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Radiation from a finite source in a compressible electron plasma is considered. The
theoretical model is a perfectly conducting sphere which is excited uniformly by an annular
slot. The configuration is such that Maxwell’s equations, when combined with a (single-
fluid) continuum theory of fluid dynamics, are separable. It is shown that a portion of
the total power supplied by the source is radiated as an acoustic wave in the electron fluid.

1. Introduction

When an antenna is placed in an ionized medium such as the upper atmosphere, energy
may be coupled into acoustic-type waves. A theory which accounts for this phenomenon
must take account of the finite compressibility of the electron fluid. There is some evidence
[Whale, 1963, 1964 ] that rocket-borne antennas excite electron-acoustic wavesin the ionosphere.
Unfortunately, the situation is complicated by the presence of the earth’s magnetic field and
the existence of a plasma sheath around the antenna.

[t is the purpose of this paper to consider an idealized model which should give some
insicht into the phenomenon of radiation in compressible plasma media. The earth’s mag-
netic field is neglected throughout. The antenna model assumed here is a perfectly conduct-
ing sphere which is excited by a thin annular slot.  The slotted-sphere antenna is assumed to
be in intimate contact with the homogeneous plasma.

A number of related investigations of the stated problem have been published recently.
A short review of this work is in order.

In a rather interesting note, Hessel and Shmoys [1962] consider the excitation of electro-
magnetic and plasma (acoustic) waves by a point current source in a homogeneous electron
plasma of infinite extent. The plasma is assumed to be an ideal gas coupled to the electro-
magnetic field by the motion of the electrons. Collisions are neglected, the electron drift
velocity is taken to be zero, and the static magnetic field is also neglected. For these condi-
tions, they find the ratio of total radiated power P, in the acoustic wave to that of £, in
the electromagnetic wave to be given by

P,IP,=(1/2) (c/u)? (wo/w)?,

where ¢ is the velocity of light, » is the acoustic velocity, w, is the plasma frequency, and «
is the operating frequency. This formula suggests that for an ionized medium, most of the
power goes into the acoustic mode since ©< < ¢ in most cases. This is a rather startling result.
Hessel and Shmoys [1962] then suggest that a prescribed current distribution on a rigid sphere
would give quite different results.

A related problem has been treated by Chen [1963] who arrives at the same expression
as above for the power ratio in the case of an infinitesimal electric current element immersed
in the compressible plasma. He extends his results to a thin wire antenna of finite length.

1 The work was supported by the Air Force Cambridge Research Laboratories, Bedford, Mass., PR 0-62-201.
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To facilitate the analysis, he assumes a sinusoidal current distribution with a propagation
constant assumed to be identical to that for plane electromagnetic waves in the plasma. Chen
then arrives at the remarkable result that the ratio of the powers in the electromagnetic
and the plasma waves is independent of the velocity ratio (u/c).

A fundamental investigation was carried out by Seshadri [1963a] who considered a
magnetic line source immersed in a compressible plasma. The static magnetic field was taken
to be parallel to the infinite line source. By examining the behavior of these waves at the
limiting case of high frequency, they are identified as the usual plasma (acoustic) and electro-
magnetic waves.

The excitation of coupled electromagnetic and plasma (acoustic) waves by a dipole mov-
ing along the axis of a compressible plasma column has been considered by Yildiz and Sam-
addar [1963]. The solution of this problem contains an acoustical shock wave which may be
called acoustical Cerenkov radiation.

The conversion of electromagnetic waves into acoustic waves at a vacuum-plasma inter-
face has been considered by Hessel et al. [1962], Seshadri [1963b], Yildiz [1963], and Wait
[1964] for various idealized models.

2. General Equations

The plasma medium is regarded to be a one-component electron fluid. That is, the ions
are neglected in the equation of motion, yet their presence is required to neutralize electrically
the plasma. It is also assumed that the amplitude of the plasma and electromagnetic oscilla-
tions are sufficiently small that linearized equations may be valid [Oster, 1960]. The average
number density of electrons is denoted n, which is regarded as constant in the plasma region.

