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Recent studies have shown that attachment as well as diffusion is important in de-
termining the electron-density distribution about the path of a meteor. The present paper
develops in detail the mathematical theory of the durations of radio echoes from overdense
trails. Included is the dependence of the height distribution of ionization on meteor mag-
nitude, veloecity, zenith angle, the form of the attachment law, the height dependence of
diffusion coefficient, and an adjustable relation between luminous and ionizing efficiency.
It is shown that well defined attachment-free and attachment-controlled duration regions
exist with different line-density and wavelength dependences. The transition zone is
broad, and its location depends strongly on meteor velocity. Normalized duration and
line-density parameters are defined in terms of which a single computer-calculated duration
versus density relation good for all parameter values is plotted. Bridging formulas ap-
proximating the duration relation are derived from asymptotic expressions, and the relation

between echoing height and duration or line density is presented.
relating the exponent of the wavelength to echo duration.
theory will be applied to experimental data and the

constants will be derived.

1. Introduction

When the electron line density created by the
passage of a meteor is appreciably less than 10"
electrons/meter, the reflected amphtude decays ex-
ponentially with a time constant determined by the
wavelength and height-dependent diffusion coeffi-
cient. Such trails are called underdense, and an
incident wave penetrates the trail with little change
in amplitude or phase. When, however, the line
density appreciably exceeds 10 elu‘tl()ns/lnetel an
incident wave is significantly affected in phase and
amplitude by the jonization distribution. Such an
“overdense’ trail will return a strong echo primarily
during the period of time when a negative dielectric
constant core exists about the trail axis (underdense
echoes may also have overdense cores, but only of
radius small compared with the skin depth, thus not
controlling the echo duration). If the electron-
density distribution of an overdense trail is controlled
entirely by diffusion, the duration of the echo
reflected perpendicularly from a given height on a
smooth cylindrical trail 1s directly proportional to the
line density [Manning and Eshleman, 1959]. How-
ever, the duration of overdense echoes does not
increase as rapidly as predicted by this relation for

1 Jointly supported by the U.S. Army Signal Corps, the U.S. Air Force, the
U.S. Navy (Office of Naval Research) and by the National Science l*oun(l(mon
Grant NSF-G P948.

Equations are given
In a companion paper, the
values of the physical parameters and

very large meteors. Davis, Greenhow, and Hall
[1959; have suggested that a two-body attachment,
process 1s important in removing electrons, thus
shortening the durations. Greenhow and Hall [1962]
have more recently suggested that a three-body
attachment process may better fit the experimental
results. These authors, however, have not presented
a general theory for echo duration including the effect,
of attachment, from which a careful study of the
influence of the relevant parameters could be made.

In the present paper a general analytic theory of
overdense meteor-echo duration will be given for
two-, three-, or m-body attachment, including the
effect of variation of diffusion coefficient with height,
ionization production with velocity, the wavelength,
and other pertinent parameters. In computing du-
ration, it will be assumed that an echo will be re-
ceived if an overdense core exists at any point along
the trail. With attachment included, it will be
shown that meteor echoes fall into three groups each
of which has a characteristic duration behavior: (1)
underdense, (2) overdense without electron loss, and
(3) overdense with attachment. By suitable nor-
malization, simple formulas are found for each re-
gion; a 5ll]lple bridging formula connects the latter
two domains in a region of great interest. In a
following paper, the themv will be compared with
a variety of experimental results, and values deduced
for the physical parameters.
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2. Reflection Conditions and Duration

At a given point on the ionization trail let the
electron line density be ¢ electrons/meter. Then in
the notation of Manning and Eshleman [1959], a
useful normalized line density is

Q=mr,q=0.885X10"q (1)
where 7, is the electron radius. If @Q<<1, the

trail is underdense, and except at very high fre-
quencies or in the presence of transverse-polarization

plasma resonance [Manning and Eshleman, 1959],
the reflection coefficient is
p=Qewp (—p)  for @< @)

where by definition p= (27*R/\)}- ( sc/]il,,c), with R
the radar range, \ the wavelength, /. the received
electric field strength, and Eine the incident field
strength at the trail; in (1) 7 is the underdense
exponential-decay time constant, given by

= {6xD ©)

with D the ambipolar diffusion coefficient, and X the
wavelength.

