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It is assumed that a warm plasma may be described in terms of a continuum theory

of fluid dynamies in combination with Maxwell's equations.

The motions of the heavy

ions are neglected but collisions with electrons are accounted for by a constant collision

frequency.

For these conditions, a solution is given for the reflection coefficient when a
plane wave is incident obliquely onto a homogeneous half space of plasma.

A d-c¢ magnetic

field is superimposed on the plasma in a direction parallel to the interface between the

plasma and the dielectric.

It is shown that previous solutions for a cold anisotropic plasma

and a warm isotropic plasma are recovered as special cases.

1. Introduction

In theoretical studies of wave propagation in
ionized media, it is usually assumed that the plasma
is cold. This is particularly true in the vast literature
devoted to ionospheric radio propagation [e.g., Rat-
cliffe, 1959]. In many cases this is probably well
justified because the kinetic temperature of the
plasma is sufficiently low. Nevertheless, it would
seem to be desirable to investigate the consequences
of this cold plasma assumption in some specific
problems. For example, in studying the propagation
of VLF radio waves, the ionosphere may often be
approximated by a sharply bounded homogeneous
plasma [Wait, 1962]. In this paper an explicit
expression for the reflection coefficient is derived
under the condition that the electroacoustic velocity
is finite. In order to simplify the discussion, the
superimposed d—c¢ magnetic field is taken to be
parallel to the interface and transverse to the direc-
tion of propagation. In the limiting case of a cold
plasma this problem reduces to one first solved
explicitly by Barber and Crombie [1959].

2. Preliminary Considerations

The plasma medium is regarded as a one-component
electron fluid. In other words, the ions are neglected
in the equation of motion, yet their presence is
required to neutralize the plasma. However, col-
lisions between electrons and the neutral particles
are accounted for by an energy independent collision
frequency ». It is also assumed that the amplitude
of the plasma and the electromagnetic oscillations
are sufficiently small that linearized equations are
valid [Oster, 1960]. It is further assumed that the
drift velocity of the electrons is zero, so the plasma

as a whole is considered stationary. The average
number density of electrons is denoted ny, which is
regarded as constant in the plasma region. The
mean velocity is », while their pressure deviation is
p. The electric and magnetic fields are designated

- -
by their usual symbols £ and /{, respectively.

A uniform magnetic field B, is assumed to be
impressed throughout the plasma. This constant
magnetic field is taken to be parallel to the v axis
of a suitably chosen Cartesian coordinate system

- > -
(xz, y, 2). The field quantities %, I{, p, and » vary
with time ¢ as exp (iwt) where « is the angular
frequency.

For the situation described above, the linearized
equation of motion for the electrons is

= = = A
mn(v+1iw)v=nee (IL4+vXyBy) —Vp, (1)

where 7 is a unit vector in the y-direction, and e and
m are the charge and mass of the electron, respec-
tively. As a consequence of assuming a scalar
pressure term, Landau damping in the plasma is
neglected. The linearized equation of continuity,
combined with the equation of state, leads readily to

=

wWmneV - v=—1wp, (2)

where w is the velocity of sound in the electron gas.
Maxwell’s equations for the plasma in the absence
of sources are given by

e e (3)

and

= - -
VX H=1ewll+ngev, (4)
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where w, and ¢ are the permeability and dielectric
constant of free space, respectively.

In the problem considered in this paper, there are
two distinct regions separated by a plane interface at
z=0. The plasma region occupies the upper half
space z >0, while a dielectric of electrical constants
uo and e; occupies the lower half space 2<0. Follow-
ing the assumption of earlier workers [Cohen, 1962;
Hessel et al., 1962; Fedorchenko, 1962], the boundary

=
condition on the electron velocity » is that its normal
component be zero at the interface z=0. The ques-
tion whether an actual interface between a dielectric
and plasma is totally effective in this regard is not
answered here. However, the reader is referred to an
illuminating discussion of this point by Cohen [1962].
Very recently the same boundary condition has been
used by Yildiz [1963], who treated the oscillations of
an isotropic compressible plasma sphere.

