, both real­
axis and complex-plane integration have been em­
ployed, and the resul ts were found to agree. 

5. Numerical Examples 

(a) j = 100 kc/s, Ao= 3000 m , Er = 10, CT = 10- 2 mho/m, 
n 2= 10-i1800, a = 6 X 10- 4, H = 6000 m, 2HKo= 87r= 
25.1327, 2HB= 87r,,/6 X 10 4= 0.615624. 

Ver tical electric dipole on the surface: 

7= 1.03924 exp i O.78846, lI = i25.1327"I1- v2 • 

Location of pole: 
first estimate from (45) ... 1I] "", 0.535 - iO.390, cor­

rected location . .. II] = 0.53581-iO. 38902. 
The ratio of the Hertz potential to that in free 

space was computed with the aid of a large digital 
computer as a function of horizontal distance from 
the source. The results are shown in figure 2. The 
effect of the stratified atmosphere is discernible at 
long distances but is too small to be important 
prac tic ally . 
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FIG URE 2. H ertz potential relative to fre e-space value. 
1-0 = 3000 ill . 

(b) j = 10 Mc/s, "0= 30 m, Er = 10, CT = 10- 2 mho/m, 
n 2 = 10-i18. a = 6 X 10- \ H = 6000 m , 2HKo 
= 8007r = 251 3.27, 2HB= 8007r.,,!6 X 10- 4 = 61.5624. 

Vertical electric dipole on the surface: 

7= 0.11243 exp i 1.06065, lI = i 2513.27 .,,/1-v2 • 

Location of poles: 
first estimate from (46) - Vl "'" 1.6565-i 0.06247 , 
corrected location- vI = 1.6697-i 0.063495. 

V2 = 3.7271 - i 0.064808 vll = 24.9130 - i 0.077705 
V3 = 5.8313 - i 0.066138 VI2 = 27.6957 - i 0.079327 
v, = 7.9857- i 0.067486 VI 3= 30.6 126 - i 0.08 101 5 
V5 = 10.1942 - i 0.068856 vI, = 33.6901 - i 0 .082779 
V6 = 12.4616 - i 0.070251 vI5= 36.9658 - i 0.084639 
v; = 14.7932 - i 0.071672 vl6 = 40.4966 - i 0 .086638 
Vs = 17.1954- i 0.073123 vI7 = 44.3 770 - i 0 .088816 
V9 = 19.6762 - i 0.074610 vls= 48.7895 - i 0.091324 
vlO = 22.2447-i 0.0761 32 vI 9= 54.2070 - i 0.09484 7 

The results in the form of relative H ertz potential 
versus distance are shown in figure 3. In this case, 
the effect of the stratified atmosphere is very prom­
inent at long distances. It is apparent that the 
trapped modes account for a slowly decaying field 
in this distance range. The fluctuations due to 
mode interference become so numerous and irregular 
for distances greater than 1500 km that only the 
square root of the sum of the squares of mode 
amplitudes was plotted. In this region, the ampli­
t ude is a very sensitive function of distance or of 
variations in the parameters of the refractivity 
profile. T emporal variations of these parameters 
can be expected to prod lice fading at a fixed distance. 
The situation is somewhat similar to that believed 
to exist in short-wave transhorizon propagation. 
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FIG U RE 3. Hertz potential Telative to free-space value. 
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6 . Conclusions 

A practical method has been developed which 
allows computation of thc Hertz potential produced 
by a verticfl,l dipole over fl, finitely co nducting ofl,rth 
and in an atmosphere with an exponential profile of 
refractivity. The mathematical solution is an in­
tegral, which must b e evaluated by num ericflJ 
methods. The Cauchy in tegral theo rem may be 
applied to s how t he existence of one or more trfl,pped 
modes. For long waveleng ths, s uch as 3000 m , the 
attenuation of the one trapped mode is rathcr large, 
and the influence of the s tl'atiflcation of the atmos­
phere is blight. In the ran go of 10,000 Ion and 
beyond in flgure 2, the result comes fl,lm Obt entirely 
from the branch-cu t integral (3 9) . For shorter 
wavelengths, s uch as 30 m , numerous trapped modes 
exist and the attenuation fl,S a fUD ction of distance is 
amazingly low. Beyond 600 or 700 k:m in figure 3, 
the field r esults in large pfl,rt from the residues (43) . 
At lon g dis tanccs, these r esidues interfere to produce 
rapid iiuctun,tions of field strength as a function of 
distance. This could lead to fading at a fixed dis­
tance if the atmospheric structme varied slightly 
with time. The situation seems somewhat analogous 
to that encountered in scatter propagation. 

This paper deals with a case which is not in keep­
ing with the spherical geometry of the real world. 

However, the wave equation can be solved readily 
for this case, whereas the same is not true in a 
spherical sys tem. It is believed that certain of the 
con cepts developed here may be useful in an attack 
on the more difficult problem of propagation in a 
s tratified medium surrounding a sphere. 
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