N
The pressure deviation of the electrons from the mean is p and their mean velocity is ». As

- -
usual, the electric and magnetic fields are denoted £ and 7, respectively.
The linearized hydrodynamic equation of motion is

>

; -
miny %t)———‘ner—Vp, (])

where ¢ and m are the charge and mass of the electron, respectively. The equation of con-
tinuity, combined with the equation of state, leads readily to

Lngy- o= — 2P
WMNEV - v 5 2)
where 2 is the velocity of sound in the electron gas.
Maxwell’s equations for the electromagnetic fields in the plasma are given by

o
=~ o )
VX E=—u ot 3)
and
E
=
v H= eoaa—t+n0e?>, ()

where p, and ¢ are the magnetic permeability and dielectric constant of free space, respectively.
Without subsequent loss of generality, all field quantities are assumed to vary as exp (iwt) and,
thus, the derivative 0/0t may be replaced by iw everywhere.

Except where noted, collisions between particles and other dissipative effects are neglected
in this paper.
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3. Formulation in the Spherical Geometry

The compressible plasma is taken to occupy the space exterior to a spherical region of
radius @ which contains the source(s). Thus, in terms of spherical coordinates (r, 0, ¢), the
tangential electric fields on the surface r=a are to be preseribed. To simplify the algebra, it is
assumed that the preseribed field has only an 7, component which is independent of ¢.  Thus,
as may be verified below, the resultant magnetic field has only an 71, component everywhere.
Furthermore, the /£, component of the field and the ¢ component of the velocity are identically
zero everywhere. The resulting electromagnetic field may be described as transverse magnetic
or simply TM. The continuity equation for the plasma is thus given by

wmn,

.0 o) . . ;
- [sm 0 > (r*v,)+r >0 (vg sin 0)]: —iwp, (5)

7% sin 0

while the equations of motion for the plasma are

. > ]
wmnozr,:noe[«jr__a% ©)
and
1 0p
LM Iuol/‘():no(/],e—.~ 579 7

Combining (6) and (7) with (4) leads readily to the set

. L@, ¢ Op X
B earor "HO) ~ e o0’ ®)
a0 e b]) )
= —_— 0 =2 ¢
" dewrsin 000 (5111 Hy)— Mmew? Or )
e 0, € op .
Vo= = (rH ) —— &
o mewr Or (rH,) Tewngmr 00’ (10
e 1 op
)= ———— 0
Or mew’ 7 sin 0 00 (sm Hy)— 1ewnom or’ 1
where
2 22
Sl __ﬂg_ with w2="2%.
€ w m ey

In the above, ¢/¢ 1s the relative dielectric constant of the plasma while w, is the electron plasma
frequency.

By combining Maxwell’s equations (3) and (4) with the motion and continuity equations
(5), (6), and (7), it is not difficult to show that for » >a,

0? o)
o (H)+ g | G p (i 0FT0) [ R =0, (12)
and
>-|- L (smo p>+k2r2 = (13)
br sin 6 of 0 " P="Y ‘
where
e /Tm)w:cﬂ (ei(,)’ (14)
and

B=2(£) (15)
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Appropriate solutions of (12) and (13), which give rise to outgoing waves at infinity, are

A
K, (ik,r)

H¢.:7§1 W C,LP,L(COS 0), (16)
and
o f{
=>"= (ikey7) a,P,(cos 6), (17)
= (@ ’)

where ¢, and @, are unknown coefficients, and where the summation is over integral values

A
of n. In the above, K,(z) is a spherical Bessel function which satisfies

dzﬁ'n(z) 3 n(n—H ) .
i [1+ ]K ? (18)

while 72, (cos 6) is a Legendre polynomial which satisfies

d
sin 9 €0

) sin*6 P,=0, (19)
and, finally,

P (cos 9):61115 P,(cos 6). (20)

Following Schelkunoff [1943, 1952], the spherical function which satisfies (18) is taken to be

A P (n+m)! .
K (2)=e mZ:O m!(n—m)!(2z)™ 1)
Thus, for kg and k> ">1,
Ko (ike )~ o=iker, (22)
and
K@ik ) ~ e~ 57, (23)

which illustrates the outgoing character of the waves. It is also evident from the definitions
of k. and k,, given by (14) and (15), that radiation will not take place if e/e,<0 (i.e., w< wp).
In what follows, it is assumed that k, and £, are both real, corresponding to /e, >0.

