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Radiation from a source immersed in a compressible and lossy electron plasma is
considered. The model is a dielectric-coated conducting sphere which is excited uniformly
by an annular slot. As in part I, it is assumed that the fields in the isotropic plasma are
governed by Maxwell’s equations in combination with (single fluid) continuum theory of
fluid dynamies. Formulas are developed which should be suitable for computing the
admittance of the annular slot.

1. Introduction

In a paper of the same title (but denoted part I), the theory for a slotted-sphere antenna
in a lossless and compressible plasma was considered. In this paper (denoted part II), the
surrounding plasma medium is allowed to have losses in the form of collisions between
electrons and the heavy particles. However, the (electron) acoustic waves are again assumed
to propagate with a velocity » without attenuation. Another modification of the eatlier
analysis is to allow for the existence of a dielectric coating surrounding the slotted sphere.
As an idealization of what may be expected in nature, the sheath is regarded as a lossless
dielectric coating which is perfectly rigid for the (electron) acoustic waves. While such
a model is highly idealized, it does permit an analysis to be carried out in a relatively tractable
manner. Furthermore, by preventing the lossy material (i.e., the plasma) from being in
direct contact with the sphere, a meaningful power calculation may be carried out. Also,
the presence of the coating allows one to say something about how the susceptance of the
slotted sphere is modified by the presence of the plasma.

2. Formulation
As in part I, the isotropic plasma is regarded as a one-component electron fluid. The
average number density ol the electrons is denoted n,, the pressure deviation from the mean

Y =
is », the electric field is £, and the magnetic field is /1. The collisions between the electrons
1+ A to)
and the heavy particles are assumed to be accounted for by an energv-independent collision
. J o
frequency ».
The linearized equation of motion is now given by
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ANNULA

DIELECTRIC

Fiaure 1. Slotted-sphere antenna, with a dielectric sheath,
immersed in a compressible plasma.

where ¢ and m are the charge and mass of the electrons. The usual linearized equation of
continuity, combined with the equation of state, is

WMNGY » V= —~— (2)

where, as mentioned, u is the velocity of sound in the electron gas.

The geometrical configuration is shown in figure 1 with respect to a spherical coordinate
system (7, 0, z). Theslotted sphereis bounded by the surface »=a and it is perfectly conducting
except for a narrow annular slot at §=6,. The sphere is encased by a rigid dielectric covering
whose outer surface is at »==5b. The dielectric constant of this sheath is ¢; and the permeability
is ug, which is taken to be the same as free space.

The homogeneous compressible plasma region is taken to occupy the space exterior to the
surface »=b. The equations in motion in spherical coordinates are now written

(u+iw)mnov,=n0eE,—g£; 3)
and
. 10
(v+10) mngre=nye Eo—; a—g; (4)

where, because of symmetry, v,, £, and 0p/d¢ are all zero. The corresponding form of the
continuity equation is given by
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On combining (3) and (4) with Maxwell’s equations, one is led readily to the set
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In the above, eis the (complex) dielectric constant of the plasma, ¢ is the dielectric constant of
free space, and w, is the (angular) electron plasma frequency.

Following the procedures in the earlier papers [Wait, 1964a and 1964b], it is not difficult
to show that within the compressible plasma medium

Of 0 1
7 Y ()IL,,)%‘& Sin 006 (Sln 0[[,,,):] yer’H =0, (10)
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o (,0p\, 1 o ()1> S
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where
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The radicals in the above expressions are chosen so that the real parts of v, and v, are positive.
Appropriate solutions of (10) and (11) are

H—3 o Kjf”’ ) Pl (cos 8), (14)
and
s Kn ('Yp )

p*Z} = (GO (15)

AN o . g
where a, and ¢, are coeflicients, /, is a modified spherical Bessel function defined before [Wait,
1964a and 1964b], and P, is the Legendre polynomial, while ;=0/,/06. For the boundary
condition »,—=0 at 7=>b, it also follows from (9) that

