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A theory for the dependence of m eteoric-echo heights and durations on meteor velocity 
and m.agnitucle, and on the radio wavelength, is used to interpret experimental meteor data 
of a variety of types. It is shown that the data set forms a more consistent whole on the 
assumption of a three-body than of a two-body attachment process. No velocity depend­
ence is found for the ratio of line d ensity to luminosity. An attachment time constant of 
a bout 100 sec is d educed for a reference height of 95 km, and a zero-magnitude meteo r is 
found to produce a maximum line d ensity of about lOO X 1014 electrons/m. Combination of 
the theoret ical an d experim enta l results mak es possible calculat ion of the heights and 
durations of meteor echoes under a full range of conditions. 

1. Introduction 

In a previou ::; paper [Manning, 1962] hereafter to 
be referred to as part I, the author developed a 
theory giving the theoretical heights and durations 
of radio echoes from large meteors. The theory 
assumed that trails are dispersed by attachment as 
well as diffusion. The scale height of the attachment 
process was made adj us table, as was the velocity 
dependence of the ratio of ionizing to luminous 
efficiency. In the present paper the theory will be 
compared wi th experimental results, and it will be 
shown that the unknown parameters of the theory 
can be determined. These parameters include the 
attachment time constant at reference height, the 
height dependence of the attachment time constant, 
the exponent of the velocity dependence of line den­
sity for fixed visual magnitude, the coefI-icient giving 
line density for reference visual magnitude, and a 
parameter relating height and maxim um line density. 

That attachment is an important process in meteor 
trails was shown by Davis, Greenhow, and Hall 
[1959a], and by Greenhow and Hall [1961]. They 
tested the effect of attachment by comparing theo­
retical curves, including attachment, with a variety 
of experimental plots. However, lacking a complete 
mathematical analysis of the echoing phenomena, 
they did not obtain all the data available from the 
experimental comparisons. Greenhow and Hall 
showed that a three-body attachment process was as 
good a fit to most of the data as was the two-body 
process of Davis, Greenhow, and Hall, bu t they 
favored the three-body process because it seemed to 
explain better the infrequency of enduring optical 
trains and of enduring radio echoes at low heights. 

1 Jointly supporteel by the U.S. Army Signal Corps, the U.S . Air Force, th e 
U.S. Navy (Office of Naval Hesearcb), anel by the Nationa l Science Founda­
tion , Gran t NSF- G P948. 

The author will show thitt a more thorough compar­
ison of theory with the whole mass of experimental 
data is consistent only wi th a h eight dependence of 
attachment time constant equivalent to that for the 
three-body process. By olving simul taneo usl:y the 
relations fitting data of all types, best values WIll be 
found for the important parameters influencing echo 
decay. Insertion of the parameters in the theory of 
part I will make possible the prediction of echo 
behavior. 

2. Analysis of Duration Versus 
Visual Magnitude 

In part I the theory relating duration to line 
density was expressed in terms of a normalized dUl'a­
tion variable z and a normalized line-density variable 
x. For a given height-dependence of attachment 
time constant, a single CUl've was found r elating z 
to x, applicable for arbitrary wavelengt h, diffusion 
coefficient, meteor velocity, etc. By expressing 
the line density as a function of visual meteor 
magnitude, the theory can be compared with e~­
perimental meaSUTes of echo duration versus magm­
tude with velocity as a parameter. The values of 
the normalizing factors needed to fit the data to 
the theory will then determine several relations 
between the physical parameters of the trail. In 
making the analysis, we shall carry two sets of 
equations, one for two-body and the other for thTee­
body attachment. Each type of experimental data 
will be compared with both sets of equations, so 
that a choice between the decay laws can finally 
be made by comparing the consistency of the sets 
of equations relating the derived parameters on the 
two assumptions. Two-body equation n umbers 
will be written in t he form (nn. 2), and the t hTee­
body equations as (nn. 3) where nn is the usual 
equatio n number. 
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The normalized dmation variables from part I while the normalized line-density variables are: 
are: 

and 

(1.2) 
1 Q moK6!5'j\. 6/ 5 

X= 2.2298 A 3/ 5V2(1D+J ) 15YoI5 

and 

(1.3) 
1 QmoKJ/2).. 

X= 7.4242 Al/ 2V (lO+J) /2D~/ 2 
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FIGU RE 1. M edian log (dumtion) versus magnitude f rom lYlillman and lYlcKinley [1956] for perseid meteors, V = 60 km/s. 

'I' lle solid eurve is a fitted theoretical three-body curve. Despite tbe difference in position of tbe asymptote intersection, tbe two-body curve (not shown) fits almost as 
well . 
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where tH is the echo dUTation, Do is the ambipolal' 
diffusion coefficient at a reference height (to be taken 
as 95 km) , Kis a constant (defined by (11) of part I ) 
in the equation relating the maximum line density 
to the height at which it OCCUTS, A is the attachment 
time constant at the reference height, A is the radio 
wavelength, and v= (V/Vo) (sec Z) 2/ (JO+ J), where V 
is the meteor velocity, Vo is a reference velocity, Z 
is the meteoric zenith angle, and J is the exponent 
of the velocity dependence of maA"imum normalized 
line density Qmo= O. 885 X IO- HZ, with Z the line 
density in electrons/meter. 
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As was shown in part I, the theoretical curves of 
log z versus log x are straight lines of different slope 
which are joined by a cUl"ved transition. To fit the 
experimental dUTation CUl"ves to theory, the normal­
ized CUI'ves may be translated until they are super­
imposed on the experimental points with minimum 
error. The parameters of the fit may then be con­
veniently estimated from the ciUTation and magnitude 
for which an extrapolation of the linear portions of 
the log z versus log x CUl"ves intersect. In part I it 
was shown that for two-body attachment the inter­
sections oceUI' at x= 1.3971, z = O.87772, while for 
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FIGURE 2. lYledian log (dum lion) versus magnitude from Jllillman and 111cKinley (1956lfor geminid meteors, V = 35 km/s. 

