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Recent st udies have s hown that attachment as well as diffusion is important in de­
terminin g the electron-density c\j stribution a bout the pat h of a m eteor. The present paper 
develops in detail the ma thematical theory of the durations of radio echoes from overdense 
trails . Included is the depende nce of the height distribution of ioni zat ion on met eor mag­
mtude, velocity, zemth a ngle, the form of the attachment law, the height de pen dence of 
di (fusion coeffici ent , a nd fl,l1 adj ustable rela tion between luminous and ionizin g efficiency . 
It IS shown t hat well defi ned attachment-free a nd attachment-controlled duration regions 
exist with d ifferent lin e-density a nd wavelengt h dependences. The ttansition zo ne is 
broad, a nd its location depends st rongly on meteor velocity. No rmalized duration and 
line-dens it y parameters a rc defin ed in t erms of which a single co mputer-calc ulated duration 
versus density relation good for a ll parameter values is plotted. Bridging formulas ap­
proximating th e duration relat ion a re deri ved fro m asy mptotic expressions, a nd t he relation 
betwee n echoing height a nd du rat ion or lin e density is presented. Equations a rc given 
relatlllg the expo nent of the wavelengt h to ec ho duration. In a compan ion paper the 
t heo ry will be a ppli ed to experimental data a nd t he valu es of the ph ysical parameter~ and 
constants " ' ill be derived. 

1. Introduction 

When the electron line density created by the 
passage of a meteor is appreciably less than 1014 

electrons/meter, the reHected ampli tude decays ex­
ponentially with a time constant determined by t he 
wavelength and height-dependent diffusion coeffi­
cient. Such trails are called underdense, and an 
incident wave penetrates the trail with li ttle change 
in amplitude or phase. When, however, the line 
density appreciably exceeds 1014. electrons/meter, an 
incident wave is significantly affected in phase and 
amplitude by the ionization distribution. Such an 
"overdense" trail will return a strong echo primarily 
during the period of time when a negative dielectric 
constant core exists about the trail axis \ underdense 
echoes may also have overdense cores, but only of 
radius small compared with the skin depth, thus not 
controlling the echo duration) . If the electron­
density distribution of an overdense trail is controlled 
entirely by diffusion, the duration of the echo 
reflected perpendicularly from a given height on a 
smooth cylindrical trail is directly proportional to the 
line density [Manning and E shleman, 1959]. How­
ever, the duration of overdense echoes does not 
increase as rapidly as predicted by this relation for 

I Jointly supported by the U.S. Army Sign al Corps, the U .S. Air Force, tbe 
U.S. Navy (Office of Nava l llesearch) and by tbe National Scien ce Foundation 
Grant NSF- G P948. ' 

very In,rge meteors. Davis, Greenhow, and Hall 
l1959J have suggested that a two-body attachment 
process. is important in removing electrons, thus 
shortemng the durations. Greenhow and Hall [1962} 
have more r ecently sugges ted t hat a three-bodv 
attaehment process· may better fit the experimental 
results. These authors, how.ever, have not presented 
a general theory for echo duration including the effect 
of attaChment, from which a careful study of the 
influence of the relevant parameters could be made. 

In the present paper a general analytic theory of 
overdense meteor-echo duration will be given for 
two-, three-, or m-body attachment, including the 
effect of variation of diffusion coefficient with heio'ht 
ionization production with velocity, the wavelength: 
an~ oth.er p~rtinent parameters. In computing du­
ratIOn, It WIll be assumed that an echo will be re­
ceived i~ an o,,:"erdense core exis~s at any ~oint .along 
the traIl. WIth attachment mcluded, It WIll be 
shown that meteor echoes fall into three groups each 
of which has a characteristic duration behavior: (1) 
underdense, (2) overdense without electron loss, and 
(3) overdense with attachment. By suitable nor­
malization, simple formulas are found for each re­
gion; a simple bridging formula connects the latter 
two domains in a region of great in terest. In a 
fono\~ing paper, ~he theory will be compared with 
a varIety of expenmental results, and values deduced 
for the physical parameters. 
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2. Reflection Conditions and Duration 

