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It is assum ed t hat a wa rm plasma m ay be descr ibed in te rm s of a con t inuum t heor y 
o f fluid dy na m ics in co mbinat io n wi t h Max well's equations . The motions o f t he heavy 
io ns a re neglected bu t co lli s ions wit h electro ns a re accounted fo r by a constan t co llision 
f reque ncy. Fo r t hese condi t io ns, a so lu t ion is g iven fo r the refl ect ion coeffi c ien t when a 
p la ne wave is inc iden t ob liqu ely o nto a homogeneo us ha lf sp ace of p lasma . A d- c m agnet ic 
field is superimposed on t he p las ma in a d irectio n p a ra llcl to t he in te rface betwee n t he 
p lasma and t he d ielectric. It is sho wn that previous solu t ions fo r a co ld anisotrop ic p lasma 
a nd a warm isotrop ic p lasma a re recovered as sp ecial cases . 

1. Introduction 

In theoretical s tudies of wave propagation in 
ionized media, it is usually assumed that the plasma 
is cold. This is par ticularly true in the vast l iterature 
devoted to ionospheric radio propagation [e.g., R at
cliffe, 1959]. In ma ny cases this is probably well 
justified because t he kinetic temperature of the 
plasma is sufficien tly low. Never theless, i t would 
seem to be desirable to investigate the consequences 
of this cold plasma assump tion in some specific 
problems. F or example, in studying the propagation 
of VLF radio waves, the ionosphere may oJten be 
approximated by a sh arply bounded homogeneous 
plasma [Wait, 1962]. In this paper an explicit 
expression for the r eflection coefficien t is derived 
under th e condi t ion that the electroacoustic velocity 
is fini te. In order to simplify the discussion, the 
superimposed d- c magnetic field is taken to be 
parallel to the in terface and transverse to the direc
tion of propagation. In the limiting case of a cold 
plasma this problem reduces to one first solved 
explicitly by Barber and Crombie [1959]. 

2. Preliminary Considerations 

The plasma medium is regarded as a one-component 
electron fluid. In other words, the ions are neglec ted 
in the equation of motion , yet their presence is 
required to neutralize the plasma. H owever , col
lisions between electrons and the neu tral par t icles 
are accoun ted for by an energy independent collision 
frequency v. It is also assum ed that the ampli tude 
of the plasma and the electromagnetic oscillations 
are sufficiently small that linearized equations are 
valid [Oster, 1960]. It is fur ther assumed that the 
drift velocity of th e electrons is zero, so the plasma 

as a whole is considered sta tionary . The aver age 
number density of electrons is denoted no, which is 
regarded as constan t in the plasma region . The 
mean velociLy is -;, while their pressure deviation is 
p. The electric and magnetic fields are designated 

~ ~ 

by their usual symbols E andl-J, respectively . 
A uniform magnetic field Bo is assumed to be 

impressed throughout the plasma. This constan t 
magnetic fi eld is taken to be parallel to the y axis 
of a sui tably chosen Car tesian coordinate sys tem 

~ ~ ..... 
ex, y , z). The field quan tities E , II, p, and v vary 
with t ime t as exp (iwt) where w is the angular 
frequency. 

F or t he sit uation described above, t he linearized 
equation of motion for t he elec trons is 

~ -) -) A 

mno(v+ i w)v= noe(E+v X yBo)-Vp, (1) 

where y is a unit vector in the y-direc tion, and e and 
m are the charge and mass of t he electron, r espec
t ively. As a consequence of assummg a scalar 
pressure t erm, Landau damping in th e plasm.a is 
neglected. The linearized equation of con tinuity, 
combined with the equation of state, leads readily to 

~ 
2 • 

U mnoV ' v=-~wp, (2) 

where 1.t is the velocity of sound in the electron gas. 
l\![axwell's equations for the plasma in t he absence 
of sources are given by 

~ ~ 

V X E = -if.J,owl-J, (3) 
and 

~ ~ ~ 

V X H = i €owE+ noev, (4) 
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where /-Lo and EO are the permeability and dielectric 
constant of free space, respectively. 