'l' he smooth curve is fitted from the three·body theory. '1'he two-body curve (not dmwn) fits almost as well. 
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three-body attachmen t the intersection occurs for 
x= 1.0783, z= 0.62196. These values of x and z may 
be substituted in (1) together with the duration and 
line-density paJ·ameters from the curve fitting. To 
relate the line density in (1) to the experimentally 
observed visual magnitude, use will be made of the 
equation 

(3) 

when Qmo~ 10-14 times the maximum line density on 
the trail, Qo is a constant independent of velocity V 
or magnitude M , but dependent on the choice of 
reference velocity Vo, and J is a constant determining 
the velocity dependence of Qmo; thus Jis the velocity 
exponent of the ratio of line-density to light output. 

The best available experimental data on echo 
duration versus visual magnitude appeaJ's to be that 
of Millman and McKinley [1956]. They tabulate 
the logarithm of duration in steps of 0.2 versus 
absolute visual magnitude in steps of 0.5 for Perseid, 
Geminid, 8 AquaJ'id , and non shower meteors. The 
data on the Perseid (60 km/sec) and Geminid (35 
km/sec) showers will be used in this study. The 

data on the Aq uarids are based on a smaller number 
of meteors. For comparison with theory, the data 
of Millman and McKinley have been reduced by 
computing median values of duration for each magni­
tude interval. The resulting plots for the Perseids 
and Geminids are shown in figures 1 and 2. 

The smooth curve interpolated through the ex­
perimental points is a plot of the logarithm of 
normalized duration z versus the logaJ:ithm of nor­
malized line density x. The abscissa scale for x was 
adjusted from log x proportional to log Qmo, to log x 
proportional to - M /2.5 using (3). Separate theo­
retical curves of log z versus log x (fig. 3 of part I ) 
were fitted to figures 1 and 2 by sight for both two­
and three-body attachment; the curves plotted are 
for the three-body law. No firm choice between the 
two- and three-body curves can be made on the basis 
of goodness of fit alone, although the three-body 
curves seem a bit better. The best-fitting curves 
can be described by the values of 10g-dUTation and 
visual magnitude at the intersection of the dashed 
extrapolated linear curves and aJ·e tabulated in table 
1. Although the curves for the two-body case are 
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FIGU RE 3. H eight of maximum luminosity vel·SUS magnitude adopted as best fit to figur e 5- 11 of McKinley [1 961 ] for fixed scale 
height. 
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not plotted, the point of intersection is indicated by Subtr~tCting , 
a small box. Note that in figure 1 the deviation of 
the points from the cmve for negative log of duration 0 = 2 (log tm - Iog {112 ) 

is fitted to a theoretical cw-ve based on under-dense 
behavior. Comparison with figure 2 shows that the + (MI - 1Vi2 )/2.5 + Jlog V 2/V 1 (7.2) 
transition from underdense to overdense duration 
behavior occurs at lower magnitudes for the Perseid 0= 3(log tIJI - log t112 ) 

meteors because of the smaller overdense duration 
for a given magnitude. + (M1- 1Vl2 )/1.25+ 2J log V 2/V t . (7.3) 

TAB I,E 1. Experimental T€ SUltS 

'rwo-body 'rhrce-hody 
attachment attachment 

----------\----------------
l'crsc id s ...... .. .. .. log till = 1.93 

M,= - 1.6 
Gc minid s ........ . . log t1l2= 1.19 

.lvh= 2.3 

log till = 1.71 
M,=-1.9 

log tll, = 1.02 
M ,= 1.9 

Millman and },rIcKinley's measm ements were 
made with a radio wavelength of A= 9.18 m. At fl, 

reference height of 95 km, we shall assume D o= 
4 m 2/sec. Putting these constants in (1) and (2) 
together with the values of z and x previously given 
as applying to the intersection of tbe lin ear segments 
of the theoretical curves, we obtain in 10gflJ'ithmic 
form the pairs of equations. 

4 (lO + J ) 3 . 5 log A+ 5 log v= 0.14+5 10g K + log tll (4 .2) 

3 2(10 + J ) 6 5 log A+ 5 log v= - 0.396+5 log K + log Qmo 

(5.2) 

and 

2 (10+ J ) 310gA+ 3 log v= O.347+ logK+ logtll (4.3 ) 

1 (10+ J ) 3 210gA+ 2 logv= - O.241+2 logK+ logQmo. 

(5.3) 

Eliminating log v between (4) and (5), and elimi­
nating Q,,,o using (3), 

log A = 0.676 + 210g tll - Iog Qo - Jlog (V/Vo)+ M /2.5 

(6.2) 
log A = 1.523 + 3 log tll - 210g Qo 

- 2J log (V/Vo)+ 2M/2.5. (6 .3 ) 

If we put the values of tll and M for the Perseids and 
Geminids in (6), two pairs of equations result. 

Inserting the durations and magnitudes from table 1, 
together with the ratio V 2/ V1 of the Perseid-to­
Geminid velocity as 60/35, (7 ) can be solved for the 
exponents J of the velocity dependeJlce of tbe ratio 
of line density to luminosity. It was shown in part I 
that the exponent of the ratio of ionizing to luminous 
efficiency is J + 1. 

J = - 0.34 (± 0.5) 

J = - 2.07( ± 1.0). 

(8.2 *) 

(8.3 *) 

The asterisk 'will be used in the eq uation numbers 
when the equations represent the results of a calcu­
lation leading to r elations between the unknown 
parameters. The parentheses in (8 ) give the esti­
mated probable errors oj' the results based on the 
propagation of the estimated scaling errors from 
fi gures 1 an d 2. 

The values of J from (8) may now be inserted in 
(4) and (5). Evaluating these equations for the 
Perseids and Geminids and subtracting, it is possible 
to solve for the ratio of VoO/V3S , the ratio of the values 
of 

v 
(9) 

for 60- and 35-km/s meteors; llote, however, that the 
zenith angle Z of the observations for P erseids and 
Geminids differs , so that V60/ V3S¢ V60/V3S' From 
subtraction of (4 .2) for the two velocities , 

(10.2*) 

and from (4.3) 

(1 0.3 *) 

Subtraction of (5) yields the same result. The sig­
nificance of these results will be discussed after all 
the available results have been derived. 