At a given point on the ionization trail let the 
electron line density be q electrons/meter. Then in 
the notation of Manning and Eshleman [1959] a 
useful normalized line density is ' 

Q= 7rreq= O.885 X lO- 14q (1) 

wh~r~ re is the electron radius. If Q< < 1, the 
traIl IS underdense, and except at very high fre­
quencies or in the presence of transverse-polarization 
plasma resonance [Manning and Eshleman, 1959] 
the reflection coefficien t is ' 

p= Qexp (-~) for Q< 1 (2) 

where by definition p= (27r2R /A) L (Esc/Elnc), with R 
the r~dar range, A the wavelength, E sc the received 
electnc field strength, and E 1nc the incident field 
strength at the trail; in (1) T is the underdense 
exponential-decay time constant, given by 

(3) 

with D the ambipolar diffusion coefficient, and A the 
wavelength. 

For overdense trails the echo duration can be 
equated to the duration of a negative-dielectric­
constant core in a diffusion-formed gaussian radial 
ionization distribution. The radius of the core is 
given by r2= 4Dt In (4QT/7rt), where t is the time 
aft~r tra~l form:;ttion [Manning and Eshleman, 1959]. 
Th~s radIUs shrmks to zero at a given point on the 
traIl when 4QT/7rt= l , so that the high-density trail 
duration tH is 

(4) 

Equation (4) gives the duration attainable from a 
particular portion of an overdense trail. Note that 
Q and T are both functions of height. In the 
presence of attachment of trail electrons to neutral 
particles according to a relation of the form dN/dt ex: 
N , ,~here N is elec~ron volume density, Q must be 
c?nsldered a fu~ctlOn of time as well as height. 
Smce the rate of loss of electrons by attachment is 
proportional to the exis~ing. volume density, all 
volume elements lose densIty m proportion and the 
gaussian diffusion distribution is not disturbed ' 
attachment can thus be considered to cause aJ~ 
exponential line-density decrease with time. 

3. Line-Density Distribution and Trail Height 

In the absence of flares and fragmentation the 
distribution of line density with height can b~ de-

scribed by Herlofson's formula 

u~3 (5) 

where Qmo is the maximum line density, and 

(6) 

with. h the height, hmo the height of maximum line 
densIty Qm o, and H the atmospheric scale height. 
In the presence of attachment, Q will be less than 
that given by (~) by a decreasing exponential time 
factor whose tIme constant depends on height. 
The form of height dependence depends on the 
attachment mechanism, being proportional to at­
mos,pheric density for a two-body process, and pro­
portlOnal to densIty squared for a three-body process. 
In general, the attachment time constant is 

A [ m(h-95) ] .exp H 

if ~ is the time constant at an arbitrary reference I 

?eIght of 95 k~, h is. height, H is scale height, and m 
IS zero for heIght-ll1dependent attachment m= 1 
for two-body attachment, and m= 2 for thr~e-body 
attachment. 

Including attachment, the line-density (5) may 
now be written 

9 (U)2 {t [ Q= ;r Qmo 1- 3 1L exp -'if exp 

with u~3. In (7), the term exp [- m(h - 95) /H] is 
equal to um· exp [m(95 - hmo)/HJ. Drawing on the 
physical theory of meteors, the latter exponential is 
dependent on Qmo. 

The pertinent aspects of the physical theory of 
meteors ar~ c.onv~niently summari.zed by ~IcKinley 
[1961]. EhmlJ:atll1g mass from hIs equatIOns (7- 7) 
and . (7- 17) ~l e14s for the atmospheric density at 
maxImum lOmzatlOn 

(8) 

where .qm ax is. Qrno/7rr., .Z is the zenith angle of the 
me~eonc .ra41an~, V IS. the meteor velocity, and 
T q IS the 10mzatlO~-effiClency fa~tor . Equation (?) 
dIffers fro~n McKinley's equatIOn (7- 22) only 111 

the r:etentlOn of .the zenith angle Z. Comparing 
McKinley's equatIOns (7-4) and (7- 5), the ionization 
q is related to the luminosity 1 by 

