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R adiat ion from a fini te so urce in a compressible electron plasma is co n ~ ide re d. The 
t heoretical model is a perfec tly condu ctin g sphe re which is exc ited un iforml y by an a nnula r 
slot. The con fi guration is s uch t hat Maxwell's equat ions, whe n co mbined \\'it h a (sin gle­
fluid) co ntinuum t heo ry of fiuid dyn a mics, are se parable. It is shown t hat a portion of 
t he tota l pO\\'c r supp lied by the source is rad iated as a n aco ust ic wave in t he electron flu id. 

1. Introduction 

vVhen an antenn a is placed in a ll ioniz ed medium such as the upper atmosphere, energy 
may be coupled in to acoustic-type waves. A theory wmch acco un ts for this phenomenon 
must take ~tCcoun t of the finite compressibility of the electron fluid . There is some evidence 
[Whale, 1963, 1964J that rocket-borne a ntennas excite electron-acoustic waves in t he ionosphere. 
Unfortunately, the situation is complicated by the presence of the earth's magnetic fi eld and 
the existence of a plasm~1 sheath around the an tenn a. 

It is the purpose of this paper to consider an id ealized model which should give some 
insight in to the phenom enon of r adia,tion in co mpressible plasma m edia. The earth 's mag­
netic fi eld is neglected througbout. The an tenna model Rssumed llere is a perfec tly conduct­
ing sph ere which is exci ted by a thin a nnular slo t. T he slotted-spher e antenna is assum ed to 
be in in t im ate co ntact with the homogeneous plasma. 

A number of related investigations of th e stated problem have been published recently. 
A short review of this work is in order. 

Tn a rath er in teresting note, Hessel and Sbrnoys [1962J consider the excitation of electro­
magnetic and plasma (acoustic) waves by a point current so urce in a homogeneous electron 
plasma of infini te exten t. The plasma is assumed to be an ideal gas coupled to the electro­
magnetic fi eld by th e motion of the electrons. Collisions are neglected, the electron drift 
velocity is taken to b e zero, and the static magnetic .field is also neglected. For these condi­
tions, they find the r atio of total radiated power P p in the acoustic wave to th at of P e in 
the electromagnetic wave to be given by 

where c is the velocity of light, u is tll e acoustic velocity, W o is the plasma frequen cy, and w 

is the operating frequ ency. This formula suggests that for an ionized medium, most of the 
power goes into th e acoustic mode since u< < c in most cases. This is a rather startling result. 
H essel and Shmoys [1962] then suggest that a prescribed current distribution on a rigid sphere 
would give quite differen t r esults. 

A r elated problem h as been treated by Chen [1963J who arrives at the same expression 
as above for the power ratio in the case of an infinitesimal electric current element immersed 
in th e compressible plasma. He extends his results to a thin wire an tenn a of finite length . 

1 The work was supported hy the Air Force Cambridge Research Laboratories, Bedford, Mass., PRO- 62- 201. 
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To facilitate the analysis, he assumes a sinusoidal current distribution with a propagation 
constant assumed to be identical to that for plane electromagnetic waves in the pIa mao Chen 
then arrives at the remarkable result that the ratio of the powers in the electro magnetic 
and the plasma waves is independent of the velocity ratio (u/c). 

A fundamen tal investigation was carried out by Seshadri [1963a] who considered a 
magnetic line source immersed in a compressible plasma. The static magnetic field was taken 
to be parallel to the infini te line source. By examining the behavior of these waves at the 
limiting case of high frequency, they are identified as the usual plasma (acoustic) and electro­
magnetic waves. 

The excitation of coupled electromagnetic and plasma (acoustic) waves by a dipole mov­
ing along the axis of a compressible plasma column has been considered by Yildiz and Sam­
addar [1963]. The solution of this problem contains an acoustical shock wave which may be 
called acoustical Cerenkov radiation. 

The conversion of electromagnetic waves into acoustic waves at a vacuum-plasma inter­
face has been considered by Hessel et al. [1962], Seshadri [1963b], Yildiz [1963], and Wait 
[1964] for various idealized models. 