To simplify the problem, the obliquely incident
wave from the lower half space propagates transverse
to the magnetic field. In other words, the wave
normal is contained in the (z, 2) plane and makes an
angle 6 with the negative z-axis. Without losing
further generality, it is necessary to consider two
distinet cases. The first and most interesting situa-
tion is when the magnetic field of the incident wave is

=
parallel to the interface. In other words, /¥ of the

incident wave hasonly a y component H;”. There- |
fore, we choose it to be of the form
Hﬂ(/i):H(Je‘uozevi)\r, (5)

where w,=1(esu0)"?w cos 6 and A= (eup)/?*w sin 6.
For the problem as defined, it is found that the
necessary equations and the boundary conditions are
satisfied if the reflected wave also has only a y
component [1{”. In fact, we may write

H{ =R, Hoe*t"e=, (6)

where, by definition, I, is the reflection coefficient.
The total magnetic field H, in the region 2< 0 may
be written

Hl/:HO[e_ikCZ—i_]{[[@ikcz]e—iksry (7)

where C=cos 6, S=sin 6, and k= (e;ug)'/? wis the wave
number in the dielectric region. The electric field
components in the dielectric are obtained from

Maxwell’s equations. Thus,
1 0oH,
Ezﬁ’iedw ox 8)
and
> il @
Erﬁ_iedw Qz ’ ©)

for the region z< 0. The normal wave impedance
Z, at the interface, is defined by

_ /Limit\ E,
Z_(z%())m (10)

On combining (7) and (9), it is seen that

1—R
Z—i(6 —‘i],
”C[HR”

(11)
where n:k/(edw)_: (mo/e)'? 1s the characteristic im-
pedance of the dielectric. Conversely, the reflection
coeflicient may be expressed conveniently in terms
of the normal surface impedance via the relation

- O—Z

R”*nO‘—i—Z' (12)

It is apparent from the above development that the
problem boils down to finding an expression for the
surface impedance of the compressible magneto-
plasma at the interface z=0. Because of the con-
tinuity of the tangential fields £, and H,, this im-
pedance is simply Z.

The second case alluded to above corresponds to
the situation where the electric field of the incident
wave is parallel to the interface and has only a v
component. As it turns out, this is a rather trivial
case from the electromagnetic viewpoint. Neither
the d-c magnetic field nor the pressure play any role.
Thus, the solution for the reflection coefficient may
be obtained by regarding the half space as a cold
isotropic plasma. This case will not be discussed
any further.

3. Development of Equations for the Plasma

As specified in the preceding section, the magnetic
field need have only a y component 77,. In what
follows, the subscript y on this quantity is dropped.
Furthermore, because of the assumed direction of
incidence 0/0y=0. Consequently, (1) in component
form may be written

(v+1w) mngv,=nye(£,—v,B,)—op/dz, (13)
and

(v +1w)mngv,=nee (£, +0v,B;) —dp/dz. (14)

By simple algebraic manipulation, (13) and (14)
may be rewritten in the form

e (27— 1 op w, Op
) — {— i L oo a4
- gma EI—*—mgza ° gamng dr  ¢mnya o2 {5
ew, e w, Op 1 p
S 2 EA4— S o0
G mg* e +gma +glmn0a or  gammny 2z
(16)

where a=1-+ (w./g)% where g=v-+1wis a convenient
complex frequency parameter and w,=—eBj/m is
the (angular) gyrofrequency for electrons.

>
Maxwell’s curl A equation in component form is

MQE_?:GoCOEx‘i_ Noey,

oz L)

1188



and
oH

3 as)

=1 ewl,+nye0,.

