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With the purpose of increasing the information about the lower frequency shielding
effectiveness of closed structures composed of various arbitrary materials, an idealized
problem is considered of the scattering and absorption of a plane electromagnetic wave
impinging on a spherical shell.  The region between the outer and inner radius of the sphere
contains an arbitrary material; the other two regions are free space. The absorption and
scattering coefficients for the incident plane wave are expressed as an infinite sum of spherical
waves, using spherical Bessel functions. The coefficients are caleulated numerically and
shown for a large range of complex material parameters and frequencies from 100 ke/s to
1000 Me/s.  Equations were programmed in FORTRAN, and numerical calculations ac-
complished on the IBM 1620 computer. Combinations of complex material properties of
permeability, permittivity, and conductivity were sought which gave large, broadband
absorption coefficients. Several promising compositions have resulted, and are presented.
The effects of varying the individual parameters are also discussed.

1. Introduction

In order to utilize a mathematically complete and general solution to the boundary value
problem, the symmetrical configuration of a spherical shell has been used to approximate the
closed walls of the normally cubical or rectangular shielded enclosure. The behavior of the
immpinging plane wave electromagnetic field external to the spherical structure is considered.
In order to completely describe the perturbing effect of the spherical shell, knowledge of the
field outside, inside, and within the shell material is necessary. This investigation has been
primarily directed toward a systematic exploratory search for wall (or shell, in this case)
materials that will give uniform absorption of plane EM waves in the broad spectrum between
0.1 and 1000 Me/s.

The assumptions made in this investigation are:

1. The spherical structure is isolated in space,

2. the wave incident on the surface of the outer sphere is a plane wave,

3. the shell material is homogeneous and isotropic,

4. the shell is composed of an arbitrary material with complex properties of u*, €*, and o.
The inner sphere and the exterior region is free space.
The geometry of the spherical configuration is shown in figure 1. For this case, the equations
describing the absorption (C,) and scattering (C) coefficients have been derived (appendix
A). The Mie scattering equations [Stratton, 1941] expanded to two concentric spheres by
Salati [1962], are essentially those used in this paper. We have found that it is possible to
extend the equations to cover three concentric spheres but only the two sphere solution is
presented here. A general solution for any number of concentric spheres has been given by
Wait [1962 and 1964].

The shell material parameters have been systematically varied over a wide range of values.
Ranges of values of parameters were selected generally on the basis of known conductors or
nonconductors. The case of high conductors yields considerable simplification of the € and
C, equations and has been treated separately. The dimensional properties of the spherical
shell structure have, in most cases, been selected to approximate the dimensions of actual
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Ficure 1.  Diagram of spherical configuration.
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shielded enclosures. The majority of data was computed on the basis of a, (outer radius)=5
m (16.4 ft) and a shell thickness (a;—a,)=0.15 m (5.9 in.). In many cases data were taken at
different radii to show the variation in C, and ;. The effect of shell thickness variation was
also considered.

Approximately 150 separate combinations of material parameters or dimensional variatigns
were computed.  Only a summary of the materials that gave large absolute values of absorption
coefficients and broadband absorption is given here.

2. Absorption and Scattering Coefficients for the Case of Arbitrary Materials

The absorption coefficient, (,, is the ratio of the absolute absorption cross section to the
geometrical cross section. It is also the ratio of the total power absorbed to the power of the
incident wave crossing an area equal to the geometric cross section. Similar definitions hold
for the scattering coefficient, C..

According to (A15) and (A16) in the appendix, the scattering and absorption coefficients
may be expressed in terms of the external field coeflicients, a; and b], as

a:% > @n-+1) (a1

n=1

(S

2 = . 19 | 5
Ci=—= >, @n+41)(la;|*+|b5>+Re az+Re b1).
2 n=1
The field coefficients may be expressed in terms of first and second spherical Hankel func-
tions, " and £ and spherical Bessel functions of the first kind, j,. The two external coeffici-
ents have identical form except for the interchange of the relative admittance of the material

g ——

(g:\KJK;) and the relative impedance (Z:—g——\K,,,KC). Writing only one of these

coefficients, we have from (A7)

,: {13 (p0)[ge,” (p1) =¥, (&) I (po)[geus? (p2) — ¥ (&2) ] :I
_dn&) L= (p)[gas? (o) —va(&) 1Ry (po) [ gy (p2) =¥ (£2)]} 1. ()
h? (&) |: {hl(al)(pl)[ga;})(pl)_‘)’?L(El)]h’r(IZ)(pz)[ga;f)(pZ)_Bn(EZ)]:I '
—h:? (p0)[ges? (pr) =7 (&) J° (p2)[gee's) (o) — 0, (£2) ]}