T q I q=-­
TJ 7]V 

(9) 
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where TI is the luminous-efficiency factor , and 7] 

is the mean ionization potential of the atoms involved. 
We shall assume that the ratio of line density to 
lwninosity is proportional to VJ . Then from (9), 
T Q/ TrOC VJ+ l; using Whipple's simplification of Opik's 
theoretical calculations as given in (7- 5) of McKinley, 
TI OC V. Hence we assume T q proportional to VJ +2, 

and (8) may be written 

Q:,{g COS2/3 Z 
poc V(lO+ J ) /3 • (10) 

From analysis of the radio and photographic data, 
Millman and McKinley [1956] a nd Whipple [1955] 
independently concluded J = 1. However, when 
attachment is consid ered th e most suitable value of 
J depends on th e attachment law assumed, so it 
is appropriate to leave J to b e determin ed again 
by reference to the experimen tal results. The 
assumption that J ~ o implies that a relation exists 
between line density a nd visual magni t ude of th e 
form Qmo= QO(V /V oYI0 - M / 2 .5• 

For our purposes (10) can be written more con­
veniently in th e form 

The time constant at height his Tmo exp [- (h-hmo)/ 
Ell=- Tmou, h ence the exponential-decay time con­
stan t t at any h eight is 

(15) 

Combining (13) and (15), t he duration relation 
tH = 4QT/7r for a par ticular heigh t described by u 
becomes 

u S 3. 

(16) 

T o find the actual echo duration, we must evaluate 
(16) at the value of u (height) equal to 11m for which 
the duration is t he greatest . T o do so, define 

( 95 - h",0) Q.~{;~ 
exp I-I = K V ( IO +)J / 3 

The duration is maximum when dy/dn= O, <1, condi­
(11 ) tion that requires 

by assuming an exponential atmosphere; the con­
stant K depends on the atmospheric density at th e 
arbitrar y reference h eight of 95 lon, and in it com­
plicated way, on the ionization potential, heat of 

I ablation , heat transfer coefficien t, meteoric density, 
scale h eight, shape factor, etc. The velocity a nd 
zenith-angle variations have been norm alized using 
the relation 

v= (V) (sec Z)2/(lO+J) 
V o 

(J 2) 

so v= 1 for a Vo kll1/s meteor in th e zenith. 
Using (11), th e line-density distribu tion equation 

(7) can be written 

9 ( U)2 Q= Qmo· 4 1 - 3 u exp (- Bum) uS3 (13) 

wh ere B is defin ed by 

(14) 

4. Derivation of Duration 

From (4) the duration at height h (or u) is tH = 
4QT/7r . By (3), T = }..2/ (l6 7r2D); the diffusion co­
efficient D varies with height as D= Do exp [(11, - 95 )/ 
Ell if Do is th e value at 95 Ion (abou t 4m2/s) . Using 
(11 ), the time constant Tmo at height of maximum 
:onizat ion is then 

;>..2 KQ1/3 T mo 
mO= 161r2Do v(lO+J )/3 

2(1- 2u",/3) 
mu;;:( I - u ", /3) 

(18) 

Values of U rn must lie in the limi ts OS'ltm S 3/2; t he 
subscript H on B implies that BH is evalu ated with 
t = tJf , the maximum dura tion . It m ay be noted 
that if m = O (attachmen t independent of h eigh t) 
u",= 3/2, just as in th e case of no ftttachm ent. The 
height of maximum duration is t h en below th e height 
of m aximum electron production by !1h= H · In 
3 /2 = 0.40547H~2.4 km. Figure l (a) shows how 
BH (proportional to duration) varies with u", = 
exp [-(h",- hmo) /I-l], and figure Ib shows h ow Bu 
varies with the relative h eight (h",- hmo)/JJ, where 
hm is the height of maximum duration. 