Another set of relations between unknown quanti­
ties may be obtained by eliminating Qmo from (5) 
using (3), and then eliminating log v between (4) 
and (5). The results are 

- log A = - 0.68 + log Qo 

- M /2.5 + Jlog T1/Vo - 2 log tll (11.2) 
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-7~ log A = - 0.763 + log Qo 

-M/2.5+ J log V;Vo- (3/2) log tHo (11.3) 

As a reference velocity we shall choose Vo= 351m1/sec. 
Thus Qo will be the maximum normalized line density 
of a zero -magnitude, 35-km/sec meteor. Then 
evaluating (11) for the values of M, tH , and V for 
Geminid meteors (V= 35 km/sec, and tH, M from 
table 1), there results 

log A + log Qo = 3.98 

0.5 log A + log Qo = 3.05. 

(12.2 *) 

(12.3 *) 

These equations are independent of the value of J. 
One additional independent result may be deduced 

from the duration-magnitude data. Putting J from 
(8) into (4), and evaluating for Geminids of V = 35, 
there results 

log K + 2.22 = t log A + 3.21 log V35 (13.2) 

log K + 1.367= i log A+2.65 log V35. (13.3) 

The values of V35 and V60 can be roughly estimated 
independently of the duration-magnitude data. In 
response to a letter, Millman has kindly provided 
rough estimates of the values of zenith angle appro­
priate to the observations in Millman and McKinley 
[1956]. From his data, a rough mean value of 
zenith angle Z would seem to be Z = 30° for the 
Geminids, Z = 45 ° for the Perseids. Fortunately v 
is relatively insensitive to the value of Z. From 
(9), using J from (8), 

V35= 1.03 (14.2*) 

v3s= 1.04 (14.3 *) 
and 

v60= 1.85 (15.2*) 

v60= 1.86 (15.3 *) 
and 

v6°= 1.80 (16*) 
V35 

for two- or three-body theory. Comparison of (16) 
and (10) favors the three-body case. 

Putting V35 from (14) in (13) leads to the result 

log K + 2.16= t log A (17.2*) 

log K + 1.336= i log A. (17.3*) 
The starred equations may be looked on as part 

of a set relating the attachment and trail-formation 
parameters. Other relations between these param­
eters will be derived in the following sections from 
other forms of experimental data, and then the most 
consistent solutions to the resultant over-determined 
sets of equations will be found. 

In evaluating (2) the diffusion coefficient Do at 
the reference height 95 lill1 has been assumed to be 

4 m 2/sec. This value is consistent with both diffu­
sion theory and experimental values deduced from 
under dense-echo amplitude decay versus time. 
However, using the data of figure 1 the chosen value 
of Do may be verified while elucidating the prop­
erties of the duration-magnitude plots. For under­
dense echoes, the echo amplitude is proportional 
to Qmo exp (-t/ T) where T is the exponential-decay 
time constant, }..2/ (167r 2D). Thus using (3), echo 
amplitude in the underdense region will be propor­
tional to exp (-0.92M-t/T). The duration will 
be determined by the moment when the ampl.it~de 
falls below a thl'eshold set by the system senSItIvIty. 
Hence, if t is set equal to the undel'dense duration, 
it follows that 0 .92M+ tH/ T =0, a system-sensitivity 
constant. If duration is plotted versus M on a 
linear scale, the decay time constant T can be found . 
Plotting the durations less than 1.5 sec versus M 
from figure 1 yields 0 = 5.8, T = 0.29 sec. From T, 
with }.. = 9.18, the diffusion coefficient is 1.8 m 2/sec. 
From McKinley [1961 , fig. 5- 11], for M = 2.5 the 
height is just above 90 km. Correcting D = 1.8 
m 2/sec at 90 km to the reference height of 95 km 
using a scale height of 6 km gives Do= 4.1, close to 
the value adopted. In figure 1 the underdense 
durations as fitted above are plot ted as the dashed 
line. It is interesting to note that the duration and 
magnitude at which the transition from underdense 
to overdense echo behavior occurs is made clearly 
evident by this procedure. The position of the 
transition' depends on meteor velocity and is not 
the same for Perseids and Geminids. 

3. Height of Maximum Light Production 

The photographic evidence on the height. of 
ma:Kimum light production may be used to denve 
another relation between trail parameters. From 
(11) of part I, 

KQ!(; _ . 
(IO+J) f3- exp [(95-hmo) jFI] v 

(18) 

where Qmo is the maximum value of normalized line 
density on the trail , hmo is the height of maximum 
line density (and light production), v is defined by 
(9) and as before, J is the velocity exponent of 
the' rati~ of line density to luminosity, FI is the 
atmospheric scale height, and the parameter K may 
be considered defined by the equation. Its value 
depends in a complicated way on the meteoric 
density, ionization potential, heat of ablation, heat­
transfer coefficient, shape factor, etc. 

Eliminating Qm o using (3), and setting (Vj Vo)~v, 
gIves 

log (KQAI3jvlO /3) - M j7.5 = 0.436 (95~hmo). (19) 

If v does not change with magnitude NI, and FI 
is independent of height, (19) describes a lil~ear 
relation between hmo and M . In figure 3 a straIght 
line has been fitted to the height data of Whipple, 
Jacchia, and Hawkins, and Southworth as summa-
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l'ized by Millman and McKinley [1956 , fig. 5- 11]. 
The parameters of the fit are H = 6 km, 11,"'0= 92 km 
at M = O. Equation (19) then becomes 

log K+~ log Qo= O.21 8+ 1~ log V. (20*) 

Note that the experimental obser vations r elate to 
meteoTS with a distribution in velocity. Thus the 
symbol ii r efer s to a mean value of v. 

4. Height of Enduring Radio Echoes 

The experimental results on the dependence of the 
height of endming r adio echoes versus visual magni­
tude are summarized by Millman and :McKinley 
[1956, fig . 5- 11] . In the presence of attachment and 
diffusion, the final echoing height h", differ s from 
t he height of maximum iniLialline densi ty 11,"'0; the 

3-BODY FIT 

2.0 

LOG X VS LOG U~ 

1.0 

0.0 
:> 

-1.0 

loss of electrons by attachment is greater at low 
heights, but the dispersal due to diffusion is greater 
ILt high al titudes. Experimentally, the final echoing 
h eigh t is nearly independent of visual magnitude, 
de pite the marked increase in hmo with magnitude 
shown in figm e 3. Using the notation t[=exp 
[- (h - hmo)IEI] defmed by (6) of part I , the difference 
in height b etween the final echoing point and the 
point of maximum initial line density may be de­
scribed by u", = exp [-(hm- hmo)/H] . In figme 4 
the quantity - }.Ii/2.5 is plotted ver sus log u"" 
based on McKinley's plot. 

