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A theory for the dependence of meteoric-echo heights and durations on meteor velocity
and magnitude, and on the radio wavelength, is used to interpret experimental meteor data

of a variety of types.

assumption of a three-body than of a two-body attachment process.
ence is found for the ratio of line density to luminosity.

It is shown that the data set forms a more consistent whole on the

No velocity depend-
An attachment time constant of

about 100 sec is deduced for a reference height of 95 km, and a zero-magnitude meteor is

found to produce a maximum line density of about 100X 10 electrons/m.
the theoretical and experimental results makes possible

Combination of
caleculation of the heights and

durations of meteor echoes under a full range of conditions.

1. Introduction

In a previous paper [Manning, 1962] hereafter to
be referred to as part I, the author developed a
theory giving the theoretical heights and durations
of radio echoes from large meteors. The theory
assumed that trails are dispersed by attachment as
well as diffusion. The scale height of the attachment
process was made adjustable, as was the velocity
dependence of the ratio of ionizing to luminous
efficiency. In the present paper the theory will be
compared with experimental results, and it will be
shown that the unknown parameters of the theory
can be determined. These parameters include the
attachment time constant at reference height, the
height dependence of the attachment time constant,
the exponent of the velocity dependence of line den-
sity for fixed visual magnitude, the coefficient giving
line density for reference visual magnitude, and a
parameter relating height and maximum line density.

That attachment is an important process in meteor
trails was shown by Davis, Greenhow, and Hall
[1959a], and by Greenhow and Hall [1961]. They
tested the effect of attachment by comparing theo-
retical curves, including attachment, with a variety
of experimental plots. However, lacking a complete
mathematical analysis of the echoing phenomena,
they did not obtain all the data available from the
experimental comparisons. Greenhow and Hall
showed that a three-body attachment process was as
good a fit to most of the data as was the two-body
process of Davis, Greenhow, and Hall, but they
favored the three-body process because it seemed to
explain better the infrequency of enduring optical
trains and of enduring radio echoes at low heights.

1 Jointly supported by the U.S. Army Signal Corps, the U.S. Air Force, the
U.S. Navy (Office of Naval Research), and by the National Science Founda-
tion, Grant NSF-GP948.

The author will show that a more thorough compar-
1son of theory with the whole mass of o\p(‘nm(\ntal
data is consistent only with a height dependence of
attachment time constant equivalent to that for the
three-body process. By solving simultaneously the
relations fitting data of all types, best values will be
found for the important parameters influencing echo
decay. Insertion of the parameters in the theory of
part I will make possible the prediction of echo
behavior.

2. Analysis of Duration Versus
Visual Magnitude

In part I the theory relating duration to line
density was expressed in terms of a normalized dura-
tion variable z and a normalized line-density variable
xz. For a given height-dependence of attachment
time constant, a single curve was found relating z
to z, applicable for arbitrary wavelength, diffusion
coefficient, meteor velocity, ete. By expressing
the line density as a function of visual meteor
magnitude, the theory can be compared with ex-
perimental measures of echo duration versus magni-
tude with velocity as a parameter. The values of
the normalizing factors needed to fit the data to
the theory will then determine several relations
between the physical parameters of the trail. In
making the analysis, we shall carry two sets of
equatlons one for two- body and the other for three-
body attachment. Each type of experimental data
will be compared with both sets of equations, so
that a choice between the decay laws can finally
be made by comparing the consistency of the sets
of equations relating the derived parameters on the
two assumptions. Two-body equation numbers
will be written in the form (nn. 2), and the three-
body equations as (nn. 3) where nn is the usual
equation number.
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The normalized duration variables from part I | while the normalized line-density variables are:
are:
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Ficure 1. Median log (duration) versus magnitude from Millman and McKinley [1956] for perseid meteors, V=60 km/s.

The solid curve is a fitted theoretical three-body curve.  Despite the difference in IIchsition of the asymptote intersection, the two-body curve (not shown) fits almost as
well.
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where #5 is the echo duration, ), is the ambipolar
diffusion coefficient at a reference height (to be taken
as 95 km), Kis a constant (defined by (11) of part I)
in the equation relating the maximum line density
to the height at which it occurs, A is the attachment
time constant at the reference height, X is the radio
wavelength, and o= (V/V;)(sec Z)¥1tD  where V
is the meteor velocity, V; is a reference velocity, Z
is the meteoric zenith angle, and ./ is the exponent
of the velocity dependence of maximum normalized
line density €),,=0.885X107"7, with Z the line
density in electrons/meter.

As was shown in part I, the theoretical curves of
log z versus log z are straight lines of different slope
which are joined by a curved transition. To fit the
experimental duration curves to theory, the normal-
ized curves may be translated until they are super-
imposed on the experimental points with minimum
error. The parameters of the fit may then be con-
veniently estimated from the duration and magnitude
for which an extrapolation of the linear portions of
the log z versus log # curves intersect. In part I it
was shown that for two-body attachment the inter-
sections occur at z=1.3971, z=0.87772, while for

2.0
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Ficure 2.

The smooth curve is fitted from the three-body theory.

Median log (duration) versus magnitude from Millman and McKinley [1956] for geminid meteors, V=35 km/s.

The two-body curve (not drawn) fits almost as well.
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three-body attachment the intersection occurs for
2=1.0783, 2=0.62196. These values of 2 and z may
be substituted in (1) together with the duration and
line-density parameters from the curve fitting. To
relate the line density in (1) to the experimentally
observed visual magnitude, use will be made of the
equation

Qno=Qo(V/V)7 1072122 (3)

when @,,,~107"* times the maximum line density on

the trail, @, is a constant independent of velocity V

or magnitude M, but dependent on the choice of
reference velocity V;, and /is a constant determining
the velocity dependence of @,,,; thus o is the velocity
exponent of the ratio of line-density to ligcht output.