An explicit general expression for the » component of the velocity ¥ is obtained by using
(11), (16), and (17), and getting an assist from (19). Thus, for 7=a

(n+1) K (ikr) ek, K;Z(Q‘kpi) K (ik,r)
Z Cn ew’mr  (ik,r) Ay pr— ,: ik,;r (ikeyr)? :, XP,(cos §), (24)

where the prime indicates a derivative with respect to the argument of the Bessel function

A A G0 . . .
li.e., A, (2)=dK,(z)/dz]. The boundary condition imposed on the velocity is that »,=0 at
r=a. In other words, the spherical boundary is assumed to be rigid as far as the acoustic
wave s considered. A simple calculation then leads to the result that

A
K, ik
"—n(n41) 4

- ' (25)
e 0tk - £ 1 ik ) K,,uk,,a):'

(ik,a) (ik,)?

The problem is formally solved when @, is determined by the specified conditions at the
source. This task is deferred until later.
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4. Radiated Power Considerations

The total power P, radiated from the source, may be obtained by integrating the radial
component of the Poynting vector over an infinitely large sphere surrounding the source.
Thus,

P=Lim -f (EoH %+ pr¥|2m® sin 0d6. (26)
r—>o

The asymptotic form of the field components, valid for ks>">1, are obtained from (8), (9),
(16), (17), and (22). Thus,

~Z Cn o T P;(cos 0), (27)
and
Ey~—n, ch T P (cos 0), (28)

where ne=uow/k,. In a similar manner, by making use of (10), (11), (16), (17), and (23), it

is found that
—-1k T

Z e P P,(cos 0), (29)

and
60]6',, e (4 =g

n—— Pr(cos 6). 30
€wnym ,lzla ik,r Pn(cos 0) (30)

Oy~ —

The 6 integration in (26) may now be readily carried out if use is made of the orthogonality
relations [Morse and Feshbach, 1953]

f P,(cos 0)P,,(cos 0) sin 0df— 5 +1 il n=m
=0 if nm, (31)
and
T, , . ~ 2n(n+1) S
I; P (cos 6)P,,(cos 6) sin 0d0——2n+1 if n=m
=0 ifn#m. (32)
Thus, it is found readily that
e n(n—l_l) 2 > [an\ o
gnzl ent D) T2 b 2 kD) (25

where the first summation corresponds to the power in the electromagnetic wave and the second
is the power in the acoustic wave. In order to display some important properties, (33) is
rewritten in the form

© n(n+1)
P=2x 2 24 @n+1) In[ (144,), (34)
where
a’n 1 e() ke (rgr)
" e n(nt1) ngm ky e

Using (25) and noting that wj=mne?/(me), 1t follows that

A
1 K, (ik.a) .
A=n(nt1) 3 (k ) £l f)l. ) (36)
Roit,0)—Bnts)
(k)
which is a rather fundamental result.
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[t is evident from the above development that A, is the ratio of the acoustic power in mode
n to the electromagnetic power in mode n. The result is applicable to any radiating source
which produces azimuthally symmetric TM modes provided that the boundary at r=a is rigid
in the sense described. It is rather interesting to observe that the ratio A, depends on three
parameters, namely, (1) k.a, which is the circumference of the rigid sphere in electromagnetic
wavelengths, (i1) k,a, which is the circumference of the rigid sphere in acoustic wavelengths,
and (ill) wj/w? the normalized plasma frequency, which is proportional to the electron density.
It is worth noting that the first two parameters may be written

Q) ka=(ka) ( —%) 37)

G ko= (ka) < —%> <§> (39)

where ka is the circumference of the rigid sphere in free-space wavelengths, u is the acoustic
velocity, and ¢ is the velocity of electromagnetic waves in free space.

[t is important to note that, everything else considered equal, A, is proportional to n(n-1).
Thus, the higher order modes excite appreciably more acoustic-type radiation than the funda-
mental mode (i.e., n=1).

