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Recent st udies have s hown that attachment as well as diffusion is important in de
terminin g the electron-density c\j stribution a bout the pat h of a m eteor. The present paper 
develops in detail the ma thematical theory of the durations of radio echoes from overdense 
trails . Included is the depende nce of the height distribution of ioni zat ion on met eor mag
mtude, velocity, zemth a ngle, the form of the attachment law, the height de pen dence of 
di (fusion coeffici ent , a nd fl,l1 adj ustable rela tion between luminous and ionizin g efficiency . 
It IS shown t hat well defi ned attachment-free a nd attachment-controlled duration regions 
exist with d ifferent lin e-density a nd wavelengt h dependences. The ttansition zo ne is 
broad, a nd its location depends st rongly on meteor velocity. No rmalized duration and 
line-dens it y parameters a rc defin ed in t erms of which a single co mputer-calc ulated duration 
versus density relation good for a ll parameter values is plotted. Bridging formulas ap
proximating th e duration relat ion a re deri ved fro m asy mptotic expressions, a nd t he relation 
betwee n echoing height a nd du rat ion or lin e density is presented. Equations a rc given 
relatlllg the expo nent of the wavelengt h to ec ho duration. In a compan ion paper the 
t heo ry will be a ppli ed to experimental data a nd t he valu es of the ph ysical parameter~ and 
constants " ' ill be derived. 

1. Introduction 

When the electron line density created by the 
passage of a meteor is appreciably less than 1014 

electrons/meter, the reHected ampli tude decays ex
ponentially with a time constant determined by t he 
wavelength and height-dependent diffusion coeffi
cient. Such trails are called underdense, and an 
incident wave penetrates the trail with li ttle change 
in amplitude or phase. When, however, the line 
density appreciably exceeds 1014. electrons/meter, an 
incident wave is significantly affected in phase and 
amplitude by the ionization distribution. Such an 
"overdense" trail will return a strong echo primarily 
during the period of time when a negative dielectric 
constant core exists about the trail axis \ underdense 
echoes may also have overdense cores, but only of 
radius small compared with the skin depth, thus not 
controlling the echo duration) . If the electron
density distribution of an overdense trail is controlled 
entirely by diffusion, the duration of the echo 
reflected perpendicularly from a given height on a 
smooth cylindrical trail is directly proportional to the 
line density [Manning and E shleman, 1959]. How
ever, the duration of overdense echoes does not 
increase as rapidly as predicted by this relation for 

I Jointly supported by the U.S. Army Sign al Corps, the U .S. Air Force, tbe 
U.S. Navy (Office of Nava l llesearch) and by tbe National Scien ce Foundation 
Grant NSF- G P948. ' 

very In,rge meteors. Davis, Greenhow, and Hall 
l1959J have suggested that a two-body attachment 
process. is important in removing electrons, thus 
shortemng the durations. Greenhow and Hall [1962} 
have more r ecently sugges ted t hat a three-bodv 
attaehment process· may better fit the experimental 
results. These authors, how.ever, have not presented 
a general theory for echo duration including the effect 
of attaChment, from which a careful study of the 
influence of the relevant parameters could be made. 

In the present paper a general analytic theory of 
overdense meteor-echo duration will be given for 
two-, three-, or m-body attachment, including the 
effect of variation of diffusion coefficient with heio'ht 
ionization production with velocity, the wavelength: 
an~ oth.er p~rtinent parameters. In computing du
ratIOn, It WIll be assumed that an echo will be re
ceived i~ an o,,:"erdense core exis~s at any ~oint .along 
the traIl. WIth attachment mcluded, It WIll be 
shown that meteor echoes fall into three groups each 
of which has a characteristic duration behavior: (1) 
underdense, (2) overdense without electron loss, and 
(3) overdense with attachment. By suitable nor
malization, simple formulas are found for each re
gion; a simple bridging formula connects the latter 
two domains in a region of great in terest. In a 
fono\~ing paper, ~he theory will be compared with 
a varIety of expenmental results, and values deduced 
for the physical parameters. 
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2. Reflection Conditions and Duration 