In the problem considered in this paper, tbere are 
two distinct regions separated by a plane interface at 
z= O. The plasma region occupies the upper half 
space z>O, while a dielectric of electrical constants 
/-Lo and Ed occupies the lower half space z<O. Follow
ing the assumption of earlier workers [Cohen, 1962; 
Hessel et al., 1962; Fedorchenko, 1962], the boundary 

--> 
condition on the electron velocity v is that its normal 
component be zero at thE' interface z= O. The ques
tion whether an actual interface between a dielectric 
and plasma is totally effective in this regard is not 
answered here. However, the reader is referred to an 
illuminating discussion of this point by Cohen [1962]. 
Very recently the same boundary condition has been 
used by Yildiz [1963], who treated the oscillations of 
an isotropic compressible plasma sphere. 

To simplify the problem, the obliquely incident 
wave from the lower half space propagates tranS \TerSe 
to the magnetic field. In other words, the wave 
normal is contained in the (x , z) plane and makes an 
angle e with the negative z-axis. Without losing 
further generality, it is necessary to consider two 
distinct cases. The first and most interesting situa
tion is when the magnetic field of the incident wave is 

--> 
parallel to the interface. In other words, H ei ) of the 
incident wave has only a y component H~i) . There
fore, we choose it to be of the form 

H~i) = Hoe -UoZe-iXX, (5) 

where UO = i (Ed/-LO) 1/2W cos e and t. = (EaJ.lo) 1/2W sin e. 
For the problem as defined, it is found that the 
necessary equations and t.he boundary conditions are 
satisfied if the reflected wave also has only a y 
component H~T). In fact , we may write 

(6) 

where, by definition , R" is the reflection coefficient. 
The total magnetic field H y in the region z<O may 

be written 
H y=Ho[e -ikC'+R lleikCZ] e- ikSX, (7 ) 

where C= cos e, S =sin e, and k = (EdJ.lO) 1/ 2 W is the wave 
number in the dielectric region. The electric field 
components in the dielectric are obtained from 
11axwell's equations. Thus, 

(8) 

and 

(9) 

for the region z<O. The normal wave impedance 
Z , at the interface, is defined by 

Z= (Limit) E x. 
z-;>O H y 

(10) 

On combining (7) and (9) , it is seen that 

Z C[l-RIIJ 
= TJ 1+ R 11 ' 

(11) 

where TJ = k / (EaW) = (J.lo/Ea) 1/ 2 is the characteristic im
pedance of the dielectric. Conversely, the reflection 
eoefficient may be expressed conveliiently in terms 
of the normal surface impedance via the relation 

(12) 

It is apparent from the above development that the 
problem boils down to finding an expression for the 
surface impedance of the compressible magneto
plasma at the interface z= O. Because of the con
tinuity of the tangential fields Ex and H y, this im
pedance is simply Z. 

The second case alluded to above corresponds to 
the situation where the electric field of the incident 
wave is parallel to the interface and has only a y 
component. As it turns out, this is a rather trivial 
case from the electromagnetic viewpoint. Neither 
t he d-c magnetic field nor the pressure play any role. 
Thus, the solution for the reflection coefficient may 
be obtained by regarding the half space as a cold 
isotropic plasma. This case will not be discussed 
~LIly further . 

3 . Development of Equations for the Plasma 

As specified in the preceding section, the magnetic 
field need have only a y component H y. In what 
follows, the subscript y on this quantity is dropped. 
Furthermore, because of the assumed direction of 
incidence %y= O. Consequently, (1) in component 
form may be written 

and 
(v + iw)mnovz=noe(Ez+vxBo)-op/oz . (14) 

By simple algebraic manipulation, (13) and (14) 
may be rewritten in the form 

v =_e_ E +~ E _ __ 1_ op _ _ w_c_ oP, ( ) 
x gma x mg2a Z gamno ox g2mnoa OZ 15 

(16) 

where a= I +(wc/g) 2, where g= v+ iw is a convenient 
complex frequency parameter and Wc= - eBo/m is 
the (angular) gyrofrequency for electrons. 