Analysis of the data in figure 4 starts with (2). 
Eliminating Om in favor of Qo and }.Ii using (3), 
letting v~ V/Vo, and taking logarithms , 

_ M Qo(K'A) 6 /5 

log x- - 2.5 +log 2.22983(ADO)3 /5V (1-3J /5) (21.2) 

_ M QoK3/2'A 
log x- - 2.5+ 10g 7.4242 (ADO)I/V 5- J / 2)· (21.3 ) 

• 

• 
• 

• 

-2.0~ __________ L-__________ L-________ ~~ ________ ~ __________ ~ __ ~L-____ ~ 

-2.0 - I .5 - I .0 -0.5 0.0 0.5 

LOG UM 

F IGURE 4. Fit of three-body theory to experimental data on magnitude versus height of endw'ing rad'io echoes . Points aTe /1"om 
Millman and McKinLey [1 9561. 
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Notice that log x and - }.;[/2.5 vary together linearly. 
Hence, the theoretical shape of the plot of -M/2.5 
versus log u"" in figure 4 will be the same as that of a 
plot of log x versus log u"" except for translation of 
the ordinate by an amount related to the bracketed 
quantity in (21). The theoretical variation of log x 
versus log u'" is shown in figure 5 of part I , and the 
best-fitting curve for three-body attachment is 
included in figure 4 of the present part. No dif­
ference in goodness of fit is discernible between the 
two- and three-body cases. The best-fitting trans­
lation, for the logarithms of the bracketed quantities 
in (21), yields the values 0.35 for the two-body case, 
and 0.0 for the three-body case. Using Do= 4 m 2/sec, 

and ;\ = 9.18 Dl , the result is 

6 3 ( 3J) _ log Qo+Slog K-slog A = O.60+ 4-5 log v 

(22.2*) 

log Qo+~ log K-~ log A = 0.21+( 5- ~) log v. 

(22.3*) 

The velocity ratio v has been barred because the 
data were taken for meteors of distributed velocity. 
An estimate of the mean velocity in figure 5- 11 of 

3.0 ~----------------~--------------------------------------------~ 

2. 0 

0:: 
>< -­>< 
<!> 

1.0 

30.0 

-1.0 

-2 . 0 

FITTED 
2- BODY CURVE 

-2 

-2.0 - I .5 -0.5 0.0 0.5 

FIGURE 5. Fit to the theory of processed two-body velocity-versus-height data. 
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McKinley can be found from his fig W'e 5- 9; the 
heights in figW'e 5- 11 for a given magnitude corre­
spond to a velocity V of a bout 43 km/sec. Using 
Vo = 35 km/sec, an estimate for v in (22*) and (20* ) 
is then 

v = 1.23. (23*) 

This value may be used as a rough check to the 
values of v to be deduced later by simul taneous 
solution of the starr ed equations. 

5. Height Versus Velocity Data 

As meteor velocity increases, there is a correspond­
ing incr eftse in both the height of maximum ini tial 

ionization production as determined from the height 
of maximum light production, and the height of 
endW'ing radio ech oes. Analysis of these data will 
yicld ftddition al relations between the trail param­
eters, including an independent estimate of J . 

The b ftsic h eight equ ation, obtained from (18) by 
m ul tiplying both sides bY~~tn = exp [- (hm-hmo) /H] , is 

KQ~!;um_ , [(95 I ) / J::n 
( IO+ J J/3 exp - (/'", LLJ 

V . 
(24) 

with h", the final echoing height. 
Since the radar sensi tivi ty fixes tbe detectable 

line density parameter Qmo, it is the same for all 

3 .0~ __________________ ~ ____________________________________________ -, 
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1.0 

<>: 
>< 

--->< 
(!) 0.0 0 
....J 

__ *","07- 2 

- I .0 

-2.0 

-2.0 - I .5 -0.5 0.0 0. 5 

FIG U RE 6. Pit to the theol'Y of processed th1'ee-body velocity-versus-height data. 
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velocities, and with respect to a reference height 
and velocity, 

(25) 

where umn=exp [- (hmn-hrnon) /H] is a measure of 
the difference of the enduring radio and visual 
heights at the reference velocity. With the ex­
ception of J , the quantities on the right-hand side 
of (25) are known, since figure 5- 10 of McKinley 
[1961] gives radio ending heights versus velocity. 
The ratio urn/umn on the left-hand side of (25) is a 
function of x determined by the theory of part I. 
But from (2), upon eliminating Qmo by (3), 

~=(~)(3J/ 5) -4 
XR VR 

(26.2) 

(26.3) 

Then Um/UrnR versus x/xR from (25) can be solved 
simultaneously with the theoretical relation between 
the same variables for a variety of assumed values 
of J. Each experimental point of height hm versus 
velocity 11 determines a value of (v/vn) and of 
(hmn-hm ) once the reference height and velocity 
are chosen; the values used are 40 km/sec and 
94 lun. For each assumed value of J, the experi­
mental points determine a value X/XR from (26), and 
a value of (Um/UrnR) from (25). The values of log 
(x/xR) versus log (~~m/UrnR)' for -2~J~2 were 
calculated by digital computer and are plotted in 
figuTes 5 and 6 for two- and three-body attachment. 
The theoretical curve of log x versus log U m (fig. 5 of 
part I ) was then superimposed on the plots of 
figmes 5 and 6 and translated in both coordinate 
directions to obtain the best fit. Because in figures 
5 and 6 x = xR, and Um = Umn is the origin, and because 
the required translations of the theoretical log x 
versus log Urn CUI"ves are log Xn and log UmR, the 
theoretical log x versus log Urn cmve must be trans­
lated so that it always passes through the origin in 
the log (X /XR) versus log (Um/UmR) plots. The 
experimental cmve of log (x/xn) versus log (U lIj UmR) 
that can be best fitted to a translated theoretical 
curve will correspond to the best value of J. The 
translation log XR (or the related translation log 
umn) can be used to determine another relation 
between the trail parameters. 