The best available experimental data on echo
duration versus visual magnitude appears to be that
of Millman and McKinley [1956]. They tabulate
the logarithm of duration in steps of 0.2 versus
absolute visual magnitude in steps of 0.5 for Perseid,
Geminid, § Aquarid, and nonshower meteors. The
data on the Perseid (60 km/sec) and Geminid (35
km/sec) showers will be used in this study. The

data on the Aquarids are based on a smaller number
of meteors. For comparison with theory, the data
of Millman and MecKinley have been reduced by
computing median values of duration for each magni-
tude interval. The resulting plots for the Perseids
and Geminids are shown in figures 1 and 2.

The smooth curve interpolated through the ex-
perimental points is a plot of the logarithm of
normalized duration z versus the logarithm of nor-
malized line density #. The abscissa scale for & was
adjusted from log x proportional to log @,,,, to log
proportional to —A/2.5 using (3). Separate theo-
retical curves of log z versus log = (fig. 3 of part I)
were fitted to figures 1 and 2 by sight for both two-
and three-body attachment; the curves plotted are
for the three-body law. No firm choice between the
two- and three-body curves can be made on the basis
of goodness of fit alone, although the three-body
curves seem a bit better. The best-fitting curves
can be described by the values of log-duration and
visual magnitude at the intersection of the dashed
extrapolated linear curves and are tabulated in table
1. Although the curves for the two-body case are
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Frcure 3.  Height of maximum luminosity versus magnitude adopted as best fit to figure 5-11 of McKinley [1961] for fixed scale
height.
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not plotted, the point of intersection is indicated by
a small box. Note that in figure 1 the deviation of
the points from the curve for negative log of duration
is fitted to a theoretical curve based on under-dense
behavior. Comparison with figure 2 shows that the
transition from underdense to overdense duration
behavior occurs at lower magnitudes for the Perseid
meteors because of the smaller overdense duration
for a given magnitude.

TaBLE 1.

Expervmental results

{ Two-body Three-body
|
1

attachment attachment

Perseids____________| log tm1=1.93 log tni=1.71
M=-16 Mi=—1.9

Geminids__________| log tm2=1.19 log tr2=1.02
M>=2.3 M;y=1.9

Millman and MeKinley’s measurements were
made with a radio wavelength of A=9.18 m. At a
reference height of 95 km, we shall assume ;=
4 m?/sec. Putting these constants in (1) and (2)
together with the values of z and z previously given
as appl\ ing to the intersection of the linear segments
of the theoretical cur ves, we obtain in loganthml(
form the pairs of equuti(ms.

% log A+ “0»:“7—)» log w:().14+g— log K-+log tn (4.2)
% A+- (10+J) log v :—().396—}—% log K+-log Q.0
(5.2)
and
% o A+ (!()+J) log v=0.3474log K+log t; (4.3)
L 1 A+(10+J) log 2):——0.241—}—3 log K-+1og Q.-

(5.3)

Eliminating log » between (4) and (5), and elimi-
nating @,,, using (3),

log A=0.676+2 log tys—log Qy—Jlog (V/V,)+M/2.5

(6.2)
log A=1.523+3log ty;—2log Q,

—oJ log (V/Vo)+2M/2.5. (6.3)

If we put the values of ¢ and M for the Perseids and
Geminids in (6), two pairs of equations result.

Subtracting,
0 iQ(l()f_{ t *l();l' f”:)

+ (M —M,)/2.54J log Vo/Vi  (7.2)

0=3(og ty1—log ty2)

+ (AMI le)/l c] 1()“ ‘ 2/‘ o (73)
Inserting the durations and magnitudes from table 1,
together with the ratio Vy/V, of the Perseid-to-
Geminid velocity as 60/35, (7) can be solved for the
exponents J of the velocity dependence of the ratio
of line density to luminosity. It was shown in part [
that the exponent of the ratio of ionizing to luminous

efficiency is J4-1.

J=—0.34(+0.5) (8.2%)
J=—2.07(+1.0). (8.3%)

The asterisk will be used in the equation numbers
when the equations represent, the results of a calcu-
lation leading to relations between the unknown
parameters. The parentheses in (8) give the esti-
mated probable errors of the results based on the
propagation of the estimated scaling errors from
ficures 1 and 2.

The values of J from (8) may now be inserted in
(4) and (5). Evaluating these equations for the
Perseids and Geminids and subtracting, it is possible
to solve for the ratio of v /vs;, the ratio of the values
of

x,,v
Vo(cos Z)200+D (9)

for 60- and 35-km/s meteors; note, however, that the
zenith angle 7 of the observations for Perseids and

Geminids differs, so that vg/v3;%# Vi/Vs;.  From
subtraction of (4.2) for the two velocities,
;ﬁ’ 2.42 (10.2%)
35
and from (4.3)
g (10.3%)
U35

Subtraction of (5) yields the same result. The sig-
nificance of these results will be discussed after all
the available results have been derived.

Another set of relations between unknown quanti-
ties may be obtained by eliminating @,,, from (5)
using (3), and then eliminating log » between (4)
and (5). The results are

—log A=—0.68+1og @,

—M/2.5+J log V/Vi—2 log ty (11.2)
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— ¥ log A=—0.763+1og Qo

—M/2.5+J log V/Vi—(3/2) log tg. (11.3)
As areference velocity we shall choose V=235 km/sec.
Thus @, will be the maximum normalized line density
of a zero-magnitude, 35-km/sec meteor. Then
evaluating (11) for the values of M, tgz, and V for
Geminid meteors (V=35 km/sec, and t5, M from
table 1), there results

log A+log y=3.98 (12.2%)
0.5 log A+log Qy=13.05. (12.3%*)

These equations are independent of the value of J.