This pair may be used in conjunction with (15) and

(16) to eliminate %, and £,. Thus,
S 1€, OI[ 1€yw %]
T mgPweKal 0r  mge 0z
< +%wg ’_blf_i_leow op ;' (19)
T miwgeKa | nge 0L
and
S 16w, OH | iew OpT]
7 mgPweKal 0z nge x|
<+“"(’> ?E_i_ff’@?ﬂ s (20)
mzw(/eulxa | 0x  nge 0z
where = (nye*)/(em) is the (angular) plasma fre-
quency,
a=1+(w/g)*, K=Ki—K3
with

2 2
w (OO
Ki=(14+-22 ) and K~
iwga g

and K,=——
wo

Equations (17) and (18), used in conjunction with
(15) and (16), may be utilized to eliminate », and »,.
From this process, we obtain

. K oH_ K, ol K-—Kop iK,op
T T K 0z ewK 01 neeK Ox ' ngeK 0z
(21)
and
K, ol K, o K,—Kop iK, op
" iewK 02 ewK 0z  ngeK 0z mneK ox
(22)

It is evident from the above that all quantities of
interest are derivable from the two scalars p and #.
By inserting », and v, as given by (19) and (20), into
(2), we obtain

(o) e
(+5)

0%, o
2—_— o,
i O;L""_i_bc“’

—T'2]p=0, (23)

where
1wak

( +'sz>

In a similar manner, by working with (3), (21), and
(22), we arrive at

and I';=

P=iei me V2p=0, (24)
where
P Moeow K
e K1

Equations (23) and (24) are coupled differential
equations for /7 and p. An important special case
is when By=0. Then, because K,=0, these two

equations decouple. Thus,

(V2_7121)1):OJ (25>
where

2:wg

) ( +?wg)
and

(V*—v2)H=0, (26)
where

2 2 wp
Ye— — Mo€ow <] e I
1wy,
These are the governing equations for propagation
in an isotropic compressible plasma when collisions

are accounted for [Wait, 1964 .

Another significant special case is when the
temperature of the plasma is set equal to zero. This
corresponds to I',—>o whence, from (23), the

pressure p vanishes.
to

Equation (24) then simplifies

(V*—TYH)H=0, (27)
where T is defined exactly as in (24). This is the
wave equation for transverse propagation in a cold
anisotropic plasma [Wait, 1962].

The general coupled differential equations given
by (23) and (24), in the case of zero collisions, are
the same as the ones derived by Seshadri [1963] who
treated the radiation from a magnetic line source
embedded in a homogeneous compressible plasma.

4. Solution of the Coupled Equations

To obtain the solution of the coupled equations, it
is assumed that the waves in the plasma vary accord-
ing to the factor exp (—wuz) exp (—i\z) where A=Fk
sin 6, and u is to be determined. Because v? may
be replaced by u?—N\* it follows, from (23) and (24),
that

(UWP—N—T12) (u*—

N—TI2)—8(u*—N?)2=0, (28)

where
-1
o (1) o
gK, 1w(
When the gyrofrequency approaches zero, the

coupling factor 6 vanishes, and the two solutions are
?=N+T2 and N+T;. In accordance with earlier
work, these may be described as electromagnetic
and acoustic waves, respectively.
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Equation (28) is now conveniently written in the
form

A A
: (u*—N—T%2) (u*—\*—T'3)=0, (29)
where
A
Ii=v+ (*—w)'?,
and
A
I'Z=v— (v*—w)"?
with
r2412 _rere
P=a(1—s) M U1
The sign of the radicals is chosen so that I

approaches I'7 and T, approaches I'; as & tends
uniformly to zero. The solutions of (29) then lead
to two kinds of waves which are described by the
factors

exp (—u,z) exp (—iiz) and exp (—u,z) exp (—ilx),

where

A A

U= (N*4T2)/2 and u,= (N2+T2)'~.

It is appropriate to describe these as quasi-electro-
magnetic and quasi-acoustic waves, respectively.
The radicals in the expression for u, and u, must be
chosen to satisfy radiation conditions as z—w. In
the case of a finite collision frequency », this is
equivalent to assuring that the real parts of u, and
u, are positive.