Some limiting cases are worth discussing briefly. If both ka>>1 and k,a>>1, it
readily follows from (22) and (23) that

0 1
A,=n(n+1) % <g> ) (39)

Since in most practical situations u/e is of the order of 107 or 107, this quantity is very small,

indeed.
When k,a>>>>1, without any further restrictions, it is seen that

and

A, n(n1) ( )‘Kzl(;s“)‘z, (40)

which is also small unless (k.a) itself is somewhat less than unity. For example, if k,a< <1,
while keeping k,a>">1, it follows from (21) that

u 1 2n) ! P
Angn(n—}—l) %E(kj);m [(IIT)I}], (4])

which may not be small, particularly for the higher order modes.
Another limiting case which is mostly of academic interest is when both (k)< <1 and

(kpa) <<1) Then
2n+1
= n_ ﬁ I ( ) (42)

Since u/e< <1, this quantity is enormous even when w/w, is somewhat less than unity. Setting
n=1 for the fundamental mode, the resulting formula for A, is identical to that derived by
Hessel and Shmoys [1962] for a point current element in a compressible plasma. From this
particular limiting case, one may conclude that the formula of Hessel and Shmoys is valid
only for an actual current element if its length is small compared with the wavelength of the
acoustic-type wave.

5. Excitation Considerations

In the foregoing discussion the precise manner in which the rigid sphere is to be excited
was not specified. Actually, the results derived and the conclusions drawn require only that
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the spherical surface bounding the source(s) is effectively rigid. It is also assumed, of course,
that only azimuthally symmetric TM modes are to be excited. One possibility would be a rigid
dielectric sphere with a radially oriented electric dipole contained within [Wait, 1964]. An-
other suitable method of excitation, which is considered in this paper, is to assume that the
source 1s a perfectly conducting rigid sphere of radius a. At the colatitude angle 6,, a uniform
voltage V), is impressed across an annular slot of infinitesimal width. In other words, the
tangential electric field on the spherical surface is specified by the condition

Fy(0, a)=(Vo/a)5(0—6,), (43)
for r=a and 0<8<w, where 6(6—#6,) is the unit impulse function at 6=6,. The correctness

of this result is confirmed by noting that

T 6+A
Fy(6, a)adf=Lim (6, a)adsd=V,, (44)

JO A0 J—A

where 2A is the width of the slot which is allowed to approach zero.
A general expression for the [ field in the exterior region is obtained by using (8), (16),
and (17). Thus.

3 R K (th,r) e K (k,r)
E . . o W n o’ l 0 5
o(r, ) ,,Z:o g (ik,r) ew’mr  (ik,r) ]1 n(cos (45)
In the limit as 7—a, this result may be expressed in the form
Ey(a, 0)—> A,PL(cos 6), (46)
n=1
where
R (ik,a)
ik,
Ldp=—"MNe¢ ’"- — ’n Il = n)y 7
| " kg ¢ (1—46,), (47)
with
a, K,,(rlr,,a
= 8
O A,,wma( ) 48)

K,ﬁ (k@)

Using (25), an explicit formula 6§, 1s obtained which may be written

1 K.(ika) e a)
= (n—H) z
(k a)(kpa) 2 (49)
K, (ik.a) K (i, )_.l:lcaa)

which is valid for the rigid boundary condition at r=a.

By making use of the orthogonality property of the Legendre polynomials, as indicated
by (32), the coefficient A ,, from (46), may be written

s i
sk 1) I Ey(a, 0)P),(cos 8) sin 0d0. (50)

Then, as a consequence of (43),

:772I3v+1 ‘ 0
T omn+1) a

P, (cos 6,) sin 6. (51)
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Explicit expressions for the electromagnetic field components may now be obtained if (47)
and (51) are combined with (16), (17), and (25). For example,

 Vosin 8y & 2nt1) Ko (ik,r) Pycos 6y)

H.—
¢ 27)er n=1n(n—|—l) IA{r (’lk ll) 1—671

P, (cos ), (52)

is an exact formula for the magnetic field which has only a ¢ component. In the far zone,
where |k| >">1, this simplifies sligchtly to

H¢g_Y_(LS,i11 foe~ ke i (2n+1) Py (cos GO)P (cos 0) (53)

277e7“ n=1 n(n—i—]) ( n)K’ ('L]( ll)

which is a spherical wave behaving like e=*#7/7.  In the far zone, the # component of the electric

field is obtained from
1/2

DS e e = BT (1-—) (54)
The total power P, in the electromagnetic wave is obtained from