One additional independent result may be deduced
from the duration-magnitude data. Putting J from
(8) into (4), and evaluating for Geminids of V=35,
there results

log K+42.22=4% log A+3.21 log vs5  (13.2)
log K+1.367=% log A+2.65 log v35.  (13.3)

The values of v3; and v can be roughly estimated
independently of the duration-magnitude data. In
response to a letter, Millman has kindly provided
rough estimates of the values of zenith angle appro-
priate to the observations in Millman and McKinley
[1956]. From his data, a rough mean value of
zenith angle Z would seem to be Z=30° for the
Geminids, Z=45° for the Perseids. Fortunately »
is relatively insensitive to the value of Z. From
(9), using J from (8),

1}35:1.03 (14.2*)

ve5=1.04 (14.3%)
and

vo=1.85 (15.2%)

5=1.86 (15.3%)
and

2_1.80 (16%)

V35

for two- or three-body theory. Comparison of (16)
and (10) favors the thlee—bod\' case.
Putting Vi; from (14) in (13) leads to the result

log K+42.16=4 log A (7A2%)

log K+1.336=2 log A. (17.3%)
The starred equations may be looked on as part
of a set relating the attachment and trail-formation
parameters. Other relations between these param-
eters will be derived in the following sections from
other forms of experimental data, and then the most
consistent solutions to the resultant over-determined
sets of equations will be found.
In evaluating (2) the diffusion coefficient 1), at
the reference height 95 km has been assumed to be

4 m?/sec. This value is consistent with both diffu-
sion theory and experimental values deduced from
underdense-echo amplitude decay versus time.
However, using the data of figure 1 the chosen value
of Dy may be verified while eluc idating the prop-
erties of the duration-magnitude plots. For under-
dense echoes, the echo amplitude is proportional
to Q.. exp (—t/T) where 7" is the exponential-decay
time constant, N?/(16x*D). Thus using (3), echo
amplitude in the underdense region will be propor-
tional to exp (—0.92M—¢/T). The duration will
be determined by the moment when the amplitude
falls below a threshold set by the system sensitivity.
Hence, if ¢ is set equal to the underdense duration,
it follows that 0.92M+-t,/T=C, a system-sensitivity
constant. If duration is plotted versus M on a
linear scale, the decay time constant 7" can be found.
Plotting the durations less than 1.5 sec versus M
from figure 1 yields ('=5.8, T=0.29 sec. From 7
with X=9.18, the diffusion coefficient is 1.8 m?/sec.
From MeKinley [1961, fig. 5-11], for M=2.5 the
height is just above 90 km. Correcting D=1.8
m?/sec at 90 km to the reference height of 95 km
using a scale height of 6 km gives [)y=4.1, close to
the value adopted. In figure 1 the underdense
durations as fitted above are plotted as the dashed
line. It is interesting to note that the duration and
magnitude at which the transition from underdense
to overdense echo behavior occurs is made clearly
evident by this procedure. The position of the
transition depends on meteor velocity and is not
the same for Perseids and Geminids.

3. Height of Maximum Light Production

The photographic evidence on the height of
maximum light production may be used to derive

another relation between trail parameters. From
(11) of part I,

K 1/3

e —exp (95—, )/H] (18)

where @,,, is the maximum value of normalized line
density on the trail, 4,, is the height of maximum
line density (and light production), » is defined by
(9), and, as before, J 1s the velocity exponent of
the ratio of line density to luminosity, H is the
atmospheric scale height, and the parameter K may
be considered defined by the equation. Its value
depends in a complicated way on the meteoric
density, ionization potential, heat of ablation, heat-
transfer coefficient, shape factor, ete.

Eliminating @,,, using (3), and setting (V/V;) v,

olves
: (95—hmo)

log (KQ4°/v"")—M/7.5=0.436 ~——="-  (19)

If » does not change with magnitude M, and H
is independent of height, (19) describes a linear
relation between #,,, and M. In figure 3 a straight
line has been fitted to the height data of Whipple,
Jacchia, and Hawkins, and Southworth as summa-
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rized by Millman and McKinley [1956, fig. 5-11].
The parameters of the fit are //=6 km, A,,,—92 km
at M=0. Equation (19) then becomes

log K—i—% log Q.J:O.218+}_—? log . (20%)

Note that the experimental observations relate to
meteors with a distribution in velocity. Thus the
symbol 7 refers to a mean value of ».

loss of electrons by attachment is greater at low
heights, but the dispersal due to diffusion is oreater
at high “altitudes. K xperimentally, the final echoms:
height is nearly independent of visual mugnltude
<vap1to the marked increase in f,,, with magnitude
shown in figure 3. Using the notation wu=exp
[— (h—h,,,)/H] defined by (6) of part I, the difference
in_height between the final echoing point and the
point of maximum initial line d(‘nslt\ may be de-
scribed by w,=exp [—(hn—lin,) )/H]. In figure 4
the quantity —AM/2.5 is plotted versus log wu,,
based on McKinley’s plot.

Analysis of the data in figure 4 starts with (2).