5. Derivation of the Surface Impedance

General expressions for the magnetic field  and
the pressure p within the plasma may be expressed
in the form

H=[], exp (—u.2)+f, exp (—u,2)] exp (—ilx),
(30)
and

p=[g., exp (—u.2)+g, exp (—u,z)] exp (—iAz),
(31)
where f,, g, f,, and g, are coefficients which do not
depend on the coordinates. By using (24), which is
valid for all z>>0, it follows that

Npe

.(/c:Ac Zo_wfe’ (32)
and
L (33)
where
A
=2 I K,
A — fz Kz nd Az, f2 E
e v

Thus, the pressure is given in terms of £, and £, by

S jA exp (—u.z)+f,A, exp (—u,z)] exp (—ikz).
(34)
Using (20), (30), and (34) and the boundary

wndltlon 2,—0, we obtain

&:_GMMMm—AN—(meI o
J (iwc/g)[u,,—z\,,x]—(wi—“’}g (A—A,u,)

This means that the rigidity condition at the interface
fixes the ratio of the quasi-acoustic wave to the
quasi-electromagnetic wave. In the special case of
a cold plasma (i.e., u=0), A,—~>» and, therefore,
the ratio f,/f, vanishes. Another limiting case is
when the plasma becomes isotropic (i.e., w,=0).
Then, again, A,—>« and f,/f, become Vamshlncﬂy
small, Howev er, in this case, a more meaningful
ratio is g,/f,, which approaches the finite value
ngeN(ewi,) in accordance with the required be-
ha\'i(])r for an isotropic compressible plasma [Wait,
1964 ].

Using (21), (30), and (34), the following expression
is obtained for the tangential electric field at the
interface:

1 KI’U Kg?)\ KI K

EI]FO:eTw K ‘+ K - AN— mte:lf
1 [Ku, Ky Kl 2\ -
Tl SR T KT ’“F“”W”]f”'
(36)
According to (10), it is noted that
Ez]z=0:Z[Iy]z=0:Z(fe+fp)- (37)

Therefore, on equating (36) and (37), we arrive at
the rather cumbersome expression for the surface
impedance.

T
(ix-

fp Kluzl KZApup ) «
+f—e[K2— ! +(K1—K)A,,——)\—:|f: (38)

where f,/f. is given explicitly by (35).

As a partial check on the correctness of (38), we
consider the case of a cold anisotropic plasma (i.e.,
u=0). Then, since f,/f—0 and A,—0, it imme-
diately follows that Z—Z, where

K,
2| (16—

K)Ae—KZA”“e:I

A\

Zc:;(J:—K (Koh—Kju,) with u,=(N\>+T2)3,
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which is in agreement with a result derived originally
by Barber and Crombie [1959]. Another special

case 1s a warm isotropic plasma (i.e., w,=—0). Then,
A A
0=0, I',—TI, I',—T, K,—0, and K/K;—[1+ w3/

(1wg)]|=¢€/e; where e is the dielectric constant of tflm
isotropic plasma. In this limiting case, (f,/f.)—
and A,—e but in such a way that (A ,)j,,/f()%)\/up
As a result of these considerations, Z—Z; where

2

Twe
— 39
ew Uy, (W (59
where
=N+ and u,=(N\+73)%,
with
N iwg L 1€}
Vo < +7wj> ’Lw '
and
P 9 (.1)2 9
Vo= —€otow” <1+'~i = — epow”.
iwg

The above result for Z; is in agreement with an
independent derivation for an isotropic warm plasma
[Wait, 1964]. It is immediately evident that the
bracketed term in (39) may be replaced by unity
if u/e< <1, which is the condition for the validity
of the cold plasma assumption.

6. Concluding Remarks

An explicit expression for the reflection coeflicient
for a compressible magnetoplasma has been given in
this paper. It is shown that it reduces to the well-

known result for a cold magnetoplasma when the
ratio of the acoustic velocity w is small compared
with the velocity ¢ of electromagnetic waves in free
space. The general expression also reduces to a
previously derived result for reflection from an
isotropic compressible half space of plasma.
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