For two-body attachment, the best fit to figme 
5 occms if J equals about 0 or 0.5 , with 0.5 more 
likely, and log xn= 0.3 , log ~~mR= 0 . 075 . For thl"ee­
body attachment, the best fit occms with J = 1, and 
log XR = O.O, log u mR= 0.05. The determinations of 
J made in this way, 

J = 0.5 

J = 1.0 

(27.2* ) 

(27.3 *) 

are based on data of an entirely different type than 
are the determinations of (8). Comparison (J = 

- 0.34, - 2.07) with the present values suggests 
adoption of J = 0 as consistent with the accuracies 
of both sets of data. However, in interpreting 
XR and Un,R from the velocity measru·e, the values of 
J in (27) will be retained to insme the independence 
of the resulting measmes. 

By definition, UmR=eXP [(hmoR-hmR) /I-I]. Thus the 
scaled values of UmR determine the difference be­
tween the maximum visual height and the radio 
enduring height. Assuming the scale height H = 6 
km, hmoR-hmR has the value 0.42 km for two-body 
attachment, and 0.69 km for three-body. Referring 
now to McKinley [1961 , fig. 5- 9], it is found that 
the height of ma)':imum light production is between 
93 and 94 km for meteors in the magnitude class 
from zero to two. Weighting the mean magnitude 
in the class interval by the relative frequency of 
meteors versus magnitude gives a mean magnitude 
1\1 = 1.4 corresponding to the radio height-velocity 
data analyzed . 

N ow the scaled values of XR may be interpreted 
using (2) for defining x, and (3) to eliminate Qmo. 
The value of v= (40/35)(sec 2)2/ (10+ J) will be taken 
to be 1.2, M = 1.4. For two-body attachment with 
log XR = 0.3 , and for three-body with log Xn = 0.0, the 
resul ting equations are 

log Qo + t log K =! log A + 1.41 

log Qo+~- log K = t log A + 1.14. 

(28.2 *) 

(28.3 *) 

The constant Qo is defined for a reference velocity 
of 35 kIn/sec. 

6. Wavelength Dependence of Duration 

Meteor-echo dmations ar'e gl·eater at lar·ger 
wavelengths than at shorter wavelengths. How­
ever, the difference in the logarithm of dm-ation is 
less for long- than for short-duration meteors. The 
theoretical var·iation of the exponent n of the wave­
length dependence decreases with log z, as shown in 
figme 6 of par·t I. The exponent theoretically equals 
two for short-dmation echoes, and for long-duration 
echoes n approaches 2/3 on the two-body theory, 
1 on the tlu-ee-body theory. 

There are two principal sources of experimen tal 
data on the wavelength exponent. Greenhow [1952] 
determined the wavelength exponent n defilled by 
the expression tHl /tH2 = ("Al / /..2)" at /.. = 4 and 8 m, 
and plotted a histogTam of n versus the 4-meter 
duration. H is histogTam shows n = 2.25 at dm-a­
tion approaching zero, and n = 0.85 for durations of 
32 to 64 sec. Thus Greenhow's results for high 
durations ar·e intermediate between the two- and 
three-body limits, and do not directly discriminate 
between the two cases. Greenhow obtained n = 1.5 
for tH~4 sec. McKinley [1953, fig. 4] plots the loga­
rithm of the ratio of echo duration on 9.22- and 
5.35-m wavelength versus the logar·ithm of the 
5.35-m duration. His amplitude-corrected curve 
has n = 2 at about tH= 0.5 sec, and drops to n~1.1 
at tH ~ 100 sec, thus fitting the three-body asymptote 
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better than the two-body asymptote. For A= 
5.35 m, McKinley gets n = 1.5 at an estimated dura­
tion of 8 sec, which corrects to 6.5 sec, in fair agree­
ment with Greenhow's 4 sec f1t A= 4 m. Thc 
geometric mean of the two observations is 5.1 
sec at 4 m. From an expanded plot of figUl"c 6 
of part I (obtained usin g (41) and (42), and inter­
polation of table 1), n = 1.5 corresponds to log 
z ~-0.575, z~ 0.266 for both two- and t hree-body 
attachment. Putting this z in (1) together with 
A= 4.0, Do=4.0 , tf[ = 5.1 , and taking logarithms, 

]O + J _ 4 
logf{+ 1.086=-3 - log v + 3 logA (29.2*) 

10+ J _ 2 
log f{ + 1.66= -3- log '0+ 3 log A. (29.3* ) 

These equations refer to observations made for a 
mean normalized velocity v. 

7 . Single-Meteor Data 

The experimental results that have been considered 
so far are of a statistical natuTe. However , given 
sufficient information concern ing a single meteor, it 
is possible to obtain an independent estimate or 
trail properties. Davis, Green how, and Hall 
[1959b], b.\' combined radar and photographic ob­
servation , have obtn,ined such information for one 
meteor. From t heir tcxt and figmes tbe following 
parameters can be found: hmo= 81km (they scaled 
79 .2), hm = 94.9 km, tlI= 46 sec, .i\1= - 3.5 (smoothin g 
their curve), V = 35.2 km /sec, A= 8 In, Z~20 ° 
(from their figure ). 