At a given point on the ionization trail let the 
electron line density be q electrons/meter. Then in 
the notation of Manning and Eshleman [1959] a 
useful normalized line density is ' 

Q= 7rreq= O.885 X lO- 14q (1) 

wh~r~ re is the electron radius. If Q< < 1, the 
traIl IS underdense, and except at very high fre
quencies or in the presence of transverse-polarization 
plasma resonance [Manning and Eshleman, 1959] 
the reflection coefficien t is ' 

p= Qexp (-~) for Q< 1 (2) 

where by definition p= (27r2R /A) L (Esc/Elnc), with R 
the r~dar range, A the wavelength, E sc the received 
electnc field strength, and E 1nc the incident field 
strength at the trail; in (1) T is the underdense 
exponential-decay time constant, given by 

(3) 

with D the ambipolar diffusion coefficient, and A the 
wavelength. 

For overdense trails the echo duration can be 
equated to the duration of a negative-dielectric
constant core in a diffusion-formed gaussian radial 
ionization distribution. The radius of the core is 
given by r2= 4Dt In (4QT/7rt), where t is the time 
aft~r tra~l form:;ttion [Manning and Eshleman, 1959]. 
Th~s radIUs shrmks to zero at a given point on the 
traIl when 4QT/7rt= l , so that the high-density trail 
duration tH is 

(4) 

Equation (4) gives the duration attainable from a 
particular portion of an overdense trail. Note that 
Q and T are both functions of height. In the 
presence of attachment of trail electrons to neutral 
particles according to a relation of the form dN/dt ex: 
N , ,~here N is elec~ron volume density, Q must be 
c?nsldered a fu~ctlOn of time as well as height. 
Smce the rate of loss of electrons by attachment is 
proportional to the exis~ing. volume density, all 
volume elements lose densIty m proportion and the 
gaussian diffusion distribution is not disturbed ' 
attachment can thus be considered to cause aJ~ 
exponential line-density decrease with time. 

3. Line-Density Distribution and Trail Height 

In the absence of flares and fragmentation the 
distribution of line density with height can b~ de-

scribed by Herlofson's formula 

u~3 (5) 

where Qmo is the maximum line density, and 

(6) 

with. h the height, hmo the height of maximum line 
densIty Qm o, and H the atmospheric scale height. 
In the presence of attachment, Q will be less than 
that given by (~) by a decreasing exponential time 
factor whose tIme constant depends on height. 
The form of height dependence depends on the 
attachment mechanism, being proportional to at
mos,pheric density for a two-body process, and pro
portlOnal to densIty squared for a three-body process. 
In general, the attachment time constant is 

A [ m(h-95) ] .exp H 

if ~ is the time constant at an arbitrary reference I 

?eIght of 95 k~, h is. height, H is scale height, and m 
IS zero for heIght-ll1dependent attachment m= 1 
for two-body attachment, and m= 2 for thr~e-body 
attachment. 

Including attachment, the line-density (5) may 
now be written 

9 (U)2 {t [ Q= ;r Qmo 1- 3 1L exp -'if exp 

with u~3. In (7), the term exp [- m(h - 95) /H] is 
equal to um· exp [m(95 - hmo)/HJ. Drawing on the 
physical theory of meteors, the latter exponential is 
dependent on Qmo. 

The pertinent aspects of the physical theory of 
meteors ar~ c.onv~niently summari.zed by ~IcKinley 
[1961]. EhmlJ:atll1g mass from hIs equatIOns (7- 7) 
and . (7- 17) ~l e14s for the atmospheric density at 
maxImum lOmzatlOn 

(8) 

where .qm ax is. Qrno/7rr., .Z is the zenith angle of the 
me~eonc .ra41an~, V IS. the meteor velocity, and 
T q IS the 10mzatlO~-effiClency fa~tor . Equation (?) 
dIffers fro~n McKinley's equatIOn (7- 22) only 111 

the r:etentlOn of .the zenith angle Z. Comparing 
McKinley's equatIOns (7-4) and (7- 5), the ionization 
q is related to the luminosity 1 by 