A
@, nmt+me [K,(v.b) V(Vfb) o
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v,b (720)*
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In order to solve the complete boundary value problem, it is desirable to use the expression
for the impedance for mode n at the boundary »=5. This is defined by writing the tangential
fields in the form

(b, 0= ¢, %b)P(cos(?), a7
A=l (v¢b)
and
Eolb, e>:§lcﬂz R, (Vbeb) Pl (cos 8). (18)

An explicit expression for Z, may be found from (6), along with (14), (15), and (16). Thus,

where
o o Rab R, (1)
3, =in(n+1) ST B D) B o x o ) (20)
Rt == 25
and
lore—n KD it 0 )Gl (21)
R, (b

3. Dielectric Region

In the region a<r<b, the acoustic-type wave does not propagate. A suitable representa-
tion for the tangential fields is readily found. Thus,

A A
_< K, (yr) L(vr) | 5o
H¢*”Z=l [An 7 + B, o ]Pn(cos 0), (22)
and
B =3 [ Ko p 1 3’5}’)] Pifcos 0), (23)

where y=1(esu)"?w and n=(e;/uy)'”* and where A, and B, are coefficients yet to be determined.

A A
The functions K,(z) and /,(z) are an independent solution of the differential equation

{7 1
o 1+ o, (24)
and they are defined in terms of cylindrical-type Bessel functions by the relations
A
K,l(Z):(ZZ/T)%Kn+1/2(Z), (25)
and
A
I.(2)=(w2/2)} Tuyra(2). (26)

The conditions imposed on (22) and (23) are that they should be identical to (17) and (18)
at r=>0. Also, at r=a, the tangential electric field is to be specified. Thus, it is convenient to
write

Ex(a, 0)~ " ;1 e Pl (cos 6), 27)
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where, as a result of orthogonality,

__(ra\ @nt1) (T Pl BN (o
e <T’> on(nF1) JO Ey(a, 0)P,(cos 0)(sin 6)d8, (28)
or
o 'z‘ 2n+1 > DI :
o (n) 2n(n+1) VP, (cos 6,) sin 6. (29)

The coefficients may now be found from a straightforward algebraic process, to yield

tn= () el KB ], (30)
Au= e LB) + (Zaf) 1urB) /A, (31)
Bue — eal KU+ (Zofn) Ku(vB) /A, (32)
where
A, =[1,(vb) K, (ya)—1,(va) K,(vy0) 14 (Z,/n)[ 1, (vb) K, (ya) — K, (vb) 1,,(ya)]. (33)

As an immediate check on the results one may let Re (yh)-—> <, whence

A,—e, —A--——l' -and B,—0, (34)
K, (ya)

which corresponds to the situation where the slotted sphere is in an infinite homogeneous
dielectric medium with electric constants e; and . Another limiting case is to let b—a,
whence

A
An: _Zn’l"l and Cn= '—'Ye(n/ﬂy) ()nKn (’le)/Z".

The limiting form of the magnetic field in the plasma is then given by

A
Vi sin 8y & (2n+1) K, (y,r) P,(cos 6,)

27]07' n=1 n('"“” 1 ) Z%/ (7 (L) =G,

Hy=— P (cos 6), (35)

which is identical to (52) in the previous paper [Wait, 1964a] which is part I.

The tangential magnetic field at the interface between the dielectric and the plasma is
conveniently written
Viosin 6, & 2n+1) 1

— P (cos 0,)P;(cos 0), (36)

Hyb, )=——53— 2t ti) L,

A A
which has the required property that A,—K, (ya)/K,(vb) when the plasma medium becomes
a dielectric with electrical constants e; and .