2 . General Equations 

The plasma medium is regarded to be a one-component electron fluid. That is, the ions 
are neglected in the equation of motion, yet their presence is required to neutralize electrically 
the plasma. It is also assumed that the ampli tude of the plasma and electromagnetic oscilla­
tions are sufficiently small that linearized equations may be valid [Oster, 1960]. The average 
number density of electrons is denoted no which is regarded as constant in the plasma region. 

--7 

The pressure deviation of the electrons from the mean is p and their m ean velocity is V. As 
--7 -) 

usual, the electric and magnetic fields are denoted E and H , respectively. 
The linearized hydrodynamic equation of motion is 

where e and m are the charge and mass of the electron, respectively. The equation of con­
t inuity, combined with the equation of state, leads readily to 

2 -) op 
u mno'V ,v= - ot' (2) 

where u is the velocity of sound in the electron gas. 
Maxwell's equations for the electromagnetic fi elds in the plasma are given by 

(3) 

and 
--7 

-) oE -) 
V X H = EO 2it+noev, (4) 

where J.Lo and EO are the magnetic permeability and dielectric constant of free space, respectively. 
Without subsequent loss of generali ty, all field quantities are assumed to vary as exp (iwt) and, 
thus, the derivative %t may be r eplaced by iw everywhere. 

Except where noted, collisions between particles and other dissipative effects ar e neglected 
in this paper. 
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3. Formulation in the Spherical Geometry 

The compressible plasma is taken to occupy the space exterior to a spherical region of 
radius a which contains the sOUl'ce(s) . Thus, in terms of spherical coordinates (I', IJ, cf», the 
tangential electric field s on the surface T= a are to b e prescribed. T o simplify the algebra, it is 
assumed that the prescribed fi eld has only an E o component which is independent of cf> . Thus, 
as may be verified below, the rcsulta nt magnetic fi eld has only an H q, component every where. 
Furthermore, the E q, component of the fi eld and thc cf> component of the velocity are identically 
zero everywhere. Th e resulting electromagnetic field may be described as transverse magnetic 
or simply TM. The continuity equation for the plasma is thus given by 

(5) 

while the equations of motion for the plasma are 

(6) 

and 
. E lop 
~wmnovo=noe ' 0- --. 

I' 01J 
(7) 

Combining (6) and (7) with (4) leads r eadily to the se t 

1 1 a e op 
Eo= - iEwr aT (rI-Iq,)- mEw2T 01J' (8) 

110. e op 
E T=-· - - -·- IJ AIJ (sm IJHq,) ---2~' 

'/, EW r sIn v mEW v I' 
(9) 

(1 0) 

v = _ _ e ___ 1_ ..Q. (sin OF! ) _ _ E_O _ op, 
, m EW2 r sin 0 00 1> i Ewnom 07' 

(11) 

where 

In the above, Ej Eo is the relative dielectric constant of the plasma while Wo is the electron plasma 
frequency. 

By combining Maxwell's equations (3) and (4) with the motion and continuity equations 
(5), (6), and (7), it is not difficult to show that for r>a, 

(12) 

and 

(13) 

where 

(14) 

and 

(15) 
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Appropriate solutions of (12) and (13), which give rise to outgoing waves at infini ty, are 

1\ 

H ~ K n(iker) p i ( ) 
'" = L.-J ('k 0) Cn n cos 8 , 

n~l '/, e1 
(16) 

and 

(17) 

where Cn and an ar e unknown coefficien ts, and where the summation is over integral valu es 
1\ 

of n. In the above, K n(z) is a spherical Bessel function which satisfies 

(18) 

while P n( cos 8) is a Legendre p olynOlnial which satisfi es 

sin 0 ~~ ( sin 8 cl(~n)+n (n+ l) sin2 8P,, = 0, (19) 

a nd, finally, 

P~(co s 8)= (to P n(cos 0). (20) 

F ollowing Schelkunoff [1943, 1952], th e spherical function which sa tisfies (18) is taken to be 

1\ _, n (n + m )! 
K ,,(z) = e ~ I ( _ ) I (? )": 

"'~O In. n m. ~z 
(21 ) 

(22) 
and 

(23) 

which illustrates th e outgoing char acter of the waves. It is also eviden t from th e de.fini tions 
of ke and kp , given by (14) and (15), tha t radiation will not take place if f jEO< O (i.e., w< wo). 
In wh at follows, it is assumed t hat ke and kp are both r eal, corresponding to EjEo> O. 

