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The impedance and the radiation field in the surrounding hot plasma are calculated for
an electrically short antenna that consists of twe spherical conductors excited through thin

wires in phase opposition.
pressure.

In the calculation the pressure tensor is replaced by a scalar
A discontinuous model of the ion sheath is used.

The losses due to the radiation of electromagnetic and electrostatic waves are calculated

and are expressed in terms of equivalent series resistances.
It is shown that their resonant frequency is well below the electron
plasma frequency if the probe radius is much larger than the Debye length.

probes is discussed.

The operation of resonance

The significance

of this result to both past and future ionospheric rocket probe experiments is pointed out.
The limitations of the present treatment are discussed.

1. Introduction

Antenna impedance measurements in the iono-
sphere during rocket flights show the presence of a
much larger resistive component [Whale, 1963] than
is predicted by the type of antenna theory in which
the surrounding plasma is treated as cold. In
principle the interaction of an antenna with a hot
and very tenuous plasma should be treated by solving
a combination of the collisionless Boltzmann equa-
tion with Maxwell’s equations. The mathematical
difficulties of solving these equations and satisfying
the appropriate boundary conditions are, however,
formidable, and therefore the problem is considerably
simplified in this paper by the use of certain approxi-
mations. The first of these is the use of a scalar
pressure [Spitzer, 1962, p. 24] and the resulting
neglect of Landau damping [Landau, 1946]. The
problem is further simplified by the rather crude
additional assumption that the plasma surrounding
the antenna is sharply bounded and that outside
the boundary the plasma is uniform. The effects
of the earth’s magnetic field and dissipative effects
are neglected. KFor other applications of the same
type of approximations the reader is referred to
papers by Gould [1959], Fejer [1964], and Nickel,
Parker, and Gould [1963].

These approximations are applied here to a simple
dipole antenna that consists of two spheres excited
in phase opposition through wires whose capacity is
neglected. Two types of waves can be excited by
such a dipole antenna in the uniform plasma: elec-
tromagnetic waves and acoustic-type, longitudinal
electrostatic waves. The distance between the
centers of the two spheres is assumed to be much
shorter than the wavelength of electromagnetic
waves but much longer than the wavelength of elec-

1 Presented at the Conference on Nonlinear Processes in the Tonosphere, Dec.
16, 17, 1963, Boulder, Colo.

trostatic waves and than the diameter of the spheres.
The term “electrostatic waves” is used in this paper
to describe the plasma oscillations discussed by
Tonks and Langmuir [1929] and further analyzed
by Landau [1946].

The present analysis and its conclusions differ
from those of Whale [1963], who also considered
the excitation of electrostatic waves by introducing
the concept of an isotropic pressure. Whale assumed
the existence of interaction between the fluctuating
quasi-electrostatic field (the near field of the electro-
magnetic waves) and the electrostatic waves through-
out the uniform plasma. In the present treatment
the only interaction is taken to occur at the inner
boundary (in reality in the sheath). Within the
uniform plasma, in the absence of a magnetic field,
the electrostatic wave and the electromagnetic wave
(or in the present limit the quasi-electrostatic field)
propagate independently and therefore cannot inter-
act in terms of the hydrodynamic approximation.

Since the completion of the present work a number
of closely related papers [Cohen, 1961 ; Cohen, 1962a;
Cohen, 1962b; Hessel and Shmoys, 1962; Chen,
1963; Harp, 1963; Pavkovich, 1964; Wait, 1964]
came to the author’s attention. Of these the work
of Cohen, Hessel, and Shmoys, and Chen are re-
stricted to the calculation of the electromagnetic
and electrostatic wave fields of point or line current
sources in hot uniform plasmas. Wait considers a
finite slotted-sphere antenna immersed in a hot
plasma and his work is more closely related to the
present one. Pavkovich, in contrast to all other
workers, does not restrict himself to the concept of
an isotropic pressure and gives numerical results of a
calculation based on the collisionless Boltzmann
equation, for the radiofrequency properties of a one
dimensional plasma sheath. His results were modi-
fied approximately for spherical geometry by Harp.
This modification is closely related to the present
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work and reaches similar conclusions about the
theory of the resonant probe used by Miyazaki et
al. [1960]. The relationship between the present
work and the work of others will be further clarified
in the body of the paper.