4. Height of Enduring Radio Echoes Eliminating @,, in favor of @, and M using (3),
_ letting v~ V/V,, and taking logarithms,
The experimental results on the dependence of the -
height of enduring radio echoes versus visual magni- o J[‘H Qu(KN)°" (21.2)
tude are summarized by Millman and McKinley g7 2.5 ° 2.2298%(AD, )““v“‘“ DR
[1956, fig. 5-11]. In the presence of attachment and
diffusion, the final echoing height 4, differs from loo ‘T*'_A‘[‘}_l()( Qn . (21.3)
the height of maximum initial line density A,,; the ° 20455 °74 ll)( "'/7"‘"""” -
3-BODY FIT
2.0 |—
LOG X VS LOG Uy
W
(=)
>
—
= 1.0 —
<
>3
o=
o
w
—
w
>3
-
T
= 0.0 |—
=
w
=
'—
=
[ J
= o
= -l.o[
[Ve)
= .
~N
-2.0 | | | | |
-2.0 =) ol -1.0 -0.5 0RO 0.5
LOG Uy
FIGURE 4. Fit of three-body theory to experimental data on magnitude versus height of enduring radio echoes. Poinls are from

Millman and MecKinley [1956].
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Notice that log # and —M/2.5 vary together linearly.
Hence, the theoretical shape of the plot of —Af/2.5
versus log u,,, in figure 4 will be the same as that of a
plot of log # versus log u,, except for translation of
the ordinate by an amount related to the bracketed
quantity in (21). The theoretical variation of log z
versus log u,, 1s shown in figure 5 of part I, and the
best-fitting curve for three-body attachment is
included 1 figure 4 of the present part. No dif-
ference in goodness of fit is discernible between the
two- and three-body cases. The best-fitting trans-
lation, for the logarithms of the bracketed quantities
in (21), yields the values 0.35 for the two-body case,
and 0.0 for the three-body case. Using D,=4 m?*/sec,

and A=9.18 m, the result is

log Qo—i—-g log K—g log A:O.GO—f—<4~§%]~‘> log ©

0)

(22.2%)
3 1 ' ’ —
log Qo+§ log K—§ log AzO.Ql—}-(S—%/) log 7.

(22.3%)

The velocity ratio » has been barred because the
data were taken for meteors of distributed velocity.
An estimate of the mean velocity in figure 5-11 of

3.0
2.0 —
FITTED
2-BODY CURVE
1.0 —
o
><
=
b4
—0.0 —
=)
=00 | 2
-2.0 }—
| | 1 | |

-2.0 -1.5 -1.0 -0.5 0.0 0.5
LOG Uy/Uyg
Fraure 5. Fit to the theory of processed two-body velocity-versus-height data.
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McKinley can be found from his figure 5-9; the
heights in figure 5-11 for a given magnitude corre-
spond to a velocity V of about 43 km/sec. Using
Vo=35 km/sec, an estimate for » in (22*) and (20%)
is then

=il 23, (23%)
This value may be used as a rough check to the
values of » to be deduced later by simultaneous
solution of the starred equations.

5. Height Versus Velocity Data

As meteor velocity increases, there is a correspond-
ing increase in both the height of maximum initial

ionization production as determined from the height
of maximum light production, and the height of
enduring radio echoes. Analysis of these data will
yield additional relations between the trail param-
eters, including an independent estimate of oJ.

The basic height equation, obtained from (18) by
multiplying both sides by, =exp [— (hy—"hn,)/H], 18

KQ\ um
l,‘(l‘:—{-fl)/ii =exp [(95—h,)/H]

(24)

with A, the final echoing height.
Since the radar sensitivity fixes the detectable
line density parameter @,,,, it is the same for all

FITTED
3-BODY CURVE

-0.5 0.0 0.

LOG Uy/Uyg

FIGURE 6.

Fit to the theory of processed three-body velocity-versus-height data.
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velocities, and with respect to a reference height
and velocity,

u, “p \(10+0)/3
;_:(U—R> exp [(hmR_hrn)/H]

Umr (25)
\\'here "/mR:eXp [_ (h’mR_hmoR)/H] iS a Imeasure Of
the difference of the enduring radio and visual
heights at the reference velocity. With the ex-
ceptlon of J, the quantities on the right-hand side
of (25) are Lnown since figure 5-10 “of MecKinley
[1961] gives radio endlng heights versus velocity.
The ratio u,,/u,r on the left-hand side of (25) is a
function of z determined by the theory of part I.
But from (2), upon eliminating @,,, by (3),

z _(2) >(3J/5)—4
Ir Ur
2 7(2) >(J/2)—5
Lr Vg

Then wu,,/u,z versus z/zp from (25) can be solved
simultaneously with the theoretical relation between
the same variables for a variety of assumed values
of J. Each experimental point of height %, versus
velocity V determines a value of (v/vg) and of
(hmr—h,) once the reference height and velocity
are chosen; the values used are 40 km/sec and
94 km. For each assumed value of J, the experi-
mental points determine a value z/z; from (26), and
a value of (u,/u,z) from (25). The values of log
(x/xg) versus log (un,/u.z), for —2<J<2 were
calculated by digital computer and are plotted in
figures 5 and 6 for two- and three-body attachment.
The theoretical curve of log a versus log u,, (fig. 5 of
part I) was then superimposed on the plots of
ficures 5 and 6 and translated in both coordinate
directions to obtain the best fit. Because in figures
5 and 6 2=y, and 1,,=1u,,z 1s the origin, and because
the required translations of the theoretical log
versus log u, curves are log z, and log 1w,z the
theoretical log # versus log u,, curve must be trans-
lated so that it always passes through the origin in
the log (x#/zz) versus log (u,/u,.r) plots. The
e\pelnnentdl curve of log (@/wR) versus log (i,,/16,,z)
that can be best fitted to a translated theoretical
curve will correspond to the best value of JJ. The
translation log z, (or the related translation log
Unr) can be used to determine another relation
between the trail parameters.

For two-body attachment, the best fit to figure
5 occurs if J equals about 0 or 0.5, with 0.5 more
likely, and log #,=0.3, log u,,=0.075. For three-
body attachment, the best fit occurs with J =1, and

(26.2)

(26.3)

log #z=0.0, log ,z=0.05. The determinations of
J made in this way,
J=0:5 (27.2%)
J=1.0 (27.3%)

are based on data of an entirely different type than
are the determinations of (8). Comparison (J=

—0.34, —2.07) with the present values suggests
adoption of J=0 as consistent with the accuracies
of both sets of data. However, in interpreting
& and 1,z from the velocity measure, the values of
Jin (27) will be retained to insure the independence
of the resulting measures.