An explicit general expression for the T component of the veloci ty v is ob tained by using 
(11), (16), and (17), and getting an assist from (19) . Thus, for T"Sa 

(24) 

wh ere the prime indicates a derivative wi th r espect to the argument of the Bessel fun ction 
1\ 1\ 

[i.e., K~( z) = clK n(z)/clz]. The boundary condi tion imposed on th e velocity is that vr = O at 
T= a. In other words, the spherical boundary is assumed to be rigid as far as the acoustic 
wave is considered. A simple calculation then leads to the result that 

(25) 

The problem is formally solved when an is determined by the specified condI tions at th e 
source. This t ask is deferred until la ter. 
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4 . Radiated Power Considerations 

The total power P, radiated from the source, may be obtained by integrating the radial 
component of the Poynting vector over an infinitely large sphere surrounding the source. 
Thus, 

P = Lim -21 f " [E8l-I~+pv~]27l'r2 sin fJdfJ. 
r~oo Jo (26) 

The asymptotic form of the field components, valid for k.r > > 1, are obtained from (8), (9), 
(16), (17), and (22). Thus, 

00 e -ikeT , 

l-I ¢ '" ~ en ----;--k P n (cos fJ), 
n=l ~.r 

(27) 

and 

(28) 

where 'I) . = jJ.ow/k.. In a similar manner, by making use of (10), (11), (16), (17), and (23), it 
is found that 

(29) 

and 

(30) 

The fJ integration in (26) may now be readily carried out if use is made of the orthogonality 
relations [Morse and Feshbach, 1953] 

f" 2 J o P n(cos fJ)P",(cos fJ) sin fJdfJ = 2n+ 1 ifn= m 

= 0 if n~m, (31) 
and 

i" P~(cos fJ)P;n(cos fJ) s in fJdfJ= 2~~711) if n = m 

= 0 ifn~m. (32) 
Thus, it is found readily that 

P = 2 'I) . ± n(n+ 1) 1 12+2 EO ± lan l2 
7l' k; n =l (2n + 1) en 7l' kp€wnom n = 1 (2n+ 1)' 

(33) 

where the first summation corresponds to the power in the electromagnetic wave and the second 
is the power in the acoustic wave. In order to display som e important properties, (33) is 
rewritten in the form 

where 

P 2 'TJe ~ n(n+1) 1 12( + ) 
= 7l' k! ~ (2n+1) en 1 Lln' 

Ll _lan l2 1 ~ ke • 
n - en n(n+ 1) nom kp 

Using (25) and noting that w5 = noe2/ (mEo), it follows that 

which is a rather fundamental result. 
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It is evident from the above development that Lln is the ratio of the acoustic power in mode 
n to the electromagnetic power in mode n. The result is applicable to any radiating source 
which produces azimuthally symmetric TM modes provided that the boundary at r = a is rigid 
in the sense described. It is rather interesting to observe that the ratio Ll n depends on three 
parameters, namely, (i) k ,a, which is the circumference of the rigid sphere in electromagnetic 
wavelengths, (ii) kpa, which is the circumference of the rigid sphere in acoustic wavelengths, 
and (iii) wUw2, the normalized plasma frequency, which is proportional to the electron density. 
It is worth noting that the first two parameters may be written 

(i) ( w~y k ,a = (ka) 1-w2 ' (37) 

and 

(ii) w- ' c ( )' ( ) kpa= (ka) 1-) U' (38) 

where ka is the circumference of the rigid sphere in free-space wavelengths, u is the acoustic 
velocity, and c is the velocity of electromagnetic waves in free space. 