2. Excitation of Electrostatic Waves

The antenna described in the introduction radiates
both electrostatic and electromagnetic waves. In
the present section only one of the two spheres of
the antenna will be considered at first and the near
field of the electromagnetic wave field will be approxi-
mated by the quasi-electrostatic field calculated
from Poisson’s equation. The impedance of the
whole antenna, excluding the electromagnetic radia-
tion resistance, is then simply taken to be equal to
twice the impedance of a single sphere.

The quasi-electrostatic field calculated in this sec-
tion for a distance large compared to the distance
between the spheres but small compared to the
electromagnetic wavelength will be extrapolated in
the following section to much greater distances. In
this manner the field of the electromagnetic wave and
the electromagnetic radiation resistance of the an-
tenna, neglected in this section, are calculated in the
following section.

Let R be the radius of one of the spheres and » the
distance of an arbitrary point from the center of the
sphere. It is assumed that the unperturbed electron
concentration vanishes for r< R, and has the con-
stant value N for »>>R. This is admittedly a rather
artificial model of the unperturbed ion sheath. It
effectively assumes an abrupt potential barrier (this
could be visualized as a hypothetical double layer
formed from infinitely heavy positive and negative
ions) at =R which prevents the penetration of
electrons inside the sphere at r=1/2. It is clear that
the radial component of the mean electron velocity
must vanish at »=FR. Immediately inside the sheath
there is assumed to be a spherical conductor whose
(quasi-electrostatic) perturbation potential is taken
to be a harmonic function of the time. (In principle
the radius of the conductor could be taken as smaller
than the radius of the spherical plasma-free cavity
without essentially modifying the analysis; this will
not be done here.) Since there is no mean radial
motion of the electrons at »=R, there is no fluctuat-
ing charged surface layer there and therefore both
the perturbation potential V" and its normal deriva-
tive must be continuous at »=/FR. Inside the plasma
the equation

mNOv/ot=NevV —vKTwvn (1)

is taken to be valid where m is the mass, ¢ is the
absolute value of the charge, N is the unperturbed
number density and n is the perturbation in the
number density of electrons (factors e’*’ are taken
for granted in 7 and in V), K is Boltzmann’s con-
stant, 7"1s the temperature, and where the ratio v of
the specific heats is taken as 3 [Spitzer, 1962].
A combination of the divergence of (1) with the

equation of continuity (satisfied by the velocity v of
the electron gas)

V- (Nv)=—0on/ot (2)
leads to
on Ne_,, vyKT_,

A combination of (3) and Poisson’s equation in
spherical coordinates and with spherical symmetry,

A’V 29V e
2 e e e
vV= or? +r or 6071, (4)
leads to
o' 2n
Vzn.zw +;$=a2n (5)

where o= (wy?— o) /u?, wy=(e2N]e;m)? is the elec-
tron plasma frequency and w=(K7T/m)"? is the
velocity of electrostatic waves in the high frequency
limit (0> >wy).

The general solution, which vanishes at infinity,
of the differential equations (4) and (5) has the form

_01 —ar
n=-—-¢ (6)
_e G :
V7€0a2 n+ 7 <()

where that part of the solution which is associated
with the constant ), describes the electrostatic
wave, whereas the part associated with €, describes
a quasi-electrostatic field which is a good approxima-
tion to the electromagnetic wave field within dis-
tances very much shorter than a wavelength from
the antenna.

The boundary condition »=0 at r=1R yields with
the aid of (1)

oV _ [euron
<wN2 $>T=R¥<: 5;>7=R' (8)

Substitution of n and V from (6) and (7) into (8)
leads to the relation

O ? Uw?
e
€g Wy (wN w )

Substitution of O from (9) into (6) and (7) leads to
the following relationship between the perturbation

in the number density and the perturbation potential
V at r=R:

(1+aR)eEC,. (9)

n(R) €y’ (1_ Ro? _1'
V(R) eu? u(wNZ—w2)1/2>

Similarly, the effective, complex capacity of the
conductor, defined here as the ratio of the charge
on the conductor to the potential V(R) is given by

_47TR26()®V/37”)T=R
V(R)

(10)

Oef[:

1+Ru—l<wN2_w2) 1/2

1—Rou™ (wy?—w?) =172

=A47e R

(11)
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Equations (6), (7), (9), (10), and (11) represent
the main results of this paper, and a discussion of
their significance follows here.