From the height data, and using a scale height 
H of 6 km, um = exp [- (hm- hrno) /I-Ij = exp (- 2.33 )= 
- 1.01. From figure 5 of part I it follows that log 
x= 2.5 or 2.2 for two- or three-body attachment, 
and from figure 3 of part I (or table 1) log z= 0.47 
or 0.50. The value of v is (V /Vo) (sec Z )2!OD+J); 
with V = 35.2, Vo= 35, Z = 20 °, and J = O, '0= 1.012 . 
FTom (1), substitution of Lhe preceding values 
yields 

log f{+ l.71 = t log A (30.2*) 

log f{ + 1.33 = % log A (30.3 *) 

,\rithout use of the magnitude M . Substitution 
in (2) with Qm o from (3) yields 

log Qo+ t log K =! log A + 1.442 

log Qo+ t log K = t log A + 1.392 

(31.2) 

(31.3) 

assuming 1\;[ = -3.5 (as scaled from the brightness 
cW"ve of Davis, Greenhow, and Hall [1959a]). 
However , in tbeir text, p. 123, Davis et a1. refer 
to the meteor as of magnitude - 2. It mfl,y be noted 
that (3 1.2) is almost identical to (28.2 ) ; (31.3) 
woulcl be identical to (28.3 ) based on the height 
versus veloci t.\T data if lv1=-2.8 , the average of 
- 2 and -3.5. Because of the uncertainty in the 
exact value of M , (31) will not be used as part of 

the set of experimentally derived relations, and it 
will be assumed that (28) contain results consistent 
with the single-meteor data as well as with the 
height-versus-velocity data. 

8 . Summary of Results 

By comparing a number of different types of 
experiments a large number of equations have been 
derived relating the parameters of the trail process. 
In order to investigate the consi tency of the equa­
tions, and to order their solution , it will be helpful 
to list the results that have been obtained in the 
order in which they will be used. 

From duration versus magnitude 

J =-0.34( ± 0.5) 

J = - 2.07 ( ± 1.0 ). 

From radio height versus velocity 

J = 0.5 

J = 1.0. 

From dLU'ation versus magnitude 

log K + 2.16 = (4/3) log A 

log f{ + 1.33 = (2/ '0 ) log A. 

(8.2*) 

(8.3 *) 

(27.2*) 

(27.3*) 

(17 .2* ) 

(17 .3*) 

From the sin gle-meteor data (independent of 
magnitude) 

log K + 1.71 = (4/3) log A (3 0.2* ) 

log K + ] .33 = (2/3) log A. (30.3 *) 

F rom sin gle-meteor data (if 1111=-3.5) 

log Qo+ (6/5) log K = (3/5) log A + 1.44 (31.2) 

log Qo+ (3 /2) log K = (l /2) log A + 1.39 . (3 1.3) 

From radio heigh t versus velocity 

log Qo+ (6/5) log f{= (3 /5) log A + 1.41 (28.2* ) 

log Qo+ (3/2) log [{= (l /2) log A + 1.14. (28.3 *) 

From dmation versus magnitude 

log A + log Qo = 3.98 (12.2* ) 

(1 /2) log A + log Qo = 3.05. (12.3* ) 

From duration versus wfl,velength 

log K + 1.09= 10tJ log v+; log A (29.2 *) 

10+ J _ 2 
logf{+ 1.66=-3- log v+3 IogA. (29.3*) 

1089 



From height versus velocity and magnitude 

v= 1.23. 

From radio end height versus magnitude 

log Qo + (6/5) log K - (3 /5) log A = 0.60 

+ (4-3J /5) log v 
log Qo+ (3 /2) log K - (1 /2) log A = 0.21 

(23 *) 

(22.2*) 

+ (5-,T/2) log v. (22. 3*) 

From height of maximum light production versus 
magnitude 

log K + (1/3) log Qo= 0.22 + (10/3) log v. (20* ) 

From duration versus magnitude 

(10.2 *) 

(10.3 *) 

Based on radiants in the letter from Millman 

(16*) 

V60 = l.85 (14.2*), (15.2* ) 

V60 = 1.86 (14 .3 *), (15.3*) 

9. Treatment of Three-Body EquatIons 

In this section the three-body relationships sum­
marized in the preceding section will be examined 
for consistency, leaving the two-body equations to be 
treated in the following section. A comparison of 
the degree of consistency of the two sets of relations 
will be used to deduce whether the two-body or three­
body attachment law is in better agreement with 
experiment. In addition, the most probable values 
of the constants J , K , A, and Qo will be sought. 

Two independent determinations have been made 
of J , the exponent of the velocity dependence of the 
ratio of line density to luminosity. From (8.3*) of 
the duration-versus-magnitude data, J = - 2.07 , with 
an uncertainty of ± l.0 attributed to the uncertainty 
of cmve fittin g to the given data. An uncertainty 
of twice as much is not inconsistent with the natme 
of the data . On the other hand , the value J = 1.0 
was found from (27.3*) of the radio-height versus 
velocity data. Negative values of J could not rea­
sonably be fitted to the height-velocity data, although 
J = O might, and J = 2 co uld fit r ather well. It 
appears that J = O is tbe result most consistent with 
the two sources of data. Thi s value will be used 
where J appears in the subsequent analysis, but the 
remaining equations are quite insensitive to the value 
of J used. 

Notice next that (17.3:*), based on duration versus 
magnitude, is identical to (30.3*) based on the single-

meteor data. Hence, (17.3) will be dropped from 
the set . Equation (31.3.) of the sin gle-meteor data 
is the same as (28.3 *) of the radio height versus 
velocity data except for the constant term. As pre­
viously mentioned, a not unreasonable adjustment 
of the rather uncC1'tain magnitude used in deriving 
(3 1.3 ) would make it identical with (28 .3* ). H ence 
(31.3) will not be used . 

Examination of (12.3), (30,3) , and (28. &) shows 
that (12.3) plus 3/2 times (30.3) should equal (28.3) . 

That is, (0.5 log A + log Qo- 3.05) + (3 j2)Oog K-~ 
log A + 1.33)= Oog Qo- 0.5 log A + 1.5 log K - 1.05 ) 
should equal Oog Qo- 0.5 log A + 1.5 log K - 1.14) . 
Thus (23.3*) differs from the equation that would be 
deduced from (12.3) and (30.3) only in that the 
constant 1.14 is 0.09 greater than calculated . It 
therefore appears reasonable to drop (28.3*) from 
the set, as being a dependent and reasonably con­
sistent equation. 

Next notice that (29.3 ) less (30.3) yields 

10+ J 
0.33=-3- log v 

and taking J = O, v= 1.26. This is in excellent 
ag"eement with the independent estimate v= l.23 
of (23*) . Thus (29.3) and (30.3) are consistent, 
and it will be convenient to eliminate (29.3) from 
the set . Now putting v= 1.26 and J = O in (22.3 ) 
yields 

-t log A + log Qo+i log K = O.71 (32.3) 

in place of (22.3). Subtracting (32 .3 ) from (12.3* ) 
yields 

log A-i log K = 2.34. 