By deﬁmtlon Umg=€XP [(hpor—lmzr)/H]. Thus the
scaled values of Une determine the difference be-
tween the maximum visual height and the radio
enduring height. Assuming the scale height H=6
km, h,ox—hne has the value 0.42 km for two-body
attachment and 0.69 km for three-body. Referring
now to \IcKlnle\ (1961, fig. 5-9], it 1s found that
the height of maximum hght pr oduction is between
93 and 94 km for meteors in the magnitude class
from zero to two. Weighting the mean magnitude
in the class interval by the relative flequencv of
meteors versus magnitude gives a mean magnitude
M=14 cmrespondlno to the radio heluht-velomtv
data analyzed.

Now the scaled values of z; may be interpreted
using (2) for defining z, and (3) to eliminate €),,.
The value of v=(40/35)(sec Z)¥1°+" will be taken
to be 1.2, M =1.4. For two-body attachment with
log 5 =0.3, and for three-body with log z; =0.0, the
resulting equations are

log Qo+¢log K=32og A+1.41  (28.2%)
log Qy+3 log K=14 log A-+1.14.  (28.3%)

The constant @ is defined for a reference velocity
of 35 km/sec.

6. Wavelength Dependence of Duration

Meteor-echo durations are greater at larger
wavelengths than at shorter Wavelenoths How-
ever, the difference in the logarithm of duration is
less for long- than for short-duration meteors. The
theoretical variation of the exponent n of the wave-
length dependence decreases with log z, as shown in
figure 6 of part I. The exponent theoretically equals
two for short-duration echoes, and for lone-duration
echoes n approaches 2/3 on the two-body theory,
1 on the three-body theory.

There are two prineipal sources of experimental
data on the wavelength exponent. Greenhow [1952]
determined the wavelength exponent n defined by
the expression tHl/tHa—()\l/)\o )" at A=4 and 8 m,
and plotted a histogram of n versus the 4-meter
duration. His histogram shows 7=2.25 at dura-
tion approaching zero, and n=0.85 for durations of
32 to 64 sec. Thus Greenhow’s results for high
durations are intermediate between the two- and
three-body limits, and do not directly discriminate
between the two cases. Greenhow obtained n=1.5
for ty~4 sec. McKinley [1953, fig. 4] plots the loga-
rithm of the ratio of echo duration on 9.22- and
5.35-m wavelength versus the logarithm of the
5.35-m  duration. His amplitude-corrected curve
has n=2 at about #;=0.5 sec, and drops to n~1.1
at 17 ~100 sec, thus fitting the three-body asymptote
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better than the two-body asymptote. For A=
5.35 m, McKinley gets n=1.5 at an estimated dura-
tion of 8 sec, which corrects to 6.5 sec, in fair agree-
ment with Greenhow’s 4 sec at A=4 m. The
geometric mean of the two observations is 5.1
sec at 4 m. From an expanded plot of ficure 6
of part I (obtained using (41) and (42), and inter-
polation of table 1), n=1.5 corresponds to log
z2e~—0.575, 2~0.266 for both two- and three- l)()(l\

attachment. Putting this z in (1) together with
N=4.0, ),=4.0, ty=5.1, and taking logarithms,
0
log K+1.()8(‘)—1 JrJ log v+ log A (29.2%)
0 2
log K+1.66- 101 +J log v+ 3 log A.  (29.3%)

These equations refer to observations made for a
mean normalized velocity 7.

7. Single-Meteor Data

The experimental results that have been considered
so far are of a statistical nature. However, given
sufficient information concerning a single meteor, it
is possible to obtain an independent estimate of

trail  properties. Davis, Greenhow, and Hall
[1959b], by combined radar and photographic ob-
servation, have obtained such information for one
meteor. From their text and figures the following
parameters can be found: fy,,= ~81 km (they sc alv(l
79.2), h,,=94.9 km, t;,=46 sec, M= —3.5 (smoothing
their curve), V=352 ]\m/sv, A=8 m, /~20°

(from their ficure).

From the height data, and using a scale height
H of 6 km, u,=exp [— (hn—Fhn,)/H|=exp (—2.33)=
—1.01.  From figure 5 of part I it follows that log
z=2.5 or 2.2 for two- or three-body attachment,
and from lwulo 3 of part I (or table 1) log 2=0.47
or 0.50. The value of » is (V/Vy) (sec /)’/“"“’
with: V=35.2, V=35, Z=20°, and J=0, v=1.012.
From (1), substitution of the prv('eding values

vields
log K+1.71=4 log A (30.2%)
log K+1.33=2 log A (30.3%)
without use of the magnitude M. Substitution
in (2) with @, from (3) yields
log Q+¢ log K=3 log A+1.442 (31.2)
log Qy+3 log K=1 log A+1.392 (31.3)
assuming M=—3.5 (as scaled from the brightness
curve of Davis, Greenhow, and Hall [1959a]).
However, in their text, p. 123, Davis et al. refer

to the meteor as of magnitude —2. It may be noted
that (31.2) is almost identical to (28.2); (31.3)
would be identical to (28.3) based on the height
versus velocity data if M=—2.8 the average of
—2 and —3.5. Because of the uncm'lninl_\' in the

exact value of M, (31) will not be used as part of

the set of experimentally derived relations, and it
will be assumed that (28) contain results consistent
with the single-meteor data as well as with the
height-versus-velocity data.

8. Summary of Results

By comparing a number of different types of
experiments a large number of equations have been
derived relating the parameters of the trail process.
In order to investigate the consistency of the equa-
tions, and to order their solution, it will be helpful
to list the results that have been obtained in the
order in which they will be used.