Equation (11) may also be used to calculate the
impedance Zg;;—2 (1wCy) ' of the antenna consisting
of both spheres. The energy loss due to the radia-
tion of electromagnetic waves has not as yet been
included in the analysis; this will be done in a sub-
sequent part of the present paper. The resistive
part of the impedance Z,;; represents only the energy
loss due to the “radiation’ of electrostatic waves.

It is convenient to express the impedance Z.; as
a function of the parameters Y=2@re,Rw)™" (twice
the free space reactance of a sphere of radius R),
0=Ru'wy (the ratio of the radius R to v"? times the
Debye length), and y=w/wy (the ratio of the fre-

quency to the electron plasma frequency). The
result is
s 12(1 2\ —1/2
Z(-,fr:-”fl Bl 1[/) (]2)

1+5(1—*l//2)1/2

It 1s clear from (12) that Z. is purely imaginary
for <1 or w<wy. The absence of a loss term is
explained in this case by the absence of propagating
electrostatic waves and the neglect of Landau damp-
ing. It may be seen from (12) that the impedance
becomes infinitely high at the plasma frequency and
vanishes at the frequency where 1—6y?(1—y?) ~1/2=0.
More will be said about the significance of this
frequency later. At very low frequencies, Z.;
=—12Y (1+406)"!, and thus the impedance is smaller than
the free space impedance by a factor (146)~*. It is
understandable that the effective capacity of the
sphere is larger at low frequencies than the free
space capacity because the alternating electric field
does not extend to infinity, but is confined to within
the plasma sheath, which in the case of large 6§ is
much smaller than the radius. Figure 1 shows, for
Y<1, the ratio of the imaginary part of Z, (the real
part is zero for < 1) to the magnitude Y of the free
space reactance as a function of the ratio ¢=w/wy of
the frequency to the electron plasma frequency for
different values of the ratio § of the radius to 4'?
Debye lengths. The curve for 6=« represents the
well-known cold plasma approximation in which
thermal motions are neglected and the plasma is
treated as a dielectric with an effective dielectric
constant e (1 —wy?/w?).

For ¢ >1 1t is convenient to write (12) in the form

Yo*—1)~'2 . Y146

A o) TR =)

(13)

Figure 1 also shows the real and the imaginary parts
of Zege for ¢ >1 (in units of Y) as functions of ¢, for
different values of 6. The case of 6= o again rep-
resents the approximation in which thermal motions
are neglected. The curves of figure 1 show the
presence of a resistive component of the impedance
for finite values of 6. The resistive, ohmical com-
ponent represents the energy loss caused by the
radiation of electrostatic waves.

Im (Zeg/Y)

T

J]
I
=00, IR
5;5/ | e
/ 8: . \5\:\5\\‘”
= |
— i

= -Re (Zeg¢/Y)

|
| B ——
e

—q=

Frcure 1.  The ratios of the real (interrupted line) and imagi-
nary (solid line) parts of the impedance to the magnitude of
the free space reactance as functions of the ratio, ¥, of the
radio frequency to the electron plasma frequency.

3. Radiation of Electromagnetic Waves by
Two Spherical Conductors Excited in
Antiphase

The analysis of this paper can be extended to in-
clude radiation losses due to electromagnetic waves.
The analysis of electromagnetic radiation by spheres
oscillating in antiphase is, of course, somewhat artifi-
cial because in practice antennas resemble cylindrical
conductors. The analysis of spheres oscillating in
antiphase has, however, the advantage of simplicity
and it illustrates the nature of the problem rather
well. It would be relatively simple to extend the
present analysis to cylindrical conductors, at least in
an approximate manner. An exact formal solution
for a slotted sphere antenna has been given by Wait
[1964].