Comparing this equation with 3/2 times (30.3), 
which is log A-1.5 log K = 2.0, an approximate 
agreement is evident and (32.3) will be dropped. 
The remaining equations in A, K, and Qo are (12.3), 
(30.3), and (20). Inserting v= 1.26 in (20*), a set of 
three equations in three unlmown s results: 

0.5 log A + log Qo = 3.05 

- log K + 0.67 log A = 1.33 

log K + 0.33 log Qo = 0.55. 

(12.3) 

(30.3) 

(33.3) 

Solution of this set yields log A = l.72 , A = 52.5 sec; 
log Qo = 2.20 , Qo = 158; log K = 0.18 , K = 0 .66. 
However , the procedme of elimination used in the 
preceding paragraph does not give weight to the 
disca"ded equations, and so does not give a best 
estimate of the parameters. It is useful mainly as a 
guide to a more judicious weighting. 

Instead of following the exact procedure above, it is 
possible to write each of the equations in the set of 
the preceding section as wTitten plus a correction 
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term to be added to the constant term. A set of 
constant cOl'rections is then sought whose magnitudes 
have the lowest upper bound, such that all the 
equations are consistent. Such a set can be formed 
by adding - 0.095 to the constant in (12.3), 0.047 
each to the identical equations (17.3) and (30.3), 
0.11 to (22.3),0.094 to (29 .3.), - 0.11 to (28 .3), and 
0.021 to the logarithms of vof (23'). The method will 
be described more fully in the next section as it is 
applied in the two-body case. 

Note that the equations (in nonlogarithmic form) 
have been altered by less than 13 percent. The 
simultaneous set (12.3), (30.3), and (33.3) then 
becomes 

0 .5 log A + log Qo= 2.96 

- log K + ! log A = 1.39 

log K + i log Qo = 0.62. 

Solution of this set yields 

log A = 2.04 A = 109 ~ 100 sec (34.3 *) 

log Qo= 1.95 

log K = 0.03 

Qo= 89 ~ 100 (35 .3 *) 

K = 0.97 ~1.0. (36.3*) 

Because of the closeness of the above results to round 
numbers and because of their approximate nature, 
the values A = 100 sec, Qo = 100, and K = 1.0 will be 
adopted as best estimates of the parameters. 
Together with the value J = O, these r esults imply 
that 

Q",o= 100 X 10- ArIZ. 5 (37.3*) 

and is independent of velocity. The actual line 
density is 1.13 X Qmo el/m. 

Not used in the simultaneous solution above were 
the results for V60 /V35. For three-body attachment 
(10.3) gives this r atio as 1.82, and (16) as 1.8 ; these 
results are consistent. The small adjustments 
required to obtain consistency of the whole set of 
three-body equations leads to the conclusion that 
the three-body attachmen t theory well explains all 
the data considered. 

10. Treatment of Two-Body Equations 

In this section the two-body equations will be 
examined for consistency. It will be shown that the 
two-body equations are considerably less consistent 
than are the three-body equations; the implication 
is that the two-body attachment theory does not as 
satisfactorily explain the experimental observations. 
The analysis will be based on the second procedure 
of the previous section. That is, an arbitrary 
correction term will be added to the constant term 
of each equation of the set, and the conditions on 
the constant will be sought leading to the lowest 
upperbound on the magnitude of the corrections. 

Define correction terms to the constants in the 
equation by the following symbols: (12.2) , a (that is, 

the constant becomes 3.98+a); (17.2), b;) 20), 
c; (30.2 ), d; (22.2), e; (23), let log v=O.l+j; (29.2), 
g; (28.2) and (31.2), let a combined constant be 
1.42+ m/2, and the difference is 0.03. Then com­
bining equations in the same sequence as was used 
for elimination in the three-body case, the following 
relations must hold in order that the whole set of 
equations be consistent: 

6 
-a-Sd= 0.51 -m/2 

10 -d-T j=0.29-g 

(38.2) 

The constan t c appears only in (20) and so caJlnot 
be evaluated; let it equal zero. The above set of 
equations is to be solved by determining values of 
the constants a through m so that the greatest 
magni tude of any of the constan ts is as small as 
possible. By trial and error it has been found 
that the following approximate values satisfy the 
equations, and it does not appear that a set can be 
found with a smaller upper bound: the solution 
used is a= - 0.41, d= O.l, e= 0.39 , m = 0.42 , g= 0.39, 
j = o. These values are four times as large as the 
greatest correction needed in the thTee-body case. 
In addition, V60/V35= 2.42 from (10.2) may be com­
pru·ed with V60 /V35 = 1.8 from (16) . The check 
obtained in the three-body case (1.82 versus 1.8) 
is not obtained in the two-body case . 

Although the greater inconsistency of the two-body 
equations makes the results of the two-body analysis 
appear to be wlrealistic, solution of the adjusted set 
can be efl'ected u sin ~ the altered values of (12.2), 
(30.2 ), and (20 ) with log v = 0.1 + jfrom (23). The 
set becomes, with c zero, 

log A + log Qo= ::1.78 

- log K + t log A = 1.76 

log K+~ log Qo= 0.55 (39.2) 

The solution is log Qo = 2.73, Qo= 540; log A = 1.05, 
A = 11.2; log K =-0. 36, K = .044. Note that A, 
the attachment time constant at the reference height 
of 95 km, is not a comparable quantity for two- and 
three-body attachment, since the height vax·iation 
of the time constant is different. 