Combining (14) , (16), (17), and (18) , two r elations 
are ob tained in duration tH , lin e density Q",o, and 
um : 

= (1- U m)2 , [_(2) (1- 2U",/3)] 2 

3 exp m (1- um/3) U'" 
(19) 

and 

(20) 

Equations (19) and (20) ar e indeterminate if m = O. 
If m ~ 0, tH can in principle b e found as a function 
of Qmo by eliminating U m between (19) and (20) . 
This elimination can b e performed in the asymptotic 
limi ts of low and high ftttachment. H owever, 
exact calculation of the relation between tll and 
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FIGURE 1. Variations of BH with height parameters. 

(a) Variation of BH, as given by (18), with Um=cxp[-(hm-hmo)/ H ] 

Q",o must be carried out by treating 11", as a param­
eter and finding a corresponding t/i and Qmo for 
each um• 

5. Normalized Duration and 
Line-Density Variables 

Sol ving for z and x, 

9 

(21 ) 

(22) 

(23) 
To avoid having to calculate families of duration 

curves for different velocities, wavelengths, etc., (19) 
and (20) will be put in a normalized form. Let z be 
normalized duration tH , and x normalized maximum 
line density QmD' Then (19) and (20) can be 
written 

Putting in y and Eli from the left-hand side of (19) 
and (20), 
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FIG URE 1. lIaTialions oj BH with height parameters .- Continued 

(b ) P lot of BII versus (hm-hmo)JII 

(
4 3 /2) 2", /( 4+"') 

K 3", /( 4+ 1II) D ;:: I( 4+ rn ) + 
Z= tff A4 /( 4+m ) . Vm ( IO+ J )/(4+ m ) . \ 2", /( 4+ ", ) (24) 

The cases m = O, 1, and 2 are of especial interest 
For height-independ ent attachm ent, m = O, 

(263 ) 

x= Qrno (4 3/2) 6 /( 4+ "' ) · 
A 3/ (4 + rn) V(!O+ J ) (111+ 1) 1(4+111 ) 171,1(4+"' ) ~ 

o 0 
(26b) 

(25) 
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L- _ 

For two-body attachment, m = l, 

K3 /5D~/5 (4~/2)2/5 

Z= tH A 4/5V (1O+ J l/5,,2/5 

For three-body attachment, m = 2, 

It may be noted that 47r3/2/3= 7.4242 . 

6 . Duration Versus Line Density 

(27a) 

(27b) 

(28a) 

(28b) 

Exact curves of normalized duration z versus 
normalized line density x have been calculated for 
m= O, 1, and 2 using a digital computer. For the 

2 . 0 

1. 0 

- 3.0 

simple case of m = O, (16) reduces, upon substituting 
z and x from (26), to the explicit r elation 

ze z=(196) x4 /3 for m = O. (29) 

However, for m= 1 and 2, y and B were computed 
versus U m from (19) and (20) , and z and x were 
computed from y and Busing (22) and (23). The 
results are shown in figure 2, and tabulated in table 1 
for key values with m= 1 and 2. The meaning of 
the coordinates x and z is defined by (26), (27), and 
(28) for m = O, 1, and 2 ; it is different for each of 
the curves. 

In examining figure 2, note that log x, the abscissa, 
is a linear function of the meteor magnitude. Note 
also that when x and z are much less than one, 
attachment is not important, and duration is pro­
pOl·tional to Q!/.a. When x and z are much greater 
than one, the duration for two-body attachment 
(m= l ) approaches proportionality to Q;(09. For 
three-body attachment (m= 2) the proportion is to 
Q;!;' . If m = O, corresponding to height-independ­
ent attachment, a logarithmic relation is approached, 
but this case does not correspond well to the physical 
situation. The transition region is of especial 
interest, since it covers a line-density range of 
about 100 to 1 (5 magnitudes). In figure 3 the 
transition is plotted to a larger scale. No appre­
ciable difference between the normalized curves for 
m= 1 and m= 2 occurs until x is greater than about I 

-2.0 -1.0 0 . 0 1.0 2. 0 3.0 4.0 5.0 6. 0 

lo g x (x a: Qmo) 

FIGURE 2. The variation of normalized echo duration z versus n01'malized line density x . 
Height-independent attachment corresponds to m=O; two- and three-body attachment corresponds to m=2 and 3. 
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1.5, but the variables x and z have different meanings 
in the two cases. In a group of sporadic meteors 
transition behavior will be noted over an even 
greater magnitude range, because of 