Since the distance D between the two spheres is
taken to be much smaller than the electromagnetic
wavelength (and at the same time R<<D), the
quasi-electrostatic field at a distance »>">D on the
line connecting the spheres is 2C,D/rs, where C./r is
that part of the potential given by (7) which could
be regarded as an approximation to the radiation
field of a spherical radiator at distances much smaller
than the electromagnetic wavelength. At distances
much longer than a wavelength and in the plane
that perpendicularly bisects the line connecting the
two spheres, the magnitude /£ of the radiation electric
field of the dipole antenna is then given by

E=C.Dk*lr= (C.D[r)[ (w®— wx?) [c¥]. (14)

The magnitude / of the radiation magnetic field

is given by
H=(e,C2D/r)[ (o*—wy?2)*"*/ew] (15)

where £ is the wave number and ¢ is the velocity of
electromagnetic waves in vacuum. Equations (14)
and (15) were derived by fitting the quasi-electro-
static dipole field to the radiation field of a dipole
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[Stratton, 1941] in a medium with a dielectric con-
stant e (1—wy2/w?). KEquations (6), (7), and (9) can
then be used to express C, in terms of V(R), the
alternating potential of one of the spheres, or in
terms of the current supplied to the spherical con-
ductors [=1wC.;V (R) where C. is given by (11).
The Poynting vector EXH may then be expressed
in terms of I, and the total radiated power P may
be found by integration over a very large sphere.
The result is

P=(6mey) "1D*we*(w?—wy2) ' 21? (16)
and therefore the resistive component of the antenna
impedance (the radiation resistance) due to the
radiation of electromagnetic waves is

pon= (6mey) T DPwe™® (' —wy?) ' 2. (17)
The resistive component due to electrostatic waves
is given by (13) as

2 1\—-1/2
pes=Y 6—@7‘1}‘—" (18)
146%(¢y*—1)
Equations (17) and (18) show that p,, is zero at the
electron plasma frequency and increases rapidly
with frequency whereas p,, is infinitely high at the
plasma frequency and decreases rapidly with fre-
quency.

It is interesting to note that the expression (17)
for p,, is the same as the expression for the radiation
resistance of a short antenna of length D (whose
capacity is entirely at its extremities) situated in a
medium with a dielectric constant e,(1—wy2/w?).
This is a significant result in view of the fact that
in the calculation of the series reactive part of the
antenna impedance the plasma cannot be replaced
by a medium with a dielectric constant e (1 —wy?/w?).

It is interesting to compare the ratio p../p.s
resulting from (17) and (18) with (73) of Wait for
the corresponding ratio of the power P, radiated in
the form of electrostatic waves to the power P,
radiated in the form of electromagnetic waves by
a slotted sphere antenna. Since Wait’s equation
(73) presupposes k,a>>1 in Wait’s notation, the
corresponding assumption k,R>">1 permits the
neglect of unity in comparison with 6*(¢*—1) in the
denominator on the right of the present equation

(18). KEquations (17) and (18) of this paper then
result in the equation:

Pes__gont ¥ |

a_ h? CDZRleZ <19)

where Wait’s definition of k, is used. The factor
2¢~* in Wait’s equation (73) has been replaced by a
factor 3D2R~? in (19) but otherwise the two equa-
tions are identical. The similarity of the present
result to that of Wait has thus been demonstrated
for the special case k,R>">1.

4. Application to Resonance Probes

The results of the previous section may be used to
draw some tentative but very important conclusions
about the behavior of resonance probes [Miyazaki
et al., 1960]. In such probes the change, caused by
the application of a radiofrequency voltage in the
direct current collected by a Langmuir probe, is
measured as a function of the radiofrequency. It
has usually been accepted [Miyazaki et al., 1960] as
an experimental fact that the change in the collected
current shows a resonant increase at the plasma
frequency.

In this section the point of view is taken that the
change in the collected direct current is due to
rectification caused by the nonlinear characteristic
of the Langmuir probe. The amplitude of the radio-
frequency variations in the collected current will be
proportional to the fluctuations n () in the number
density (in a more accurate treatment the fluctuation
in temperature would also have to be taken into
account but these would in any case be proportional
to the fluctuations in number density) and therefore
(10) should roughly describe the characteristics of
a resonance probe. Using the parameters 6 and ¢,
(10) may be written in the form

Equation (20) shows that n(R) becomes infinitely
large at the frequency for which

n(R)=V (R) i;%‘ (1 (20)

Y= {27167 — 14 (1+48*) 2]} /2 (21)

This shows that resonance occurs near the electron
plasma frequency (¢y~1) only when 6<<1; for
large values of 6 the resonance occurs well below the
plasma frequency. Figure 2 shows (eu?/wy2e)|n(R)/
V(R)| as a function of ¢ for two values of & and
illustrates that resonance occurs well below the

[

)In(R)/V(R)I

EO

P T
(eu¥awy

ob——

Ficure 2. The dimensionless quantity (eu?/wn®,) [n(R)/
V(R)|, which is proportional to the number density fluctua-
tions, n(R), produced by an rf voltage of given amplitude V(R),
as a function of the ratio, ¥, of the radio frequency to the
electron plasma frequency.
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plasma frequency when the probe radius is much
larger than the Debye length. The resonant fre-
quency given by (21) is the same as the previously
discussed frequency where the impedance of the
probe vanishes.