T q I q=-
TJ 7]V 

(9) 
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where TI is the luminous-efficiency factor , and 7] 

is the mean ionization potential of the atoms involved. 
We shall assume that the ratio of line density to 
lwninosity is proportional to VJ . Then from (9), 
T Q/ TrOC VJ+ l; using Whipple's simplification of Opik's 
theoretical calculations as given in (7- 5) of McKinley, 
TI OC V. Hence we assume T q proportional to VJ +2, 

and (8) may be written 

Q:,{g COS2/3 Z 
poc V(lO+ J ) /3 • (10) 

From analysis of the radio and photographic data, 
Millman and McKinley [1956] a nd Whipple [1955] 
independently concluded J = 1. However, when 
attachment is consid ered th e most suitable value of 
J depends on th e attachment law assumed, so it 
is appropriate to leave J to b e determin ed again 
by reference to the experimen tal results. The 
assumption that J ~ o implies that a relation exists 
between line density a nd visual magni t ude of th e 
form Qmo= QO(V /V oYI0 - M / 2 .5• 

For our purposes (10) can be written more con
veniently in th e form 

The time constant at height his Tmo exp [- (h-hmo)/ 
Ell=- Tmou, h ence the exponential-decay time con
stan t t at any h eight is 

(15) 

Combining (13) and (15), t he duration relation 
tH = 4QT/7r for a par ticular heigh t described by u 
becomes 

u S 3. 

(16) 

T o find the actual echo duration, we must evaluate 
(16) at the value of u (height) equal to 11m for which 
the duration is t he greatest . T o do so, define 

( 95 - h",0) Q.~{;~ 
exp I-I = K V ( IO +)J / 3 

The duration is maximum when dy/dn= O, <1, condi
(11 ) tion that requires 

by assuming an exponential atmosphere; the con
stant K depends on the atmospheric density at th e 
arbitrar y reference h eight of 95 lon, and in it com
plicated way, on the ionization potential, heat of 

I ablation , heat transfer coefficien t, meteoric density, 
scale h eight, shape factor, etc. The velocity a nd 
zenith-angle variations have been norm alized using 
the relation 

v= (V) (sec Z)2/(lO+J) 
V o 

(J 2) 

so v= 1 for a Vo kll1/s meteor in th e zenith. 
Using (11), th e line-density distribu tion equation 

(7) can be written 

9 ( U)2 Q= Qmo· 4 1 - 3 u exp (- Bum) uS3 (13) 

wh ere B is defin ed by 

(14) 

4. Derivation of Duration 

From (4) the duration at height h (or u) is tH = 
4QT/7r . By (3), T = }..2/ (l6 7r2D); the diffusion co
efficient D varies with height as D= Do exp [(11, - 95 )/ 
Ell if Do is th e value at 95 Ion (abou t 4m2/s) . Using 
(11 ), the time constant Tmo at height of maximum 
:onizat ion is then 

;>..2 KQ1/3 T mo 
mO= 161r2Do v(lO+J )/3 

2(1- 2u",/3) 
mu;;:( I - u ", /3) 

(18) 

Values of U rn must lie in the limi ts OS'ltm S 3/2; t he 
subscript H on B implies that BH is evalu ated with 
t = tJf , the maximum dura tion . It m ay be noted 
that if m = O (attachmen t independent of h eigh t) 
u",= 3/2, just as in th e case of no ftttachm ent. The 
height of maximum duration is t h en below th e height 
of m aximum electron production by !1h= H · In 
3 /2 = 0.40547H~2.4 km. Figure l (a) shows how 
BH (proportional to duration) varies with u", = 
exp [-(h",- hmo) /I-l], and figure Ib shows h ow Bu 
varies with the relative h eight (h",- hmo)/JJ, where 
hm is the height of maximum duration. 