It is important to note that, everything else considered equal, Ll n is proportional to n(n+ 1). 
Thus, the higher order modes excite appreciably more acoustic-type radiation than the funda­
mental mode (i.e., n=I). 

Some limiting cases are worth discussing briefly. Jf both k ,a> > 1 and kpa> > 1, it 
readily follows from (22) and (23) that 

(39) 

Since in most practical situations u/c is of the order of 10 - 3 or 10 - \ this quantity is very small, 
indeed. 

When kpa> > 1, without any further restrictions, it is seen that 

"-
A ,...., ( + 1) w~ (~) /K n(ik ,a)f2 

-,-,,, = n n 2 (k )2 ' w C ,a (40) 

which is also small unless (kea) itself is somewhat less than unity. 
while keeping kpa> > 1, it follows from (21) that 

For example, if kea< < 1, 

w~ 1.L 1 [ (2n) !J2 
Lln~n(n+ l) 2 - (k )2n+ 2 ~2 ' w c ,a n. n 

which may not be small, particularly for the higher order modes. 
Another limiting case which is mostly of academic interest is when both (kea) < < 1 

(kpa) < <1). Then 

(41) 

and 

(42) 

Since u/c< < 1, this quantity is enormous even when w/wo is somewhat less than unity. Setting 
n= 1 for the fundamental mode, the resulting formula for Lll is identical to that derived by 
Hessel and Shmoys [1962] for a point current element in a compressible plasma. From this 
particular limiting case, one may conclude that the formula of Hessel and Shmoys is valid 
only for an actual current element if its length is small compared with the wavelength of the 
acoustic-type wave. 

5. Excitation Considerations 

In the foregoing discussion the precise manner in which the rigid sphere is to be excited 
was not specified. Actually, the results derived and the conclusions drawn require only that 
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the spherical surface bounding the source(s) is effectiv ely rigid . It is also assumed, of course, 
that only azimuthally symm etric TM modes are to be excited. On e possibility would be a rigid 
dielectric sphere with a radially oriented electri c dipole contain ed within [Wait, 1964]. An­
other suitable m ethod of exci tation, which is co ns id er ed in t his p aper, is to assum e that the 
source is a perfectly conducting rigid sph er e of radius a. At t he colati t ude angle 80, a uniform 
voltage Vo is impressed across an annuln,r' slot of infini tesimnJ width. Tn other words, the 
tangential electric fi eld on th e spherical SUrfil,Ce is sp eci.fi ed by t he condi t io n 

Ee (8, a)= CVo/a)0(8- 80 ) , 

for r= a and 0< 8< 71", where 0(8- 80) is the uni t impulse fun ction at 8= 80, 

of thi s result is confirmed by noting that 

£"" { OO+d 
Ee (8, a)acl8= Lim Ee(8, a)acl8 = V o, 

• 0 d-)O • OO-d 

where 2t. is the wid th of th e slo t which is allowed to approach zero. 

(43) 

The correctness 

(44) 

A general expression for th e Eo .fi eld in the exteri or r egion is obtain ed by using (8), (16), 
and (17). Thus, 

1\ 1\ 

E ( ' ) -~ [ K;' (ikcr ) e K ,,(ikp1') Jp /( 8) 
e 1 , 8 - .L...i - TJ . ( 'k ') C"- - 2- , ( 'k ) an "' cos , 

,, ~ O ~ . 1 EW lnl ~ p1' 
(45) 

In t he lill1i t as 1'-">a, thi s resul t Ill ay b e expressed in the form 

"" 
Eo(a, 8)= 2: A,P;,(cos 8), (46) 

11 = 1 

where 

(47 ) 

wi th 

(48) 

Using (25), an expli ci t formula 0" is obtain ed which may be written 

(49) 

which is valid for th e rigid boundary condition at 1'= a. 