11. Discussion 

Greenhow and Hall [1961] concluded that three­
body rather than two-body attachmen t is the 
probable method of meteoric chaJ"ge removal because 
of (a) the rapidity with which the luminosity of 
visual trains decay at lower heights, and (b) the 
infrequen t occun-eD ce of long-endmil]$ radio echoes 
at heights much below 90 km. However , they 
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considered the radio data to fit the theory equally 
well for either attachment law. Since they did not 
publish a detailed mathematical theory, their 
calculations cannot be checked or extended. Com­
parison of the normalizing factors given by Greenhow 
and Hall for the plotting of dUTation versus visual 
magnitude shows that their theoretical relations 
could not have been consistent with those in the 
present work. Thus in our notation, Greenhow and 
Hall in their figUTe 3 normalize three-body duration 
by a factor proportional to A V3 1.3/5, while the pres­
ent theory requires a factor of A4/5V2,,2/5; then: 
magnitude is normalized by a constant plus log 
(A3/ VIl.25), while the present theory gives log [1.2.5/ 
(A1.25VI 2.5)]. Note especially the absence of the 
attachment time constant in Greenhow and Hall's 
expression for the normalization of magnitude. 
Similar differences exist in the two-body normaliza­
tion. 

Because of its analytic basis, it has been poseible 
to use the theory of part I to compare the various 
experimental results with each other and thus to 
arrive at values not only ,of the attachment time 
constant A , but also for the constants J , K, and Qo 
appearing in the full theory. Moreover, it has been 
found that the three-body process is strongly favored 
in comparison with the two-body process on the basis 
of the consistency of experiments of different types. 
Such a comparison was not made by Greenhow and 
Hall. 

The most probable value for J, the exponent of the 
velocity dependence of the ratio of line density to 
luminosity was found to be zero. Together with 
the value of Qo from (35 .3 *) the results imply that 
the maximum initial line density on a trail in elec­
trons/m is quite well represented by 1.13 X lO l4 times 
the normalized density 

Qmo= 100 X 1O- M I 2 .5 (40.3*) 

where M is the visual magnitude. Using the 
weighted two-body fit, the value of the constant 
would be 540; the three-body theory is preferred. 

The value of K = 1.0 was adopted from the three 
body reduction (K= 0.44 was found from the two­
body theory). With J = O, K = 1.0 placed in the 
defining equation, (11 ) of part I yields 

95 - hmo 
exp H 

Q1 /3 mo 
V 10/3 

(41 *) 

where V is the meteoric velocity in lan/sec, Qmo is 
0.885 X 10- 14 times the maximum initial line density 
in electrons/m , M is the atmospheric scale heigh t 
in lan, and hmo is the height of maximum initial 
line density in Ian. 

In the theory of part I echo duration was described 
by the normalized expression z, and line density by 
the normalized line-density expression x . Using the 

three-body values A=100 sec, K = 1.0, D = 4 m 2/s, 
and J=O , (1.3) and (2.3) become 

0.281 
Z= A2/3Vl0/3 tH (42.3*) 

and 
A }.1O- M / 2. 5 

x= 148v. Qmo 148v5' (43.3*) 

When }.= 10 m, the expression for z simplifies to 
z= tH /(l6. 5vlO/ 3). 

The transition between attachment-free and 
attachment-controlled dUTation centers about Z= ~~ 
and x = 2. Thus the transition dUTations and line 
densities are approximately tH = 1.8}.2/3V lO/ 3, and 
Qmo= 300if / }.. If }.= 10 m, the transition centers 
about tM = 8.3vlO/ 3 sec, Qm o= 30v5. The transition 
extends over about a ten-to-one line-density range. 

Although the theories have been described in 
terms of "two-body" or "three-body" attachment, 
the mathematics of the analysis is based merely on 
the assumption that the initial line density decreases 
exponentially with time, and that the time constant 
of the decay varies exponentially with height either 
as exp (h /H) , or else as exp (2h /H). The latter 
variation has been found more consistent with 
experimen ts and has led to the factor exp [- tf 
(100e 2( 11 - 95)/ H)] by which the initial line density at 
height h Ian should be multiplied. The line density 
versus time, magnitude, and height can be found 
using Qmo from (40.3*), hmo= 95 lan, A = 100 sec, and 
(7) of part I with m= 2. 

If the rate of loss of line density is attributed to 
a simple three-body attachment process, the rate 
coefficient k is defined by dN/dt=-kn2N where n 
is the atmospheric number density. Thus A = 1/kn2, 
and using A = 100 sec, n = 2.1 X 1012 cm- 3 from the 
1959 ARDC model atmosphere, k = 2.2 X lO- 27 cm6f 
sec. Assuming two-body attachment, dN/dt= 
- knN, and with A = 11.2 , k = 4.2 X lO- 14 cm3/sec. 
N either coefficient is beyond the range of possible 
values for attachment processes ; however, the 
two-body rate is perhaps a little closer to consistency 
with published values. The value A = 100 sec may 
be compared with the value of 70 sec adopted by 
Greenhow and Hall , and the value of 11.2 sec for 
the two-body process compared with their adopted 
value of 40 sec. The values of the coefficients are 
quite sensitive to errors in the experimental results. 

If the present attachment theory of meteor 
dUTations is accepted, eddy diffusion must be dis­
counted as a factor influencing the dUTation of 
meteor echoes lasting as long as 100 sec. Greenhow 
[1959] has published an interpolation between the 
rates of expansion of radio trails and visual trains 
that implies that 100 sec after trail formation the 
effective diffusion coefficient is more than ten times 
as large as the ambipolar coefficient. Such a 
result appears incompatible with the attachment 
theory, either as given here or by Greenhow. Rea­
sons exist for believing a different interpretation 
may be given to the discrepancy between the radio 
and visual train sizes. 
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12. Conclusion 

By developing the theory of meteor-echo duration 
including attachment in a general form, it h as been 
possible to study the mutual consistency of the 
various types of experimental results availa ble relat­
ing meteor magnitude, h eight, echo duration, and the 
wavelength of the sounding r adio waves . It has 
been found that the experimental r esults are in 
consid erably better agreement with a three-body 
than with a two-body attachment theory. Values 
have b een deduced for the attachment rate, the 
initial line density of the trail versus visual magni­
t ude, for a constant relating h eight of maximum line 
density to the velocity and intensity of ionization, 
and for the velocity dependence of the ratio of 
ionization to luminosity. It is believed that the 
method used for comparing the r esults of experi­
ments of different types leads to more consistent 
values for the constants of the theory of meteor 
durations than have previously been available. In 
combination with t he theoretical resulLs of part I , 
use of the co nstants deduced jn the present paper 
makes possible the theoretical prediction and descrip­
tion of radio echo heights ftnd durations. 
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