For overdense trails the echo duration can be
equated to the duration of a negative-dielectric-
constant core in a diffusion-formed gaussian radial
ionization distribution. The radius of the core is
given by r*=4Dt In (4Q7T/xt), where t is the time
after trail formation [Manning and Eshleman, 1959].
This radius shrinks to zero at a given point on the
traill when 4Q7T/xt=1, so that the high-density trail
duration ty is

(4)

ty

4T
™

Equation (4) gives the duration attainable from a
particular portion of an overdense trail. Note that
) and T are both functions of height. In the
presence of attachment of trail electrons to neutral
particles according to a relation of the form dN/dt o
N, where N is electron volume density, () must be
considered a function of time as well as height.
Since the rate of loss of electrons by attachment is
proportional to the existing volume density, all
volume elements lose density in proportion and the
gaussian diffusion distribution is not disturbed;
attachment can thus be considered to cause an
exponential line-density decrease with time.

3. Line-Density Distribution and Trail Height

In the absence of flares and fragmentation, the
distribution of line density with height can be de-

scribed by Herlofson’s formula

9 w\?
Z Qma <1_§> u

where (),,,1s the maximum line density, and
’ h h"l() g
u=exp\ ——— 6
P( 7 > (6)

with A the height, £,, the height of maximum line
density @, and H the atmospheric scale height.
In the presence of attachment, ¢ will be less than
that given by (5) by a decreasing exponential time
factor whose time constant depends on height.
The form of height dependence depends on the
attachment mechanism, being proportional to at-
mospheric density for a two-body process, and pro-
portional to density squared for a three-body process.
In general, the attachment time constant is

A.exp [’_"_(ﬁ];ﬂ]

if A is the time constant at an arbitrary reference
height of 95 km, & is height, H is scale height, and m
is zero for height-independent attachment, m=1
for two-body attachment, and m=2 for three-body
attachment.

Including attachment,
now be written

u<3 (5)

the line-density (5) may

ng Qo <1—g~>2u exp {—jl exp [_MEL&:I}
(7)

with ©<3. In (7), the term exp [—m(h—95)/H] is
equal to w™-exp [m(95—h,,)/H|. Drawing on the
physical theory of meteors, the latter exponential is
dependent on €),,,.

The pertinent aspects of the physical theory of
meteors are conveniently summarized by \IcKmle\
[1961]. Eliminating mass from his equations (7-7)
and (7-17) yields Tor the atmospheric density at
maximum ionization

3
g2 cos’ Z (8
SNV ¢£TE 8)
(1

where ¢uax 18 Q,,/7r,, 7 is the zenith angle of the
meteoric radiant, V' is the meteor velocity, and
7, 1s the ionization-efficiency factor. Kquation (8)
differs from McKinley’s equation (7-22) only in
the retention of the zenith angle 7. Comparing
McKinley’s equations (7—4) and (7-5), the ionization
q is related to the luminosity I by

(9)
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where 7; is the luminous-efficiency factor, and 7
is the mean ionization potential of the atoms involved.
We shall assume that the ratio of line density to
luminosity is proportional to V. Then from (9),

T4/Troc V7. using Whipple’s simplification of Opik’s
theoretlcal calculations as givenin (7-5) of McKinley,
rroc V. Hence we assume 7, proportional to V/*
and (8) may be written

O3 cos* Z

V(16+J> /3

(10)

From analysis of the radio and photographic data,
Millman and MecKinley [1956] and Whipple [1955]
independently concluded J=1. However, when
attachment is considered the most suitable value of
J depends on the attachment law assumed, so it
is appropriate to leave J to be determined again
by reference to the experimental results. The
assumption that J>0 implies that a relation exists
between line density and visual magnitude of the
form Q,,,= Qo(V/Vy)/10~ /25,

For our purposes (10) can be written more con-
veniently in the form

11/[”([ }'L/;)‘ 4 \
7 V=K e an

e \p

by assuming an exponential atmosphere; the con-
stant K depends on the atmospheric d(‘n\lt\ at the
arbitrary reference height of 95 km, and in a com-
plicated way, on the Tonization potential, heat of
ablation, heat transfer coefficient, meteoric density,
scale height, shape factor, ete. The velocity and
zenith-angle variations have been normalized using
the relation

o—( ‘10> (sec Z)Y00+D) (12)

so v=1 for a V, km/s meteor in the zenith.
Using (11), the line-density distribution equation
(7) can be written

A ) )
Q= Qo i (1 —§> w exp (— Bu™) u<3 (13)
where B is defined by
}n/.i m
A<K (10+J)/3> : (14)

4. Derivation of Duration

From (4) the duration at height & (or ) is t;=
4QT/x. By (3), T=N/(16x°D); the diffusion co-
efficient ) varies with height as i~ D, exp [(h—95)/
H|if Dy is the value at 95 “km (about 4m?/s). Using
(11), the time constant 7}, at height of maximum
‘onization is then

2 K 1/3
Zymov 4 Q

167D, p00+D A

The time constant at height & is T, exp [— (h—/hy,)/
H|=T,,u, hence the exponential-decay time con-
stant ¢ at any height is

- N K
T=u- 1672D, 77('10+J)0/3' (15)
Combining (13) and (15), the duration relation

tu=4QT /7w for a particular height described by u
becomes

INKQiLE

ta— 162D l,(IUJrJ)/Jl:(l 712 exp (—Bu,’"'):l u<3.