~ 

Maxwell's curl H equation in component form is 

(17) 
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and 

oH . E + ~=t~ow l z noevz• (I8) 

This pair may be used in conjunction with (15) and 
(16) to eliminate E x and E z. Thus, 

v - _ iewc [oH _ i ~ow opJ 
x - mg2w~oI<'(X ox noe oz 

and 

( w~ ) 
_ e 1 +~ [oH + i Eow opJ, (19) 
miwg~oK(X oz noe ox 

where w~= (noe2) / (~om) is the (angular) plasm a fre
quency, 

with 

Equations (17) and (18), used in co njunction with 
(15) and (16), may be u tilized to eliminate Vx fmd Vz• 

From this process, 'we obtain 

E =-~ oH_ K 2 oH_ K 1-Kop+ iK 2 op, 
x i~owK 02 ~owK ox noeK ox noeK 02 

(21) 
and 

E = K\ oH_ K 2 oH_ KI - K op_ iK 2 oP. 
z iEowK ox EowK OZ noeK oz noeK ox 

(22) 

It is evident from the above that all quantities of 
interest are derivable from the two scalars p and H . 
By inserting v", and Vz , as given by (19) and (20) , into 
(2), we obtain 

where 
i wgcxK 

In a similar manner, by working with (3), (21 ), and 
(22), we arrive at 

(24) 

where 

Equations (23) and (24) arc coupled differential 
equations for H and p. An impor tant special case 
is when Bo= O. Then, becausc K 2= 0, th ese two 
equations decouple. Thus, 

(25) 
where 

2_ iwg (1+ w~) 'Y -~ ~ , 

P u2 iwg 
and 

(26) 
where 

These arc the go \rerning equations for propagation 
in an isotropic cO lllpress ible plasma when collisions 
are acco un ted for [W ait, 1964]. 

Another signincan t special case is wh en the 
Lemperatme o( thc plasma is set equttl to zer o. This 
cOJ'J"cspo nds to r ,,-7 CX) whence, from (23), the 
pressure p ntnishes. Equation (24) then simplifies 
to 

(27) 

where r; is denned exactly as in (24). This is th e 
wav e equtLtioll for trans \rerse propagntion in a cold 
anisotropic phtsl11n [Wait, 1962] . 

The general co upled differential equation s given 
by (23) a nd (24) , in the casc of zero collisions, arc 
th e sam e as Lhe ones deri ved by Seshadri [1963] who 
tr eated the r ad iation from a m agnetic line source 
embedd ed in a homogen eo us compress ible plasma. 

4. Solution of the Coupled Equations 

To obtain the solution of the coupled equation s, i t 
is assumed that the waves in the plasma vary accord
ing to the factor exp (- u z) exp (-i AX) where A= k 
sin e, and u is to be determined. B ecause \7 2 may 
be r eplaced by U 2 _ A2 it follows, from (23) and (24), 
that 

where 

When the gyrofr equency approaches zero, the 
coupling factor 0 vanishes, and the two solu tions are 
U2 = A2+ r! and A2 + r ;. In accordance with earlier 
work, these may b e described as electromagnetic 
and acoustic waves, respecti vely . 
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Equation (28) is now conveniently written in the Thus, t he pressure is given in terms of}, and}p by 
form 

A A 
(U2 _ A2_ r ;) (U2_ 'A2- r~) = 0, (29) 

where 

and 

with 

A 

The SIgn of the r adicals is chosen so that r ; 
approaches r~ and r; approaches r ; as 0 tends 
uniformly to zero. The solutions of (29) then lead 
to two kinds of waves which are described by the 
factors 

exp (-u.z) exp (-iAX) and exp (-upz) exp (-i 'Ax), 

where 
A A 

u.= (A2+ r ;)1/2 and Up= ('A2+ r~) 1 /2. 