W=
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where

&=k, Ez—ltoanv p=ka,, 2:/f(1'7 (A':ko \/KmKe)
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The material is characterized by complex permeability and permittivity,
e*=¢y(K,—iK,)=¢K,
w¥=po (K —iK,) =poKn

where
K, =K, loss tangent for dielectrics
M (’20'
0%
K/'="— for conductors.
w

3. Dielectric Material

In general, high dielectric materials will give absorption curves with values that are much
less than unity and have severe fluctuations in magnitude over the frequency range. For high
dielectric materials small changes in thickness or in the radius of the shell structure will cause
drastic changes in the shape of the absorption curves. This effect is illustrated for a change
in radius in figures 2 and 3, where a dielectric constant of 100 has been used. The radius of
the spheres has been changed by a factor of two. The scattering coefficient for the same material
is shown in figure 4. The numbers shown in parentheses are (K, K.") (K,, K.), respectively.

m

4. Magnetic Material

The magnetic properties have been investigated on the basis of variation of the permeability
(K,,) between 1 and 100 (see fig. 5) and a magnetic loss factor (K) between 0.1 and 100 (see fig.
6). The above data is based on a dielectric loss factor (K.") of 100 and dielectric constant (K)
of one. Small changes in the general shape of the curves indicate that wide variations in K,
and K, have little effect on the uniformity of C,. Figures 7 and 8 show the effect on ., for
variations of conductivity between 107* and 10* mhos/m and a permeability of 100, using a
loss tangent of one. The most uniform curve for (', occurs at (1,1) (100,100), indicating that a
low conductivity (¢=1 mho/m) is desirable in this combination.

5. High Conductivity Materials

The high conductivity case (¢_>10* mhos/m) occurs whenever the skin depth is an order of
magnitude smaller than the shell thickness, so that the fields are damped before reaching the
inner sphere. For this case the field coefficients are, from (A14),

r_ n(&) e (p ))—77,,(5)

I TRO (5) o (p2)—ZoulEn)
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Ficure 2. Absorption coefficient versus frequency in Mc/s

for material with high dielectric constant (100,0.1) (1,0).
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Ficure 4. Scaltering coefficient versus frequency in Mc/s for

material with high dielectric constant (100,0.1) (1,0).
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for variations between 0.1 and 100 in the magnetic loss factor.
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Using this, the scattering and absorption coefficients were computed for various material
parameters. The resulting data has the following form:

(1) The scattering coefficient is independent of the material parameters and is a function
only of the product Fa, (see fig. 9). For Fa, less than 20 Mc/s-meter, the scattering coefficient
varies as the fourth power of the product Fa,. This is Rayleigh scattering and corresponds to
a wavelength greater than 10 times the radius. For Fa, greater than 50 Mec/s-meter, the
scattering coeflicient is approximately two.

(2) The absorption coeflicient varies as

[E2_| T2 7111/2
(vll:[VKm+I§m +Km] fa(F’; az)

@)
where f,(F, ay) is shown in figure 10 for radii of 1, 5, 10, and 20 m. This factor has only a

slight dependence on the radius and may be approximated by

Ja(Fy az) =y F <1073,
See figure 11 for data on high conduectivity materials (¢=10* to ¢=10°%).
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6. Conductors

The approximations made in the high conductivity case are no longer valid for materials
less than 10,000 mhos/m. For calculation of ), where ¢< 10" mhos/m it has been necessary
to use the general equations describing any material. The results of low conductivities (1.0
to 107* mhos/m) are indicated in figure 12.  The most uniform curve of any material examined
is given by a material conductivity of 0.01 mhos/m.

Variation of the absorption curve for a change in the radius of the sphere has been investi-
cated. The effect is to shift the maxima downward in frequency as the radius is increased.
Figure 13 shows the effect of a radius change from 5 to 20 m for material o of 0.1 mhos/m.
This effect is true for most low to medium conductivity materials.

7. Variation of Material Parameters With Frequency

Generally, the variationin K, K, K,,, K, for most materials is not great over the frequency
range of interest in this study. However, the list of materials [Von Hipple, 1954] indicates
there is a group of materials whose parameters vary rapidly in the range from 0.1 to 1000
Me/s.  The listed parameter values for a ferramic were used to determine (J, as shown in figure
14. Even with the large changes in K, and K,, the curve appears uniform. However, only

the data points shown were available and there may be variations due to a lack of data in the
intermediate ranges.