By making use of th e orthogo nali ty property of th e L egendre poly nomials, as indicated 
by (32) , the coeffi cient An, frolll (46), m ay be written 

AII= 2~~~1 ) .ra"" Eo(a, (J)P ;,(eos 8) s in 8dB. (50) 

Then, as a co nsequence of (43), 

(51) 
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Explicit expressions for the electromagnetic field components may now be obtained if (47) 
and (51 ) are combined with (16), (17), and (25). For example, 

1\ 

H = _ Vo sin eo -.0 (2n + 1) K,,(ikel') P~(cos eo) P'( e) 
'" 2 L..J ( + 1) 1\ l' n cos , 

7J er n= 1 nn K'('k) -u" 
" '/. ea 

is an exact formula for the magnetic field which has only a rf> component. 
where [kel' [> > 1, this simplifies slightly to 

H ", ""'--Va sin Ooe-ik,r :8 (2n + 1) P~(cos Oo);:~(cos 0\ 

- 2TJer n=1 n(n+ l) (l-o,,)K~(ikea) 

(52) 

In the far zone, 

(53) 

which is a spherical wave behaving like e - ik,r /r . In the far zone, the e component of the electric 
field is obtained from 

(54) 

The total power P e in the electromagnetic wave is obtained from 

(55) 

which is evaluated to give 

(56) 

Referring back to (34), it is evident that the total power radiated, P (electromagnetic and 
acoustic), may be written as the sum 

(57) 

where the radiated power in the acoustic wave is given by 

P _ 7r V~ . 20 -.0 (271.+ 1) A [P:,(cos 00)]2 
P- 2 --:;;: S111 0 ~ 71.(71. + 1) u " [1-0,,[ 2[ (K~(ikeaW 

(58) 

where Ll" is given by (36). 
As an important check on this derivation for the total power P, the Poynting vector may also 

be integrated over the area of the annular slot. This latter method which is related to the 
so-called "emf method" in antenna theory [e.g., Wait, 1959], is not very rigorous but it does lead 
to correct results if applied with care. Therefore, the power P should also be obtained directly 
from 

P= t f Re [EeH:lr =ada . 
Area of slot 

This may be written 

where Vo is the voltage across the slot (which may be regarded as real). 
that according to this approach 
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(61) 

Using (52) , it is seen 

(62) 



The exact correspondence between (57) and (62) is a r esult of the identity 

(63) 

where Ll " and 0" are defined by (36) and (49), respectively. This identity is verified without 
difficulty, if it is remembered that, 

A A 
Rc K,,(iz)[K~(iz) ] *=- I , (64) 

for z real. 
Equation (62) may be used for the power calculation for a slotted sphere of arbitrary size 

immersed in a compressible plasma. When kea and kpa are not large compared with unity, 
the series converges rapidly. Then, it is of interest to see that the power in the first mode may 
be written 

(65) 

where, according to (36), 

(66) 

and according to (49), 

(67) 

where i t should be remembered that 
(68) 

If u/c is sufficien tly large that k pa> > 1, while still maintaining kea< < 1, the above formulas 
for Lli and 01 simplify to 

(69) 

and 

(70) 

Using the above result, it is possible to write a simple formula for the ratio of the total power P 
for a compressible plasma when u/c is finite to the total power Po for an incompressible plasma 
(such that u /c= 0). Thus, by using (65), (69), and (70), it is seen that, for n= 1, 

(71 ) 

For this same condi tion, it is worth noting that the ratio of the power Pe of the electromagnetic 
wave in the compressible plasma to the total power for the incompressible plasma, is given by 

(72) 
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As indicated previously, the ratio of the acoustic power P p to the power electromagnetic 
P e, lor n = 1, is 

(73) 

for these sam e conditions (i .e., kea< < 1 and kpa> > 1). 

6. Concluding Remarks 

On the basis of' the analysis in t his paper, it would appear that an electron-acoustic wave 
will be excited by a slotted-sphere antenna which is immersed in a compressible plasma. 
However, if this effect is to be measurable, the operating wave frequency must be an 
appreciable fraction of the plasma frequen cy. It also appears that the relative power in 
t he acoustic wave is increased as the overall dimensions of the antenna are reduced. 
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