From duration versus magnitude

J=—0.34(£0.5) (8.2%)
J=—2.07(4+1.0). (8.3%)
From radio height versus velocity

J=0.5 (27.2%)
=110, (27.3%)

From duration versus magnitude

log K+2.16=(4/3) log A (17.2%)
log K+ 1.33=(2/3) log A. (17.3%)

From the single-meteor data (independent of

magnitude)
log K+1.71=(4/3) log A (30.2%)

log K+41.33=(2/3) log A. (30.3%)

Irom single-meteor data (f M= —3.5)
log Qv+ (6/5) log K= (3/5) loe A+1.44  (31.2)
log @yt (3/2) log K=(1/2) log A+1.39. (31.3)

From radio height versus velocity

log Q)+ (6/5) log K= (3/5) log A+1.41 (28.2%)
log @+ (3/2) log K= (1/2) log A+1.14. (28.3%)

From duration versus magnitude

log A+log Qy=3.98 (12.2%)
(1/2) log A+log Q,=3.05. (12.3%)

From duration versus wavelength

10J

log K41.09=——log /—}— log A

(29.2%)

9,
log K+1.66- ”’TLJ log 7+3 log 4. (29.3%)
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From height versus velocity and magnitude

o= 1l.23 @3+
From radio end height versus magnitude
log Qo+ (6/5) log K— (3/5) log A=0.60
+ (4—3J/5) log v (22.2%)
log @+ (3/2) log K—(1/2) log A=0.21
+(5—J/2) log 7. (22.3%)

From height of maximum light production versus
magnitude

log K+ (1/3) log ©y,=0.22-+ (10/3) log ». (20%)
From duration versus magnitude

Voo/v3s=2.42 (10.2%)

Veo/V35=1.82. (10.3%)

Based on radiants in the letter from Millman

Veo/V3:=1.8 (16%*)
ps=1.03  vep=1.85 (14.2%), (15.2%)
ps=1.04  pp=1.86 (14.3%), (15.3%)

9. Treatment of Three-Body Equations

In this section the three-body relationships sum-
marized in the preceding section will be examined
for consistency, leaving the two-body equations to be
treated in the following section. A comparison of
the degree of consistency of the two sets of relations
will be used to deduce whether the two-body or three-
body attachment law is in better agreement with
experiment. In addition, the most probable values
of the constants J, K, A, and ¢, will be sought.

Two independent determinations have been made
of J, the exponent of the velocity dependence of the
ratio of line density to luminosity. From (8.3*) of
the duration-versus-magnitude data, J= —2.07, with
an uncertainty of +1.0 attributed to the uncertainty
of curve fitting to the given data. An uncertainty
of twice as much is not inconsistent with the nature
of the data. On the other hand, the value J=1.0
was found from (27.3*%) of the radio-height versus
velocity data. Negative values of J could not rea-
sonably be fitted to the height-velocity data, although
J=0 might, and J=2 could fit rather well. It
appears that J=0 is the result most consistent with
the two sources of data. This value will be used
where JJ appears in the subsequent analysis, but the
remaining equations are quite insensitive to the value
of J used.

Notice next that (17.3*), based on duration versus
magnitude, isidentical to (30.3*) based on the single-

meteor data. Hence, (17.3) will be dropped from
the set. KEquation (31.3) of the single-meteor data
is the same as (28.3*%) of the radio height versus
velocity data except for the constant term. As pre-
viously mentioned, a not unreasonable adjustment
of the rather uncertain magnitude used in deriving
(31.3) would make it identical with (28.3*%). Hence
(31.3) will not be used.

Examination of (12.3), (30,3), and (28.3) shows
that (12.3) plus 3/2 times (30.3) should equal (28.3).

That is, (0.5 log A+log Qu—3.05)+(3/2)(og K—%

log A4+1.33)=(log Q,—0.5 log A+1.5 log K—1.05)
should equal (log @,—0.5 log A+1.5 log K—1.14).
Thus (23.3*) differs from the equation that would be
deduced from (12.3) and (30.3) only in that the
constant 1.14 is 0.09 greater than calculated. It
therefore appears reasonable to drop (28.3*) from
the set, as being a dependent and reasonably con-
sistent equation.
Next notice that (29.3) less (30.3) yields

0.33219;;—'] og v

and taking J=0, »=1.26. This is in excellent
agreement with the independent estimate =1.23
of (23%). Thus (29.3) and (30.3) are consistent,
and it will be convenient to eliminate (29.3) from
the set. Now putting 7=1.26 and J=0 in (22.3)
vields

—3 log A+log Q43 log K=0.71 (32.3)

in place of (22.3).
vields

Subtracting (32.3) from (12.3%)
log A—3 log K=2.34.

Comparing this equation with 3/2 times (30.3),
which is log A—1.5 log K=2.0, an approximate
agreement 1s evident and (32.3) will be dropped.
The remaining equations in A, K, and ¢ are (12.3),
(30.3), and (20). Inserting »=1.26 in (20*), a set of
three equations in three unknowns results:

0.5 log A+log @y=3.05 (12.3)
—log K+40.67 log A=1.33 (30.3)
log K+40.33 log Qy=10.55. (33.3)

Solution of this set yields log A=1.72, A=52.5 sec;
log @=2.20, @,=158; log K=0.18, K=0.66.
However, the proceduve of elimination used in the
preceding paragraph does not give weight to the
discarded equations, and so does not give a best
estimate of the parameters. It is useful mainly as a
guide to a more judicious weighting. _
Instead of following the exact procedure above, it is
possible to write each of the equations in the set of
the preceding section as written plus a correction
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term to be added to the constant term. A set of
constant corrections is then sought whose magnitudes
have the lowest upper bound, such that all the
equations are consistent. Such a set can be formed
by adding —0.095 to the constant in (12.3), 0.047
each to the identical equations (17.3) and (30.3),
0.11 to (22.3), 0.094 to (29.3), —0.11 to (28.3), and
0.021 to the logarithms of » of (23). The method will
be described more fully in the next section as it is
applied in the two-body case.