TABLE 1. Normalized dumtion and line density 

",= 1 1n=2 

U m 

Jog x Jog z 
d (log z) 

Jog x log z 
d(log z) 

d(Jog y ) d(logy) 

1. 498 -1.3 18 -2.009 1. 324 - 1. 337 -2.034 1. 326 
1. 495 -1. 077 - 1. 692 1. 311 -1. 137 - I. 768 1. 320 
1. 480 - 0. 7056 - 1. 213 I. 250 - 0.8294 - 1. 367 1. 282 
1. 450 -. 4462 - 0. 9019 1. 140 -.617 1 - 1.101 1. 210 
1.40 -. 2315 -. ~710 0.9997 -. 4436 - 0.8995 1.110 
1. 20 . 1917 -.3191 . 6673 -. 1026 -.5670 0.8342 
1. 0 . 4718 -. 1572 . 4999 . 1341 - . 3904 .6660 
0.8 . 7305 -. 04187 . 3997 .3685 -.2481 .5547 
.6 1. 01 2 .06056 .3335 .6409 -. 1085 . 4761 
. 4 1. 368 .1701 .2856 1.005 -. 0530 . 4162 
.2 I. 939 . 32 13 .2500 1. 613 .2901 . 3702 
. 1 2. 492 . 4550 .2353 2.216 .5069 . 3508 
. 06 2.895 . 5487 .2305 2.660 .6609 . 3439 
.04 3.2 14 . 6215 .2267 0.012 . 7810 .3396 
. 03 3.440 .6727 .2259 3.262 .8660 . 3384 
.02 3.758 .7443 .2246 3.615 .9849 .3366 
.01 4.300 .8659 . 2234 4.2 li 1. 187 .3350 

the strong dependence of x and z on velocity. F or 
instance if J = 1, for two-body attachment a 3 to 
1 spread in veloci ty will cause a V ( iO+J)/5 or an 
11 to 1 shift in z and a 125 to 1 shift in x. For three­
body a t tachmen t, the shif ts are 56 to 1 in z and 425 
to 1 in x. On a plot of log tH versus log Qmo, an 
increase in velocity slides the curve toward higher 
coordinate values in a direction with slope m/(m+l) 
as sketched in figure 4 for m = 1 and m = 2. The 
length of t he vector in the plots is drawn for a 
velocity shift of 2 to 1. Similarly, a change in 
wavelength causes the dW'ation curve to shift toward 
the second quadran t wi th slope -m/3. The wave­
length vectors in figW'e 4 are again drawn for a 2 
to 1 increase in \ . Incr eases in attachment time 
constan t .11 shift the curve up to the righ t w'ith 
slope 4/3, and increases in diffusion coefficien t shift 
the curve down to the righ t with slope - m/3. 

The variation of log x with log Un< is plotted in 
figure 5. This r elation will be of especial use in 
the da ta analysis, since log x=log Qmo+constan t, 
and varies linearly with the meteoric magnitude 
M . On the other hand log um= log exp [- (h",- hmo)/ 
H] = - 0.434294 (hm-hm o) /H , and is proportional to 
the difference of the final echoing heigh t and the 
heigh t of m aximum ionization. 

7 . Behavior of Duration in 
Asymptotic Regions 

Inspection of fi gure 2 shows that when x and z are 
much less than one, attachment m ay be neglected. 
Equation (29) then reduces to 

9 z=- X4 /3 
16 

(30) 

for m= O, and identical relations are found for other 
m's by placing B = O so that u m = 3!2, and putting 
the r esulting y of (19) in the firs t of (21 ) . In this 
attachment-free region, if z and x are given their 
values from (24) and (25), 

t = Q"/3 K\2 
H mo (4-il/2)4 

v(lO+J )/3D o - 3-
x, z< < 1. (31) 

When x and z are much greater than one, equally 
simple equations exist. F or m = OJ t he general 
equation (29) can be used without approximation. 
F or other values of m, as x and z become large, (21) 
shows B is large too, and (20) shows that Urn is sm all. 
Then using (19) and (20) 

and from (21) 