(16)

To find the actual echo duration, we must evaluate
(16) at the value of u (height) equal to u,, for which
the duration is the greatest. To do so, define

U ’ 2 m d
1= (‘1—g> u? exp (—Bu™). (17)

The duration is maximum when dy/du=0, a condi-
tion that requires

2(1 Zu,,,/.%) i
2 maur (1— 1, /3) (18)
Values of u, must lie in the limits 0<u,, <3/2; the
subseript 71 on B implies that By is evaluated with
t=ty, the maximum duration. It may be noted
that if m=0 (attachment independent of height)
,=3/2, just as in the case of no attachment. The
height of maximum duration is then below the height
of maximum electron produection by Ah=IH-In
3/2=0.40547H~2.4 km. Figure 1(a) shows how
By (proportional to duration) varies with 1, —
exp [—(hn—hn,)/H], and figure 1b shows how By
varies with the relative h(‘whl (hy—hmo) [H, where
h,, 1s the height of maximum dumtl()n
Combining (14), (16), (17), and (18), two relations
are obtuined in duruti(m ty, line density €),,, and
U

1673 D10+ /3

e ONKQT

~(1-%) exo [ (2

1/3 m
KQif: ] B

:;y(u”l)

— 22Uy /3) 2
el ]u (19)

and
2 1 1—2u,/3

1—u,/3

(10+.I)/3 (20)

tHA

Equations (19) and (20) are indeterminate if m=0.
If m>£0, ty can in principle be found as a function
of @, by eliminating u, between (19) and (20).
This elimination can be performed in the asymptotic
limits of low and high attachment. However,
exact calculation of the relation between ¢; and
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10 [ NOTE: REQUIRE 0 < u, <3,
>
By > 0
s H
6
4
2 m = |
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- 12
Frcure 1. Variations of Bu with height parameters.
(a) Variation of Bpg, as given by (18), with un=exp[— (hm—hmo)/H]
0),,, must be carried out by treating w,, as a param- z AR
eter and finding a corresponding t; and @, for e T =Dn

each u,,.

5. Normalized Duration and
Line-Density Variables

To avoid having to calculate families of duration
curves for different velocities, wavelengths, ete., (19)
and (20) will be put in a normalized form. Let z be
normalized duration tyz, and z normalized maximum
line density @,,. Then (19) and (20) can be
written

Solving for z and x,

4B4H/ @a+m) | ym /(4+m)

T =

BH 3/(4+m)
- y>

and (20),
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Putting in y and By from the left-hand side of (19)



2.0

Ficure 1. Variations of By with height parameters.—Continued

(b) Plot of By versus (hm—hmo)/ I

\ 2m /(4+m)

3/2
K:&m /( 1+m)])(';1 (4+m) ( ,47r -
3

o=l TAMGatm) o OFT) /Cam) )\ 2m/(atm)

and

J,:(?ma -

A3/tm) prm +J) (m+1) r’u+m)[)8 (4-+m) (

]{Zﬂm+1) /(4+m) | )\43 (4+m)

3

47r:s,2‘>0, (atm)’

The cases m=0, 1, and 2 are of especial interest
For height-independent attachment, m=0,

= (26a)

KB3/I4)\3/2
dH= (.)mn T o

, . (26b)
A3/4(10+7) /4T )3/4 4”",/_- -
A¥%y I8 3



For two-body attachment, m=1,

K35Dys (41r3/2>2/5
3
2=ty A0t Nes (27a)
K/50\8/5
=), TN (27b)
A3 ’51,2(10+J)/5Dg/5 3 >
For three-body attachment, m=2,
KDI,’3 <47r3/2>2/3
A W
3
2=ty ATy F D AT (28a)
KB12N
T=Qm, 32N (28b)

Al/2p0+0) /21172 (47" ' )
/ 3
It may be noted that 47°/%/3="7.4242.