Combining (14) , (16), (17), and (18) , two r elations 
are ob tained in duration tH , lin e density Q",o, and 
um : 

= (1- U m)2 , [_(2) (1- 2U",/3)] 2 

3 exp m (1- um/3) U'" 
(19) 

and 

(20) 

Equations (19) and (20) ar e indeterminate if m = O. 
If m ~ 0, tH can in principle b e found as a function 
of Qmo by eliminating U m between (19) and (20) . 
This elimination can b e performed in the asymptotic 
limi ts of low and high ftttachment. H owever, 
exact calculation of the relation between tll and 

1069 



12 

10 

8 

6 

4 

2 

:>: 
C%l 0 

- 2 

- 4 

- 6 

- 8 

- 10 

- 12 

NOTE: REQUIRE 0 < urn < 3, 

BH ~ 0 

6 7 8 

FIGURE 1. Variations of BH with height parameters. 

(a) Variation of BH, as given by (18), with Um=cxp[-(hm-hmo)/ H ] 

Q",o must be carried out by treating 11", as a param
eter and finding a corresponding t/i and Qmo for 
each um• 

5. Normalized Duration and 
Line-Density Variables 

Sol ving for z and x, 

9 

(21 ) 

(22) 

(23) 
To avoid having to calculate families of duration 

curves for different velocities, wavelengths, etc., (19) 
and (20) will be put in a normalized form. Let z be 
normalized duration tH , and x normalized maximum 
line density QmD' Then (19) and (20) can be 
written 

Putting in y and Eli from the left-hand side of (19) 
and (20), 
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FIG URE 1. lIaTialions oj BH with height parameters .- Continued 

(b ) P lot of BII versus (hm-hmo)JII 

(
4 3 /2) 2", /( 4+"') 

K 3", /( 4+ 1II) D ;:: I( 4+ rn ) + 
Z= tff A4 /( 4+m ) . Vm ( IO+ J )/(4+ m ) . \ 2", /( 4+ ", ) (24) 

The cases m = O, 1, and 2 are of especial interest 
For height-independ ent attachm ent, m = O, 

(263 ) 

x= Qrno (4 3/2) 6 /( 4+ "' ) · 
A 3/ (4 + rn) V(!O+ J ) (111+ 1) 1(4+111 ) 171,1(4+"' ) ~ 

o 0 
(26b) 

(25) 
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L- _ 

For two-body attachment, m = l, 

K3 /5D~/5 (4~/2)2/5 

Z= tH A 4/5V (1O+ J l/5,,2/5 

For three-body attachment, m = 2, 

It may be noted that 47r3/2/3= 7.4242 . 

6 . Duration Versus Line Density 

(27a) 

(27b) 

(28a) 

(28b) 

Exact curves of normalized duration z versus 
normalized line density x have been calculated for 
m= O, 1, and 2 using a digital computer. For the 

2 . 0 

1. 0 

- 3.0 

simple case of m = O, (16) reduces, upon substituting 
z and x from (26), to the explicit r elation 

ze z=(196) x4 /3 for m = O. (29) 

However, for m= 1 and 2, y and B were computed 
versus U m from (19) and (20) , and z and x were 
computed from y and Busing (22) and (23). The 
results are shown in figure 2, and tabulated in table 1 
for key values with m= 1 and 2. The meaning of 
the coordinates x and z is defined by (26), (27), and 
(28) for m = O, 1, and 2 ; it is different for each of 
the curves. 

In examining figure 2, note that log x, the abscissa, 
is a linear function of the meteor magnitude. Note 
also that when x and z are much less than one, 
attachment is not important, and duration is pro
pOl·tional to Q!/.a. When x and z are much greater 
than one, the duration for two-body attachment 
(m= l ) approaches proportionality to Q;(09. For 
three-body attachment (m= 2) the proportion is to 
Q;!;' . If m = O, corresponding to height-independ
ent attachment, a logarithmic relation is approached, 
but this case does not correspond well to the physical 
situation. The transition region is of especial 
interest, since it covers a line-density range of 
about 100 to 1 (5 magnitudes). In figure 3 the 
transition is plotted to a larger scale. No appre
ciable difference between the normalized curves for 
m= 1 and m= 2 occurs until x is greater than about I 

-2.0 -1.0 0 . 0 1.0 2. 0 3.0 4.0 5.0 6. 0 

lo g x (x a: Qmo) 