The present analysis clearly leads to the conclusion
that the resonant response of the probe does not
occur at the plasma frequency, as laboratory and
space experiments are claimed to show, but always
below the plasma frequency. Large errors could
thus occur in rocket investigations of electron con-
centration in which the resonant frequency was
identified with the plasma frequency, especially with
probes whose radii were much larger than the Debye
length. Fortunately a relatively small sphere (R=
1 em) was used in the ionospheric experiments [Aono
et al., 1962] reported so far.

A discussion of the physical nature of this resonance
sheds some light on the reasons for the occurrence
of the resonance well below the plasma frequency.
It is clear from (7) that the electric field of the probe
consists of two parts. One is simply a quasi-
electrostatic field, which at short distances is the
approximate form of the radiation field for fre-
quencies above the plasma frequency whereas the
other is the field associated with an electrostatic
wave which is evanescent at frequencies below the
plasma frequency.

At very low frequencies the quasi-electrostatic
field becomes very small compared to the field of the
evanescent electrostatic wave. This means that
the alternating charge on the conducting sphere is
almost perfectly shielded by a suitable (continuous)
modification of the sheath. As the frequency is
increased, the shielding becomes less perfect and
a potential (/7 appears outside the sheath. The
present theory shows that the outside field opposes in
phase the field within the sheath. With increasing
frequency a situation is reached eventually where the
potential drop outside the sheath just balances the
potential drop inside so that no exciting voltage is
required on the conductor and resonant oscillations
oceur.

This explanation of the resonance is strongly
supported by the full agreement, in one special case,
of the present approximate calculation with Landau’s
[1946] more accurate analysis utilizing the collision-
less Boltzmann equation. Landau considered the
penetration of an alternating electric field, that is
normal to a plane boundary, from empty space on
the one side of the boundary into a uniform plasma
on the other side. He showed that at frequencies
slightly below the plasma frequency the field asymp-
totically approaches a value which 1s equal to
(1—wy2/w?) ! times its value at the boundary.
The field deep inside the plasma is thus out of phase
with the field at the boundary. Kquations (6), (7),
and (9) of the present paper lead to the same asymp-
totic value if 72 and »—2 both approach infinity and
at the same time satisfy the inequality 22> > »—R.
Landau also showed that the asymptotic value is
approached according to a simple exponential law
expressed by his equation (45). HKssentially the

same exponential law with the same exponent (- « 7
in equation 6) results from (6), (7), and (9) of this
paper.

The above conclusions about the behavior of the
resonance probe described by Miyazaki et al.
[1960] are in qualitative agreement with most of the
conclusions of Harp [1963] who used an approximate
modification of results, obtained with the aid of the
collisionless Boltzmann equation by Pavkovich
[1964], to spherical geometry. 'The most important
difference between the present treatment and that of
Harp [1963] and Pavkovich [1964] is the neclect of
Landau damping by the present treatment; this
damping appears to reduce the resonance effect
drastically for probes whose radius is smaller than
about twice the Debye length [Harp, 1963].

5. Conclusions

The simple analysis of this paper leads to certain
interesting and significant results about the behavior
of antennas in plasmas and about the interpretation
of observations with the aid of resonance probes in
plasmas. 1t is shown that resonance does not take
place at the plasma frequency and that previous
measurements made by the resonant probe method
may have to be reinterpreted. In priaciple both
the electron concentration and the electron tem-
perature could be determined by simultaneous
measurements of the resonant frequencies of two
resonance probes of different size. Alternatively the
impedance of a single probe could be measured at
two different frequencies. A theory that is more
accurate than that of the present paper or than
other presently available theories, would, however,
be required for the accurate interpretation of such
measurements.
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H. B. Liemohn, and W. B. Hanson and of corre-
spondence with Professor Gordon S. Kino 1s acknowl-
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