It is appropriate to describe these as quasi-electro
magnetic and quasi-acoustic waves, respectively. 
The radicals in the expression for u , and Up must be 
chosen to satisfy radiation conditions as Z-'7CO . In 
the case of a finite collision frequency v, this is 
equivalent to assuring that the real parts of u. and 
Up are positive. 

5. Derivation of the Surface Impedance 

p = noe [i. A. exp (-u.z)+ip Ap exp (-upz) ] exp (-iAX) . 
I:OW 

(34) 

Using (20), (30), and (34) and the boundary 
condition vz= O, we obtain 

(35) 
(iWc/g)[Up-ApAJ - (l + .w~ ) (A- ApUp) 

twg 

This means that the rigidity condition at the interface 
fixes the ratio of the quasi-acoustic wave to the 
quasi-electromagnetic wave. In the special case of 
a cold plasma (i. e., u = O), Ap-'7co and, therefor e, 
the ratio ip/i . vanishes. Another limiting case is 
when the plasm a becomes isotropic (i.e., wc= O). 
Then, again, Ap-'7co and }pli. become vanishingly 
small. However, in this case, a more m eaningful 
ratio is gp/i., which approaches the finite value 
nocA/( foWU p) in accordance with the required be
havior for an isotropic compressible plasma [Wait, 
1964]. 

Using (2 1) , (30), and (34), the following expression 
is obtained for the tangential electric field at the 
interface: 

General expressions for the magnetic field H and According to (1 0), it is noted that 
the pressure p within the plasma may be expressed 

(36) 

in the form Exlz ~ o=ZHy]z ~o=Z(j.+ip), (37) 

H = [j. exp (- u.z)+ip exp (- u pz)J exp (-iAX), 

(30) 
and 

p= [g. exp (-u.z)+gp exp (-upz) ] exp (-iAX), 

(31) 

where i ., g., im and gp are coefficients which do not 
depend on the coordinates. By using (24), which is 
valid for all z> O, it follows that 

(32) 

and 

(33) 

where 

Therefore, on equating (36) and (37), we arrive at 
the rather cumbersome expression for the surface 
impedance. 

z-(~) i 
- f OW (l+j:) K 

{[ K 2 - K~u'+ (Kl-K)A.-K2~ .U'J 

+r. [ K 2- K~uP+(Kl-K)Ap_ K2~PUPJ} ' (38) 

where i p/i. is given explicitly by (3 5). 
As a partial check on the correctness of (38) , we 

consider the case of a cold anisotropic plasma (i.e., 
u = O). Then, since i p/i,----70 and A.-'70, it imme
diately follows that Z -'7Z c where 
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which is in agreement with a result derived originftlly 
by Barber and Crombie [1959J. Another special 
case is a warm isotropic plasma (i. e., wc= O). Then, 

1\ 1\ 

0= 0, r e-7r ., r p-7r p, K 2 0, and K/Kl-7[l+w~ / 
(iwg)J = e/eo whCTe e is the di electric constant of the 
isotropic plas m.a. In this limiting cn,se, (jp!Je) -70 
and Ap-7oo bu t in such ft way that (A,J7)/fe) -7 }.. /u p' 
As a resul t of these considerations, Z ---?>Zi where 

where 

with 

and 

2 2 wo 2 ( 2) 'Ye= - eo,uow 1+ -. - = -e,uow. 
~wg 

(39) 

The abo l'e result for Zj is in agreemen t with an 
independent del'i vation for an isotropic warm plftsm a 
[Wait, 1964J. It is immediately evident that the 
bracketed term in (3 9) mft.)' be r eplaced by uni ty 
if u/c< < 1, which is the co ndition for the validi ty 
of the cold plas lHn, assump tion. 

6. Concluding Remarks 

An explicit expression for the reOection coefficien t 
for a compressible mftgnetoplas llHI. has been given in 
this paper. It is shown th ftt it reduccs to the we11-

known r esult for a cold magnetoplasma when the 
ratio of the aco ustic velocity u is small compared 
wi th the velocity c of electromagnetic waves in free 
spftce. The general expression also reduces to a 
previo usly derived result for r eflect ion from an 
isotropic compressible half space of plasma. 
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