18 :~~ Re Lim wagH 5(2mr?) sin 0df, (55)
r—w® 0
which is evaluated to give
2 =4 V3 sin? 6, i (2n+1)  [P(cos 6y)F
¢ 2 Ne 7L=ln(n'+1) I1_6n|2|f{;(ik8a)l2

(56)

Referring back to (34), it is evident that the total power radiated, P (electromagnetic and

acoustic), may be written as the sum
P:Pe+Pp; (57)

where the radiated power in the acoustic wave is given by

Pp:_ & sin? 6, Z (QIL—I—l) [P;(coi 00) ]2 )
|1—6,,|2I(K§,(ilcea)|2

20, 2t ® )

where A, is given by (36).
As an important check on this derivation for the total power £, the Poyntlng vector may also

be integrated over the area of the annular slot. This latter method which is related to the
so-called ‘“‘emf method” in antenna theory [e.g., Wait, 1959], is not very rigorous but it does lead
to correct results if applied with care. Therefore, the power P should also be obtained directly
from

f Re [EH S, - da. (59)
Area of slot
This may be written
6y+A
P=1 Lim f "% Re [ EH ], o(2ma? sin 6,)d8 (60)
2 a0 Jo—a
=ma sin 0,V Re (Hy), -, (61)

where V; is the voltage across the slot (which may be regarded as real). Using (52), it is seen
that according to this approach

. 2 2 9
P— _1r S;I"l’ 9 2 (2(7l+1) P (COS 00]2 Re [AK—’WL_:' (62)
¢ K (ik.a)(1—0,)
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The exact correspondence between (57) and (62) is a result of the identity

A

K, (ka) 1 1+A,

mli.ﬁi@] S (63)
K, (ik,a) " fK (1k.a)|?|1—8,|?

where A, and 4, are defined by (36) and (49), respectively. This identity is verified without
difficulty, if it is remembered that,

Re K, (i2)[K.(i2)[*=—1, (64)
for z real.

Equation (62) may be used for the power calculation for a slotted sphere of arbitrary size
immersed in a compressible plasma. When k.a and k,a are not large compared with unity,
the series converges rapidly. Then, it is of interest to see that the power in the first mode may
be written

3 sint 6, Ve 144,

~ 4
Pt i, =2 (k.a)t, (65)
where, according to (36),
Rl 1
A ~2 w—? 52 (66)
1 w” (kc(l)3 (k ) IA{'(]C )_Kl(’lkpr(!_)
p@) | Fa W) =0 )
and according to (49),
W 2 Ri(ik,) (67)
T T e |
e g (2 %05
Ki(ik,a) T
where it should be remembered that
ky,a=(c/u)k.a. (68)

If /e is sufficiently large that k,a>">1, while still maintaining k,a< <1, the above formulas
for A, and &, simplify to

weuw 1
Al*zw_c (lcea)4 (69)
and
_ ﬂ%l
61—— 21 e I{,‘ea, (70)

Using the above result, it is possible to write a simple formula for the ratio of the total power P
for a compressible plasma when u/c is finite to the total power P, for an incompressible plasma
(such that /c=0). Thus, by using (65), (69), and (70), it is seen that, for n=1,

wou 1

5 1+2 C (kea/)4 (71)

" 1*"‘*( ) wa

For this same condition, it is worth noting that the ratio of the power P, of the electromagnetic
wave in the compressible plasma to the total power for the incompressible plasma, is given by

1 (72)



As indicated previously, the ratio of the acoustic power P, to the power electromagnetic
) AT — 1Q
P, for n=1, is

D 2

If o o 1

L P R : e
P~ " e (k,,u)“ (’*5)

S

for these same conditions (i.e., k,a<<1 and k,a>>1).
6. Concluding Remarks

On the basis of the analysis in this paper, it would appear that an electron-acoustic wave
will be excited by a slotted-sphere antenna which is immersed in a compressible plasma.
However, if this effect is to be measurable, the operating wave frequency must be an
appreciable fraction of the plasma frequency. It also appears that the relative power in
the acoustic wave is increased as the overall dimensions of the antenna are reduced.
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