Note that the equations (in nonlogarithmic form)
have been altered by less than 13 percent. The
simultaneous set (12.3), (30.3), and (33.3) then
becomes

0.5 log A+log Q=2.96

—log K+% log A=1.39
log K44 log Q,=0.62.
Solution of this set yields

log A=2.04 A=109~100 sec  (34.3%)

log Q=195  Q,=89~100 (35.3%)

log K=0.03  K=0.97~1.0. (36.3*)
Because of the closeness of the above results to round
numbers and because of their approximate nature,
the values A=100 sec, =100, and K=1.0 will be
adopted as best estimates of the parameters.
Together with the value J=0, these results imply
that

Qro=100X 104725 (37.3%)
and is independent of velocity. The actual line
density is 1.13 X @,,, el/m.

Not used in the simultaneous solution above were
the results for »g/v5;. For three-body attachment
(10.3) gives this ratio as 1.82, and (16) as 1.8; these
results are consistent. The small adjustments
required to obtain consistency of the whole set of
three-body equations leads to the conclusion that
the three-body attachment theory well explains all
the data considered.

10. Treatment of Two-Body Equations

In this section the two-body equations will be
examined for consistency. It will be shown that the
two-body equations are considerably less consistent
than are the three-body equations; the implication
is that the two-body attachment theory does not as
satisfactorily explain the experimental observations.
The analysis will be based on the second procedure
of the previous section. That is, an arbitrary
correction term will be added to the constant term
of each equation of the set, and the conditions on
the constant will be sought leading to the lowest
upperbound on the magnitude of the corrections.

Define correction terms to the constants in the
equation by the following symbols: (12.2), a (that is,

f=o.

the constant becomes 3.98+4a); (17.2), b;) 20),
¢; (30.2), d; (22.2), ¢; (23), let log v=0.14+F; (29.2),
¢; (28.2) and (31.2), let a combined constant be
1.42+4+m/2, and the difference is 0.03. Then com-
bining equations in the same sequence as was used
for elimination in the three-body case, the following
relations must hold in order that the whole set of
equations be consistent:

—a—§d=0.51——m/2
—d— %j’IO.QQ-y

—a—l—g(l—f—%jzl.b‘O—e (38.2)

The constant ¢ appears only in (20) and so cannot
be evaluated; let it equal zero. The above set of
equations is to be solved by determining values of
the constants @ through m so that the greatest
magnitude of any of the constants is as small as
possible. By trial and error it has been found
that the following approximate values satisfy the
equations, and it does not appear that a set can be
found with a smaller upper bound: the solution
used 1s a=—0.41, d=0.1, e=0.39, m=0.42, g=0.39,
These values are four times as large as the
greatest correction needed in the three-body case.
In addition, v4/v5;=2.42 from (10.2) may be com-
pared with v4/v5;=1.8 from (16). The check
obtained in the three-body case (1.82 versus 1.8)
is not obtained in the two-body case.

Although the greater inconsistency of the two-body
equations makes the results of the two-body analysis
appear to be unrealistic, solution of the adjusted set
can be effected using the altered values of (12.2),
(30.2), and (20) with log 7=0.1 + f from (23). The
set becomes, with ¢ zero,

log A+log Qy=13.78
—log K+ 4 log A=1.76

log K+13 log Qy=0.55 (39.2)
The solution is log @, =2.73, @Q,=540; log A=1.05,
A=11.2; log K=—0.36, K=.044. Note that A,
the attachment time constant at the reference height
of 95 km, is not a comparable quantity for two- and
three-body attachment, since the height variation
of the time constant is different.

11. Discussion

Greenhow and Hall [1961] concluded that three-
body rather than two-body attachment is the
probable method of meteoric charge removal because
of (a) the rapidity with which the luminosity of
visual trains decay at lower heights, and (b) the
infrequent occurrence of long-enduring radio echoes
at heights much below 90 km. However, they
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considered the radio data to fit the theory equally
well for either attachment law. Since they did not
publish a detailed mathematical theory, their
calculations cannot be checked or extended. Com-
parison of the normalizing factors given by Greenhow
and Hall for the plotting of duration versus visual
magnitude shows that their theoretical relations
could not have been consistent with those in the
present work. Thus in our notation, Greenhow and
Hall in their figure 3 normalize three-body duration
by a factor proportional to AV3\*” while the pres-
ent theory requires a factor of AY>V\¥3; their
magnitude is normalized by a constant plus log
(N/V115) - while the present theory gives log [A*?/
(AL-»V129)] 0 Note especially the absence of the
attachment time constant in Greenhow and Hall’s
expression for the normalization of magnitude.
Similar differences exist in the two-body normaliza-
tion.

Because of its analytic basis, it has been possible
to use the theory of part I to compare the various
experimental results with each other and thus to
arrive at values not only of the attachment time
constant A, but also for the constants JJ, K, and @,
appearing in the full theory. Moreover, it has been
found that the three-body process is strongly favored
in comparison with the two-body process on the basis
of the consistency of experiments of different types.
%Iu(ﬁ\ a comparison was not made by Greenhow and

all.

The most probable value for ./, the exponent of the
velocity dependence of the ratio of line density to
luminosity was found to be zero. Together with
the value of @, from (35.3*) the results imply that
the maximum initial line density on a trail in elec-
trons/m is quite well represented by 1.13 < 10 times
the normalized density

Q— 100 K2 (40.3%)

where M is the visual magnitude. Using the
weighted two-body fit, the value of the constant
would be 540; the three-body theory is preferred.

The value of K=1.0 was adopted from the three
body reduction (K=0.44 was found from the two-
body theory). With J=0, K=1.0 placed in the
defining equation, (11) of part I yields

95_hmo¥ (u)}n/g
H Vo

exp (41%)

where V' is the meteoric velocity in km/sec, @,,, is
0.885> 107" times the maximum initial line density
in electrons/m, M is the atmospheric scale height
in km, and A,, is the height of maximum initial
line density in km.