Z ~X2m/3(m+ 2 ) (2/m) 2/(",+2) e - 2/( m + 2) m > O. (32) 

In par ticular, if m = 1 (two-body attachment) 

(33) 

and 

(34) 

if m = 2 (three-body attachm ent) 

x, z» l (3 5) 

and 

Also of interest are the values of x and z at which 
the asymp totic r ela tions (33) and (3 5) intersect (30). 
When m = l , the in tersection occurs for x= 1.3971 , 
log x= 0.14493, and for z= 0. 87772 , log Z= - 0.05664. 
When m= 2, the intersection occurs for X= 1.0783, 
log x= 0.03273 , and for z= 0.62196, log Z= - 0.20624. 

8 . Bridging Formulas 

When m = O, X4/ 3 = (16/9)z · exp (z) is exact. F or 
m ~ 0, an exact and explicit rela tion between x and z 
does not exist. H owever , by taking the h armonic 
mean of (3 0) with (33) or (35), sufficien tly accurate, 
explicit bridging relations can be derived that ar e 
useful for all values of x and z. When m = 1, to 
wi thin abou t 6 percent in the transition zon e and 
better elsewhere, 
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-0.6 -0.11 - 0. 2 0 .0 0.2 0.11 0. 6 0. 8 1.0 1. 2 1. 11 I .6 1. 8 2. 0 

l og x 

FIGU RE 3. Variation of normalized echo duration z versus normalized line density x in the transition l·egion. 

e 10 /9 z= (9 2/3) 
1 + 16 · 22/3 • X 

O.5625x4 /3 

1 + O.6902x10 / 9 
(37) 

while for m = 2, within about 17 p ercent at worst, 

z 

-

(9/16)x4/3 

1+ (9/16)e 1 / Zx 

O.5625x4/3 

1+ 0.9274x 

Four-p~ace precision is given the constants only for 
convenIence. 

9. Wavelength Dependence of Duration 

From (31) it will be seen that duration is propor­
tional to wavelength squared when attachment is 
neglected. In the attachment region with x and z 
> >1, and assuming m = 1, duration varies with 
wavelength to the power 2/3; for m = 2, duration 
varies dIrectly with wavelength. Intermediate be­
havior occurs in the transition region. Measure­
ments of the exponent of the wavelength variation 
may then be used to estimate z and x. 

The wavelength dependence is usually described 
by the exponent n in the relation tH= CA n ; C is a 
function of all parameters except wavelength. Then 
In tH = ln C+ n In A, and n=d(ln tH )ld(ln A). From 
(24), In z= ln tH - [2m/ (4 + m)] In A+constant. 
Hence 

dOn z) 
d(ln \ ) 

d(ln tH ) 

d(ln A) 
2m 

4 + m 
(38) 
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and 

n= 2m + d(ln z) = 2m + dOn z) . d(ln x) . 
4+ m d(ln;\.) 4+ m d(ln x) d(ln;\.) 

From (25) In x= [6 / (4 + m)] In ;\. + cons tf1 11 t , so 
d(lnx) /d(ln ;\.)= 6/ (4 + m) and 

n= 2m + _ 6_ . dOll z) . 
4+ m 4+ m d(ln x) 

(39) 

If m = 0 (height-independent attachment), from 
(29) d(ln z)/d(ln x) = (4/3)/ (z+ I ), and from (39) 

n = 2/(z + 1) for m = O. 

If m = 1 (two-body attilchm ent), (39) becomes 

1.0 

0 .5 

~ 0.0 
" '" 
~ 

" 0 
U 

~%: 

'" -0. 5 0 -

-1.0 

-1.5 

n=~+~ dO n z) 
5 5 dOn x) 

~ 

-1.0 

for m = l. 