FIGURE 2. The variation of normalized echo duration z versus n01'malized line density x . 
Height-independent attachment corresponds to m=O; two- and three-body attachment corresponds to m=2 and 3. 
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1.5, but the variables x and z have different meanings 
in the two cases. In a group of sporadic meteors 
transition behavior will be noted over an even 
greater magnitude range, because of 

TABLE 1. Normalized dumtion and line density 

",= 1 1n=2 

U m 

Jog x Jog z 
d (log z) 

Jog x log z 
d(log z) 

d(Jog y ) d(logy) 

1. 498 -1.3 18 -2.009 1. 324 - 1. 337 -2.034 1. 326 
1. 495 -1. 077 - 1. 692 1. 311 -1. 137 - I. 768 1. 320 
1. 480 - 0. 7056 - 1. 213 I. 250 - 0.8294 - 1. 367 1. 282 
1. 450 -. 4462 - 0. 9019 1. 140 -.617 1 - 1.101 1. 210 
1.40 -. 2315 -. ~710 0.9997 -. 4436 - 0.8995 1.110 
1. 20 . 1917 -.3191 . 6673 -. 1026 -.5670 0.8342 
1. 0 . 4718 -. 1572 . 4999 . 1341 - . 3904 .6660 
0.8 . 7305 -. 04187 . 3997 .3685 -.2481 .5547 
.6 1. 01 2 .06056 .3335 .6409 -. 1085 . 4761 
. 4 1. 368 .1701 .2856 1.005 -. 0530 . 4162 
.2 I. 939 . 32 13 .2500 1. 613 .2901 . 3702 
. 1 2. 492 . 4550 .2353 2.216 .5069 . 3508 
. 06 2.895 . 5487 .2305 2.660 .6609 . 3439 
.04 3.2 14 . 6215 .2267 0.012 . 7810 .3396 
. 03 3.440 .6727 .2259 3.262 .8660 . 3384 
.02 3.758 .7443 .2246 3.615 .9849 .3366 
.01 4.300 .8659 . 2234 4.2 li 1. 187 .3350 

the strong dependence of x and z on velocity. F or 
instance if J = 1, for two-body attachment a 3 to 
1 spread in veloci ty will cause a V ( iO+J)/5 or an 
11 to 1 shift in z and a 125 to 1 shift in x. For three
body a t tachmen t, the shif ts are 56 to 1 in z and 425 
to 1 in x. On a plot of log tH versus log Qmo, an 
increase in velocity slides the curve toward higher 
coordinate values in a direction with slope m/(m+l) 
as sketched in figure 4 for m = 1 and m = 2. The 
length of t he vector in the plots is drawn for a 
velocity shift of 2 to 1. Similarly, a change in 
wavelength causes the dW'ation curve to shift toward 
the second quadran t wi th slope -m/3. The wave
length vectors in figW'e 4 are again drawn for a 2 
to 1 increase in \ . Incr eases in attachment time 
constan t .11 shift the curve up to the righ t w'ith 
slope 4/3, and increases in diffusion coefficien t shift 
the curve down to the righ t with slope - m/3. 

The variation of log x with log Un< is plotted in 
figure 5. This r elation will be of especial use in 
the da ta analysis, since log x=log Qmo+constan t, 
and varies linearly with the meteoric magnitude 
M . On the other hand log um= log exp [- (h",- hmo)/ 
H] = - 0.434294 (hm-hm o) /H , and is proportional to 
the difference of the final echoing heigh t and the 
heigh t of m aximum ionization. 

7 . Behavior of Duration in 
Asymptotic Regions 

Inspection of fi gure 2 shows that when x and z are 
much less than one, attachment m ay be neglected. 
Equation (29) then reduces to 

9 z=- X4 /3 
16 

(30) 

for m= O, and identical relations are found for other 
m's by placing B = O so that u m = 3!2, and putting 
the r esulting y of (19) in the firs t of (21 ) . In this 
attachment-free region, if z and x are given their 
values from (24) and (25), 

t = Q"/3 K\2 
H mo (4-il/2)4 

v(lO+J )/3D o - 3-
x, z< < 1. (31) 