In the theory of part I echo duration was described
by the normalized expression z, and line density by
the normalized line-density expression z. Using the

three-body values A=100 sec, K=1.0, D=4 m?/s,
and J=0, (1.3) and (2.3) become

0.281

2=1giiirs tn (42.3%)

and
N M)\lo-M/z.s s
=15y Yo 145 L

When \=10 m, the expression for z
2=1g/(16. 50'/3),

The transition between attachment-free and
attachment-controlled duration centers about z=1%
and z=2. Thus the transition durations and line
densities are approximately #;=1.8\*%!"3  and
Q,o=3000"/\. If X=10 m, the transition centers
about #,=8.30""% sec, Q,,=300°. The transition
extends over about a ten-to-one line-density range.

Although the theories have been described in
terms of “two-body’” or “three-body” attachment,
the mathematics of the analysis is based merely on
the assumption that the initial line density decreases
exponentially with time, and that the time constant
of the decay varies exponentially with height either
as exp (h/H), or else as exp (2h/H). The latter
variation has been found more consistent with
experiments and has led to the factor exp [—1/
(100e*"=*/8)] by which the initial line density at
height & km should be multiplied. The line density
versus time, magnitude, and height can be found
using @,,, from (40.3*), h,,,—95 km, A=100 sec, and
(7) of part T with m=2.

It the rate of loss of line density is attributed to
a simple three-body attachment process, the rate
coefficient k is defined by dN/dt=—kn*N where n
is the atmospheric number density. Thus A=1/kn?
and using A=100 sec, n=2.1X10" ecm™® from the
1959 ARDC model atmosphere, k=2.2>X10"* cm°/
sec. Assuming two-body attachment, dN/dt=
—knN, and with A=11.2, k=4.2X107"* cm?/sec.
Neither coefficient is beyond the range of possible
values for attachment processes; however, the
two-body rate is perhaps a little closer to consistency
with published values. The value A=100 sec may
be compared with the value of 70 sec adopted by
Greenhow and Hall, and the value of 11.2 sec for
the two-body process compared with their adopted
value of 40 sec. The values of the coefficients are
quite sensitive to errors in the experimental results.

If the present attachment theory of meteor
durations is accepted, eddy diffusion must be dis-
counted as a factor influencing the duration of
meteor echoes lasting as long as 100 sec. Greenhow
[1959] has published an interpolation between the
rates of expansion of radio trails and visual trains
that implies that 100 sec after trail formation the
effective diffusion coefficient is more than ten times
as large as the ambipolar coefficient. Such a
result appears incompatible with the attachment
theory, either as given here or by Greenhow. Rea-
sons exist for believing a different interpretation
may be given to the discrepancy between the radio
and visual train sizes.

simplifies to
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12. Conclusion

By developing the theory of meteor-echo duration
including attachment in a general form, it has been
possible to study the mutual consistency of the
various types of experimental results available relat-
ing meteor magnitude, height, echo duration, and the
wavelength of the sounding radio waves. It has
been found that the experimental results are in
considerably better agreement with a three-body
than with a two-body attachment theory. Values
have been deduced for the attachment rate, the
initial line density of the trail versus visual magni-
tude, for a constant relating height of maximum line
density to the velocity and intensity of ionization,
and for the velocity dependence of the ratio of
ionization to luminosity. It is believed that the
method used for comparing the results of experi-
ments of different types leads to more consistent
values for the constants of the theory of meteor
durations than have previously been available. In
combination with the theoretical results of part I,
use of the constants deduced in the present paper
makes possible the theoretical prediction and deserip-
tion of radio echo heights and durations.

13. References

Davis, J., J. S. Greenhow, and J. E. Hall (1959a), Combined
photographic and radio echo observations of meteors,
Proc. Roy. Soc. 253, No. 1272, 121-129.

Davis, J., J. S. Greenhow, and J. K. Hall (1959b), The effect
of attachment on radio echo observation of meteors, Proc.
Roy. Soc. 253, No. 1272, 130-139.

Greenhow, J. S. (1952), Characteristics of radio echoes from
meteor trails, Proc. Phys. Soc. 65, 196-181.

Greenhow, J. S. (1959), Eddy diffusion and its effect on meteor
trails, J. Geophys. Res. 64, 2208-2209.

Greenhow, J. S., and J. E. Hall (1961), Attachment processes
in meteor trails, J. Atmospheric Terrest. Phys. 21, 261-271.
Manning, L. A. (1964), The theoretical heights and durations
of echoes from large meterors, Radio Sci. J. Res. NBS/USNC—

URSI 68D, No. 10, 1067-1078.

MecKinley, D. W. R. (1953), Meteor echo duration and radio
wave length, Can. J. Phys. 31, 1121-1135.

MecKinley, D. W. R. (1961), Meteor Science and Engineering
(MceGraw-Hill Book Co., Inc., New York, N.Y.).

Millman, P. M., and D. W. R. McKinley (1956), Meteor echo
durations and visual magnitudes, Can. J. Phys. 34, 50-61.

(Paper 68D10-408)

1093



	jresv68Dn10p_1079
	jresv68Dn10p_1080
	jresv68Dn10p_1081
	jresv68Dn10p_1082
	jresv68Dn10p_1083
	jresv68Dn10p_1084
	jresv68Dn10p_1085
	jresv68Dn10p_1086
	jresv68Dn10p_1087
	jresv68Dn10p_1088
	jresv68Dn10p_1089
	jresv68Dn10p_1090
	jresv68Dn10p_1091
	jresv68Dn10p_1092
	jresv68Dn10p_1093
	jresv68Dn10p_1094