6. Duration Versus Line Density

Exact curves of normalized duration z versus
normalized line density z have been calculated for

simple case of m=0, (16) reduces, upon substituting
z and x from (26), to the explicit relation

Zn 9 4/3
ze— 16) X

However, for m=1 and 2, y and B were computed
versus 1, from (19) and (20), and z and z were
computed from y and B using (22) and (23). The
results are shown in figure 2, and tabulated in table 1
for key values with m=1 and 2. The meaning of
the coordinates z and z is defined by (26), (27), and
(28) for m=0, 1, and 2; it is different for each of
the curves.

In examining figure 2, note that log z, the abscissa,
is a linear function of the meteor magnitude. Note
also that when 2z and z are much less than one,
attachment is not important, and duration is pro-
portional to @i. When z and z are much greater
than one, the duration for two-body attachment
(m=1) approaches proportionality to .. For
three-body attachment (m=2) the proportion is to

5. If m=0, corresponding to height-independ-
ent attachment, a logarithmic relation is approached,
but this case does not correspond well to the physical
situation. The transition region is of especial
interest, since it covers a line-density range of
about 100 to 1 (5 magnitudes). In figure 3 the
transition is plotted to a larger scale. No appre-
ciable difference between the normalized curves for

for m=0. (29)

m=0, 1, and 2 using a digital computer. For the | m=1 and m=2 occurs until z is greater than about
2.0 ! T T T T T T I
SLOPE 1/3
1.0 [
SLOPE 2/9
- INTERSECTION OF W= m = .
—~ 0.0 ASYMPTOTES
u::
¥
N
o
o
T o-10 [0 =
SLOPE 4/3
-2.0 [C -
-3.0 ] l 1 1 1 1
-2.0 -1.0 0.0 1.0 2.0 3.0 4.0 5.0 6.0

log x (x = Q)

Ficure 2. The variation of normalized echo duration z versus normalized line density X.
Height-independent attachment corresponds to m=0; two- and three-body attachment corresponds to m=2 and 3.
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1.5, but the variables x and z have different meanings
in the two cases. In a group of sporadic meteors
transition behavior will be noted over an even
greater magnitude range, because of

TABLE 1. Normalized duration and line density
m=1 m=2
Um | |
. d(log 2) ) d(log 2)
log = log z ’ o log z log 2 )
| e —

1. 498 —1.318 —2. 009 ‘ 1.324 —1.337 —2.034 1. 326

1.495 | —1077 | —1.692 | L.311 —1.137 —1.768 1.320

1.480 | —0.7056 | —1.213 1.250 —0.8204 | —1.367 1. 282

1. 450 —. 4462 | —0.9019 1. 140 —.6171 | —1.101 1.210

1. 40 9315 | —.8710 | 0.9997 —. 4436 | —0.8995 | 1.110
1.20 1917 —. 3191 } L6673 —. 1026 —. 5670 0. 8342
1.0 4718 —.1572 | .4999 L1341 —. 3904 . 6660
0.8 7305 —. 04187 . 3997 . 3685 —. 2481 L5547
.6 1.012 . 06056 L3335 . 6409 —. 1085 L4761
.4 1. 368 L1701 1.005 —. 0530 L4162
) 1.939 .3213 1.613 . 2901 . 3702
.1 2,492 | 4550 2.216 L5069 . 3508
.06 2. 895 . 5487 2.660 | L6609 . 3439
.04 3.214 L6215 3.012 7813 . 3396
.03 3.440 L6727 | 3,262 . 8660 . 3384
02 3.758 .7443 | 3.615 L9849 . 3366
.01 4.300 L8659 | 4,217 1.187 . 3350

the strong dependence of z and z on velocity. For
instance if J=1, for two-body attachment a 3 to
1 spread in velocity will cause a @)/ or an
11 to 1 shiftin z and a 125 to 1 shift in z.  For three-
body attachment, the shifts are 56 to 1 in z and 425
to 1 in 2. On a plot of log ty versus log (o, an
increase in velocity slides the curve toward higher
coordinate values in a direction with slope m/(m--1)
as sketched in figure 4 for m=1 and m=2. The
length of the vector in the plots is drawn for a
velocity shift of 2 to 1. Similarly, a change in
wavelength causes the duration curve to shift toward
the second quadrant with slope —m/3. The wave-
length vectors in figure 4 are again drawn for a 2
to 1 increase in X. Increases in attachment time
constant A shift the curve up to the right with
slope 4/3, and increases in diffusion coefficient shift
the curve down to the right with slope —m/3.