4. Sheath Function A,

The influence of the dielectric sheath is determined mainly by the function A, for the
modes of order n. Therefore, a discussion of this function is in order. The starting point is

the development of the Bessel functions },I(vb) and [%n(vb) as Taylor series about [A,,('ya) and
I%,,('yu), respectively.  Denoting either of these functions by w, it follows that
w(yb) =w(ya) + Aw' (va) + (A?/2)w'’ (ya) 4 (A%/6)w’" (ya) + (A*)24)w? (ya) + . . ., (37)
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where A=vy(b—a). The higher derivatives may be reduced by noting that w(z) satisfies the
differential equation

w()=| 14250 |w(e), (38)
which enables one to write
w7 ()= 142 | (922 ), (39)
and
= {l:l +n(n;1)] L (Zjl) }w(z)—L (Zjl) w’(2). (40)
In general,
w(yh) =R, w(va)+ Q. (va), (41)
and
w’ (vyb) =M, w(ya)+ N ,w' (ya), (42)
where
o _‘: ﬁ,(ﬂ_},"l) n(n—+1) )
B=ltg [ ey [(w)“ I (43)
L oer n(n+1) n(n-+1)
Qa=A+3 _1 (ya)? [ 2 (44)
. n(n+1)7 n(n-+1) n(n+1)\°  6n(nt1) -
M= [ e [P g [+ ) —Taa e @)
- n(n+1)7 A [2n(n+1)
s T e o =
where
A=v(b—a) =1(eapm)*w(b—a). (47)

The expansions in ascending powers of A converge quite well for dielectric sheaths that are
sufficiently thin (e.g., such that [A[<(1). As a result of the above basic definitions,

A A
1 Ritva)— R, (b)) Li(ya) = —R,, (48)
and
A/ AI 2 ’ AI
In(’yb)K"("y(O—K,,(’Yb),[n(’y(l):*AI,,. (49)
Thus,
S _[M”J“é By |[=—M, +m &) A—8,) R, (50)
! " Kb
or, if only terms of the first order in A are retained,
o~ Alan+1)7 .
A2 —A _1+ (va)? Zn. (51)
For further analysis, it is also convenient to note that
A, A A ; A
13(vb) K, (va) — K, (vb) 1 (ya) =N, (52)
and
A A A A
L (vb) K (ya) — Ky (vb) 1 u(va) = Q. (53)
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5. Surface Currents and Input Impedance

The surface density, js, of the currents excited on the surface of the conducting sphere
is numerically equal to I7,(a, 6), which is the tangential magnetic field. An explicit expression
for this quantity is readily found to be

. N e
=Hy(a, )=— > tnr 75 ar Pycos 6;) A/m, (54
W=H@ =20 2 o M+ @R, T %) Al )
where Z, and ¢, are defined by (19) and (29), respectively, while R, @,, N,, and M, are defined
above.
The total input conductance G of the slot may be found from

G:% (27 sin 8,) Re Hy(a, 6y), (55)
0

as indicated in the previous paper [Wait, 1964a] for a similar problem. This quantity is finite
since the dielectric sheath is lossless.

Without specifying the conditions of the field within the slot, it is not possible to calculate
the total susceptance of the slot. However, a useful quantity, which may be calculated, is
the change of the self-impedance AZ which results when the medium external to the surface
r=>b 1s changed from free space to plasma. Thus

= [H (a, 60)—H (a, 6,)), (56)
Vo

where ]?d,(a, 6) has the same form as (54) if Z, is replaced by 7,,, which 1s defined by

A
% K, (vob) -
An:t—"]()*’ 79 ? (")/)

A
Kn, ('Y()b)

where no=(u/e)? and yo=1i(eu)}w. The susceptance change AB is simply the imaginary part
of AZ.

6. Concluding Remarks

The formulas developed in this paper should be useful for computing impedance charac-
teristics of a slotted sphere-type antenna with a dielectric sheath. The parameters of the
problem involve the electrical size of the sphere, thickness and dielectric constant of the coating,
electron density and collision frequency of the plasma, and the effective acoustic or thermal
velocity of the electron fluid. It appears that the dielectric coating reduces the relative
amount of power being transferred into the acoustic wave.

Part 111 of this series will contain extensive numerical data illustrating the rather com-
plicated relations between the various parameters.
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