When x and z are much greater than one, equally 
simple equations exist. F or m = OJ t he general 
equation (29) can be used without approximation. 
F or other values of m, as x and z become large, (21) 
shows B is large too, and (20) shows that Urn is sm all. 
Then using (19) and (20) 

and from (21) 

Z ~X2m/3(m+ 2 ) (2/m) 2/(",+2) e - 2/( m + 2) m > O. (32) 

In par ticular, if m = 1 (two-body attachment) 

(33) 

and 

(34) 

if m = 2 (three-body attachm ent) 

x, z» l (3 5) 

and 

Also of interest are the values of x and z at which 
the asymp totic r ela tions (33) and (3 5) intersect (30). 
When m = l , the in tersection occurs for x= 1.3971 , 
log x= 0.14493, and for z= 0. 87772 , log Z= - 0.05664. 
When m= 2, the intersection occurs for X= 1.0783, 
log x= 0.03273 , and for z= 0.62196, log Z= - 0.20624. 

8 . Bridging Formulas 

When m = O, X4/ 3 = (16/9)z · exp (z) is exact. F or 
m ~ 0, an exact and explicit rela tion between x and z 
does not exist. H owever , by taking the h armonic 
mean of (3 0) with (33) or (35), sufficien tly accurate, 
explicit bridging relations can be derived that ar e 
useful for all values of x and z. When m = 1, to 
wi thin abou t 6 percent in the transition zon e and 
better elsewhere, 
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FIGU RE 3. Variation of normalized echo duration z versus normalized line density x in the transition l·egion. 

e 10 /9 z= (9 2/3) 
1 + 16 · 22/3 • X 

O.5625x4 /3 

1 + O.6902x10 / 9 
(37) 

while for m = 2, within about 17 p ercent at worst, 

z 

-

(9/16)x4/3 

1+ (9/16)e 1 / Zx 

O.5625x4/3 

1+ 0.9274x 

Four-p~ace precision is given the constants only for 
convenIence. 

9. Wavelength Dependence of Duration 

From (31) it will be seen that duration is propor
tional to wavelength squared when attachment is 
neglected. In the attachment region with x and z 
> >1, and assuming m = 1, duration varies with 
wavelength to the power 2/3; for m = 2, duration 
varies dIrectly with wavelength. Intermediate be
havior occurs in the transition region. Measure
ments of the exponent of the wavelength variation 
may then be used to estimate z and x. 

The wavelength dependence is usually described 
by the exponent n in the relation tH= CA n ; C is a 
function of all parameters except wavelength. Then 
In tH = ln C+ n In A, and n=d(ln tH )ld(ln A). From 
(24), In z= ln tH - [2m/ (4 + m)] In A+constant. 
Hence 

dOn z) 
d(ln \ ) 

d(ln tH ) 

d(ln A) 
2m 

4 + m 
(38) 
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and 

n= 2m + d(ln z) = 2m + dOn z) . d(ln x) . 
4+ m d(ln;\.) 4+ m d(ln x) d(ln;\.) 

From (25) In x= [6 / (4 + m)] In ;\. + cons tf1 11 t , so 
d(lnx) /d(ln ;\.)= 6/ (4 + m) and 

n= 2m + _ 6_ . dOll z) . 
4+ m 4+ m d(ln x) 

(39) 

If m = 0 (height-independent attachment), from 
(29) d(ln z)/d(ln x) = (4/3)/ (z+ I ), and from (39) 

n = 2/(z + 1) for m = O. 

If m = 1 (two-body attilchm ent), (39) becomes 

1.0 

0 .5 

~ 0.0 
" '" 
~ 

" 0 
U 

~%: 

'" -0. 5 0 -

-1.0 

-1.5 

n=~+~ dO n z) 
5 5 dOn x) 

~ 

-1.0 

for m = l. 