Do 

ASYMPTOTE 
m = 1.2 

-0.5 0.0 

(40) 

(41) 

Exact values of n versus x or z m ay be found usinO" 
d(log z)/d(log x) as tabulated in table 1. Th% 
r esulting values of n are plotted in figure 6. If 
x< < 1, 1'1 = 2; if x> > 1, n = 2/3. The mid-transition 
valu e n = 4/3 occurs when dOn z) /d(ln x) = 7/9. An 
approximate bu t explici t r elation can b e found for 
n versus x . by: ev~luating the derivative of (41) 
USl11g the bndgmg forllluia (37) . 

4 O.6902xlO/9 
n~2-3 1+ 0.6902xLO/9 for m = 1. 

If m = 2 (three-body attachm ent) (39) b ecomes 

n=~+ d(ln z) 
3 dOn x) 

for m = 2 

(42) 

(43) 

for which the mid- transition value n = 3/2 occurs if 
d(ln z)/d(ln x) = 5/6. EVilluating th e derivative 
from the bridging formula (38) , 

1'1~2- O.9274x 
- 1+ O.9274x 

for m = 2. (44) 

0.5 1.0 1.5 2.0 2.~ 

log Qmo + con 5 tan t 

FIG U RE 4. V ectors showing dir ection and magnitude of shift in log tH versus log Qmo curves f0 1' 2 to 1 change in v, A, A, or D o. 
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F I GU RE 5. The relation between normalized line density x and log lI m = O.4.'i4 (hm- h ", o) /H ; hm is final echoing heiyht, II "", is 
height of maximum ionization pTodllction. 
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FIGURE 6. Exponent n of the wavelength dependence of duration, t "2/ t " l = (>-,/>,'1 ) n, f er two- and three-body attachment (m = 1 01' 2). 

10. Discussion 

The theory of meteor echo duration includino' 
attachment, as developed in th e present paper, ha~ 
been k~p t as general as possible so that detailed 
companson c~n be m ade wi th experimental data 
takeJ?- . at van ous laboratories under a variety of 
condl tlOTI:=; . In a comp anion paper, the experimental 
resul~s wIll be analyzed and values deduced for the 
phYSIcal parameters en tering in to the theory. The 
valuabl.e earlier work by D avis, Greenhow, and Hall 
[1959] Implies some of the results of the present 
theory, but unfortunately their curves were obtained 
largely . by numeri~al C?r graJ;>hical methods applied 
to partIcular comblllatlOns of wavelength and other 
parameters, and so are not useful for fmther de­
velopmen~ . In addition to being analytic and more 
g~~eral , III sO.me parti?ulars the presen t results 
dIffer from theirs. F or lllstance D avis Greenhow " , 
and H all state [1959, p. 136] that for hio'h line 
densities the duration is proportional to line density 
to the power 1/3; the present study shows the ex­
ponent to be 2/5 for the two-body attachment 
~rocess they considered. Moreover, the normalizing 
factors used by Greenhow and Hall l1962] in plotting 

tlteir general cur ves are inco nsistent with the present 
theory; they do not give the derivation leading to 
these factors. 

11 . Conel usions 

In terms oJ normalized line-densi ty and dmation 
parameters, the duration behavior of overdense 
meteors can be simply expressed . IV[ost overdense 
ech oes lie in a transition region between a mediu m­
densi ty attachment-free domain and a high-density 
attachmen t-controlled domain. Values of the nor­
malized param~ters rnay be found from experimental 
plots of duratIOn vers~s visual magnitud e, wave­
length, .or meteor velOCIty ; from plots of enduring 
echo. heIghts vers!ls velOCIty or magnitude ; or from 
detaIled observatlOns of the b ehavior of individual 
m.eteors. From these observations i t is possible to 
d~duce th.e a~tachment time constan t A, the type 
of recombll1at~on process (m), the h eigh t parameter 
K , the r elatlOn between luminous and ionizino' 
efficiency (exponent J ), and th e line densi ty corres~ 
ponding to a given visualrnagni t ude. The diffusion 
coeffi cient D and scale h eight II may be tak:en 
[rom. the behaviC?r of underdense trails. Upon 
Insertmg the expernnental values of t hese parameters 
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(to be derived in a companion paper), the theory 
can be used to predict echo height and duration as 
a function of radiofrequency, meteor velocity, 
radian t position, and line density or magnitude. 
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