8. Conclusions

The uniform absorption curves occur for materials whose conduectivity is in the region 0.1
to 0.01 mhos/m. Some magnetic materials also give near-uniform absorption curves. Die-
lectric materials with high dielectric constants and low loss factors are definitely not suitable.
Low dielectric constant and high loss factor materials exhibit the characteristics of uniform
absorption; however, the low conductivity materials make more suitable building materials.

The absorption coefficient should be as independent as possible of variations in the dimen-
sional properties of the structure. The choice of a material will depend not only on
the uniformity of the absorption versus frequency curve, but also the behavior of the absorption
coefficient with changes in radius and shell thickness.

9. Definition of Terms

ayl inner radius

as outer radius

an, bl coefficients of the external field

C, absorption coefficient

C, scattering coefficient

iy magnitude of incident wave

r frequency (Me/s)

Su(F) ay) absorption factor in (2)

T spherical functions defined by (AS)

g relative admittance of material =y K,/K,.
I I first and second spherical Hankel functions
i spherical Bessel function of the first kind
k propagation constant of material

Ieo propagation constant of free space

K, relative permittivity of material

K, relative permeability of material

W, power absorbed (watts)

W, power density of incident wave (watts/m?)
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W, power scattered (watts)

e generalized Bessel function

% relative impedance of material =y K, /K,

@y Yy O dimensionless functions defined by (A4), (A5), (A6)
€ permittivity of free space=1/c*u,

e* complex permittivity

Ko permeability of free space=47 <1077 H/m

w* complex permeability

£ dimensionless variable for free space=*koa,

Py dimensionless variable for material =/%a,

o conductivity of material (mhos/m)

iy unit vectors in spherical polar coordinates, p=1, 2, 3

tan o, tan §,,  electric and magnetic loss tangent, respectively.

10. Appendix A. Derivation of the Mathematical Expressions

Field coefficients.  'The following derivation is an application of the method used by Stratton
[1941, pp. 563-569] to discuss the diffraction of a plane wave by a single sphere. The same
solution may also be obtained by Wait’s [1964] general method when specialized to this con-
figuration. The incident plane wave in this paper has a time dependence (-iwt) instead of
Stratton’s (—iwt). The physl(‘ al configuration is shown in figure 1.

The fields in the three regions may be expressed in terms of the following spherical vector

wave functions, where z=Fkr and z" () is a given spherical Bessel function:

AT 20 I:j: 2(0) cos d)? dP;, sin ¢>A

m 01

sin @ sin ¢ df cos ¢>

- 1 , n P, sin pA P06 A
e it e [ a0

In terms of these vector wave functions and the field coefficients, the fields in the three
regions are:
a. Inner region (free space)

T i o 2n4-1
L o tg( )n(nJrl)

[am é}HW né‘ﬂ, |

T B 2n+1
g Eootor 35 (=i 2L

n(n+1)

1 a .
[brm & —damngil

where

2 =jun  k=ky,

b. Middle region (arbitrary material)

= L& n, 2n-+1 N SN
E=Eye'' 25 (—0)" 70 13y [(@@mPutaPm) +i(bEnd+bPni)]
n= A2 p A

I] \/EOE (,wzz (_ )n .(Jbi}) [(b(z) e(ﬂ’*‘b;(f)mé“fl) (aé”n(”—l—@ﬁf)n 2\)]
n=1
where

2 1 3 2 /
22 =h?, 2 =k, k=l K K

¢. Outer region (free space)

E=Eyetet 35 (—i 22

3 (0" gy [Onébbaim )+ i+ bin ) (A1)
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ﬁ:\/ffE ot 35 (=) 2"“) [(M&+bim®) — i +aimd)] (A2)
0

where
1 - 4) 2 T
Z;L ) = Jns 27(1 ! —hiL ); k_k()

The fields must satisfy the boundary conditions:

BB —E"y=0 X (H —H'") = (A3)

where primes and double primes refer to two adjacent regions.
Denoting ¢, = ko6, and p,,=ka,=E&, VK K, the following relations may be defined:

T o2 (o)1= Pl l? () () (o) =it ) (A4)
_d_ o ]n 1 (gm) 2

dfm [gmjn (Em)] Em]n (Em)'Yn (Em) Yn (EM) (Sm) & (A5)
B > . W2

dfm [Sm (2 (gm)] E”Lh;L : (Em) 0p (E) y On (Em) - ]L;f) ($m> —gn (AG)

The field coefficients, determined by substituting the fields into boundary equations, may
be written in matrix form as:

In(&1) —h? (1) —h? (p) 0 al, 0
JnEva &) —hP () ge’ (p) =k (p)gas? (1) 0 @’ 0
0 hi? (p2) hi? (py) —h? (&) @’ - —Ju(£2)
0 hi? (p2) gas’ (p2) hi (p2)ges? (o) —h? (£)8.(8) 1L @y, — Ju(E)va(E2)

(A7)

Solving for aj, (1) is obtained. The equations involving the 4,’s are identical to those
above except the relative admittance g=+K,/K,, is replaced by the relative impedance 7=
VE./K..

For calculational purposes the following substitutions were found to be useful:

WO (D= [0 (0); M (0= f(8); (48)

Q;zl) (pm) = (l) (pm) l) (pm)"_Z’Yn(gm> f(l) (pm) - ;L“ (pm> [Zﬂln(gm) —‘p’i ’ (Ag)
AL (p2) =1 (02)[ Zova(£2) — Z5,(82)); (A10)

R/ w2 (5) 00 (p2) — ¢~ 52 B0 ()02 (po); (A11)

T=e @ () AL (p)— ¢~ 02D () AP (). (A12)

Then the reflected field coeflicient is given by

7-____.7.n($2) R .
TP (6) THR (A13)
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For Im (py—p;)< < —1, the second terms in (A11) and (A12) are negligible compared to
the first terms and the expression for the field coefficient becomes

7n(g) a“)(p‘z)_Z'Yn(EZ)
@i= > Al4
TP (&) o () — 20, 8 (A
This is referred to as the high conductivity case and for a shell thickness greater than about 1
in. is valid for a conductivity greater than 10* mhos/m.

b DS
k% Mo n

Wo=— Z (2n+1)(la;[*+|6;°+Re a;+Re b;) W.

The power density of the incident wave is

E2~/2 W/mz

Defining the scattering (or absorption) coefficient as the ratio of the power scattered (or
absorbed) to the power density of the incident wave times the geometrical cross section, i.e.,

_ W _ W
W, “raiW,
The dimensionless coefficients become
«\" Z ()"—I_l (](I’n| +Ib | ) (A15)
Ci=—2 37 (2n+1)(laz*+|bi[*+Re az+Re b))- (A16)

Ez n=1

Mathematical functions. The recursion for all spherical Bessel functions, including £, is

gn~1(-l/')_2n—2('r)-

2n—1
2(@)=""

The functions have the initial values

h =% is%g;j_,(s):“’s
(=24 2, o<s>—s‘—“£

A=t fOO=1 fA=i [PE=L.

Scattering and absorption coefficients. The scattering and absorption coefficients can be
expressed in terms of the field coefficients by integrating the radial component of the Poynting
vector over a sphere of radius /2 much larger than the outer radius a,.

Separating the fields in (A1) and (A2) into incident fields, /£; and H;, containing vector
wave functions of superseript 1 and Bessel function ./, and outgoing fields, £, and H,, contain-
ing vector wave functions of superscript 4 and Bessel function #,, the radial component of the
Poynting vector is

S%—YEull s— EsH6)+3(EoH,s— EryHo) +3(EwH,y+ EoH y— EiyH,o— E, , ).
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The total power scattered, Wy, and the total power absorbed, W,, are

W,=—Re ffSiliQ sin 0d0de¢
1 5 ~ .
W’S:—Reff§ (E,H,s— E,sH, ) R* sin 0d0dé.
Using the asymptotic forms for the spherical Bessel functions,
. [ _nm\ o i i
],,(x)er sin (x 2 > h (x)ﬁz e ( 2 >

and the relationships,

P, dP, cost¢ Pl dP.,sin’¢\ . B
.[f(sin 0 df sin® ¢+Sin 0 db cos’e sin 0d0de=0

P, P, cos’¢ dP, dP, sin* ¢\ . _ 2mn(n+1)?
ff(sin Osinfsin®> ¢ df  df cos®¢ sin 6dfdg= 2n+1 for m=n
=0 for m#n

one obtains
2

W,

T 2 S @nct ) (Jag+lbgl2) W.

ks Mo n=1
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