Do 

ASYMPTOTE 
m = 1.2 

-0.5 0.0 

(40) 

(41) 

Exact values of n versus x or z m ay be found usinO" 
d(log z)/d(log x) as tabulated in table 1. Th% 
r esulting values of n are plotted in figure 6. If 
x< < 1, 1'1 = 2; if x> > 1, n = 2/3. The mid-transition 
valu e n = 4/3 occurs when dOn z) /d(ln x) = 7/9. An 
approximate bu t explici t r elation can b e found for 
n versus x . by: ev~luating the derivative of (41) 
USl11g the bndgmg forllluia (37) . 

4 O.6902xlO/9 
n~2-3 1+ 0.6902xLO/9 for m = 1. 

If m = 2 (three-body attachm ent) (39) b ecomes 

n=~+ d(ln z) 
3 dOn x) 

for m = 2 

(42) 

(43) 

for which the mid- transition value n = 3/2 occurs if 
d(ln z)/d(ln x) = 5/6. EVilluating th e derivative 
from the bridging formula (38) , 

1'1~2- O.9274x 
- 1+ O.9274x 

for m = 2. (44) 

0.5 1.0 1.5 2.0 2.~ 

log Qmo + con 5 tan t 

FIG U RE 4. V ectors showing dir ection and magnitude of shift in log tH versus log Qmo curves f0 1' 2 to 1 change in v, A, A, or D o. 
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F I GU RE 5. The relation between normalized line density x and log lI m = O.4.'i4 (hm- h ", o) /H ; hm is final echoing heiyht, II "", is 
height of maximum ionization pTodllction. 
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FIGURE 6. Exponent n of the wavelength dependence of duration, t "2/ t " l = (>-,/>,'1 ) n, f er two- and three-body attachment (m = 1 01' 2). 

10. Discussion 

The theory of meteor echo duration includino' 
attachment, as developed in th e present paper, ha~ 
been k~p t as general as possible so that detailed 
companson c~n be m ade wi th experimental data 
takeJ?- . at van ous laboratories under a variety of 
condl tlOTI:=; . In a comp anion paper, the experimental 
resul~s wIll be analyzed and values deduced for the 
phYSIcal parameters en tering in to the theory. The 
valuabl.e earlier work by D avis, Greenhow, and Hall 
[1959] Implies some of the results of the present 
theory, but unfortunately their curves were obtained 
largely . by numeri~al C?r graJ;>hical methods applied 
to partIcular comblllatlOns of wavelength and other 
parameters, and so are not useful for fmther de
velopmen~ . In addition to being analytic and more 
g~~eral , III sO.me parti?ulars the presen t results 
dIffer from theirs. F or lllstance D avis Greenhow " , 
and H all state [1959, p. 136] that for hio'h line 
densities the duration is proportional to line density 
to the power 1/3; the present study shows the ex
ponent to be 2/5 for the two-body attachment 
~rocess they considered. Moreover, the normalizing 
factors used by Greenhow and Hall l1962] in plotting 

tlteir general cur ves are inco nsistent with the present 
theory; they do not give the derivation leading to 
these factors. 

11 . Conel usions 

In terms oJ normalized line-densi ty and dmation 
parameters, the duration behavior of overdense 
meteors can be simply expressed . IV[ost overdense 
ech oes lie in a transition region between a mediu m
densi ty attachment-free domain and a high-density 
attachmen t-controlled domain. Values of the nor
malized param~ters rnay be found from experimental 
plots of duratIOn vers~s visual magnitud e, wave
length, .or meteor velOCIty ; from plots of enduring 
echo. heIghts vers!ls velOCIty or magnitude ; or from 
detaIled observatlOns of the b ehavior of individual 
m.eteors. From these observations i t is possible to 
d~duce th.e a~tachment time constan t A, the type 
of recombll1at~on process (m), the h eigh t parameter 
K , the r elatlOn between luminous and ionizino' 
efficiency (exponent J ), and th e line densi ty corres~ 
ponding to a given visualrnagni t ude. The diffusion 
coeffi cient D and scale h eight II may be tak:en 
[rom. the behaviC?r of underdense trails. Upon 
Insertmg the expernnental values of t hese parameters 
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(to be derived in a companion paper), the theory 
can be used to predict echo height and duration as 
a function of radiofrequency, meteor velocity, 
radian t position, and line density or magnitude. 
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