The variation of log z with log w, 1s plotted in
figure 5. This relation will be of especial use in
the data analysis, since log z=log @u,-+constant,
and varies linearly with the meteoric magnitude
M. On the other hand log u,,=log exp [— (h,,—hmo)/
H]=—0.434294 (h,,—hwo)/H, and 1s proportional to
the difference of the final echoing height and the
height of maximum ionization.

7. Behavior of Duration in
Asymptotic Regions
Inspection of figure 2 shows that when z and z are
much less than one, attachment may be neglected.

Equation (29) then reduces to

9 4/3

(]

2<<1, 2<<1 (30)

y ¢

for m=0, and identical relations are found for other
m’s by placing B=0 so that w,=3/2, and putting
the resulting » of (19) in the first of (21). In this
attachment-free region, if z and z are given their
values from (24) and (25),

(31)

T e

mo TN x, 2<<1.
pO+D B <47;“>4

When 2 and z are much greater than one, equally
simple equations exist. For m=0, the general
equation (29) can be used without approximation.
For other values of m, as z and z become large, (21)
shows B is large too, and (20) shows that u,, is small.
Then using (19) and (20)

2l
B~— — and y=~uZe~¥™
m umr Y= tn

and from (21)
ngzm/il(m-{-:z) (2/"") 2/ (m+2) e —2/(m+2)

m >0. (32)

In particular, if m=1 (two-body attachment)

g g2/? 5—27; z, 2> >1 (33)
and
(J y A_rlz/iiv(l(]ﬁ’l)/‘.)k2/322/3
() T ag)
Kl/.’l])(l)/:i <47":/2> e2/3 (';4)
if m=2 (three-body attachment)
11/3 .
2= O] (35)
and
[11/20(10+J>/l)}\ 3 .
tH%'ern/u3 —'I(l'/’f])(l)/z 471.3/261/3' (';6)

Also of interest are the values of # and z at which
the asymptotic relations (33) and (35) intersect (30).
When m=1, the intersection occurs for z=1.3971,
log 2=0.14493, and for z=0.87772, log z=—0.05664.
When m=2, the intersection occurs for x=1.0783,
log =0.03273, and for z=0.62196, log z= —0.20624.

8. Bridging Formulas

When m=0, 2*=(16/9)z- exp (z) is exact. For
m#0, an exact and explicit relation between z and z
does not exist. However, by taking the harmonic
mean of (30) with (33) or (35), sufficiently accurate,
explicit bridging relations can be derived that are
useful for all values of # and z. When m=1, to
within about 6 percent in the transition zone and
better elsewhere,
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ASYMPTOTES

log z

-0.2

-0.6

-0.8

| | | 1 | |

=06 M= 0TI = 0532 0.0 0.2 0.4

0.6 0.8 1.0 IS 1.4 6 I8

log x

Ficure 3. Variation of normalized echo duration z versus normalized line density x in the transition region.

( ) 113
S 16
() e

0.5625x -
=140.690277% (87)
while for m=2, within about 17 percent at worst,

_(916)at”
“T14(9/16)e 2z

_ 0.5625%"
T 1+0.9274x

Four-place precision is given the constants only for
convenience.

9. Wavelength Dependence of Duration

From (31) it will be seen that duration is propor-
tional to wavelength squared when attachment is

neglected. In the attachment region with z and z
>>1, and assuming m=1, duration varies with

wavelength to the power 2/3; for m=2, duration
varies directly with wavelength. Intermediate be-
havior occurs in the transition region. Measure-
ments of the exponent of the wavelength variation
may then be used to estimate z and z.

The wavelength dependence is usually described
by the e\ponent n in the relation tz=C\"; C is a
function of all parameters e\copt waveleng th. Then

In tz=In C+n In )\, and n=d(In tH)/d(ln N). From
(24), In z=In tH~[2m/(4+m)] In A+ constant.
Hence

d(Inz) d(nty) 2m

dIn\) d(nX) 4+m L
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and

Y 2m  d(Inz) 2m  d(nz) d(nz)

"~ 4+m "d(InN) 4+m  ddnz) d(n\)
From (25) In z=[6/(4+m)] In X\+constant, so

d(Inz) /d(In \)=6/(4+m) and

Com 6 dnz)
4+m "4+m d(nz)

(39)

n

If m=0 (height-independent attachment), from

(29) d(In 2)/d(In z)=(4/3)/(z+1), and from (39)

for m=0. (40)

n=2/(z+1)

Exact values of n versus z or z may be found using
d(log 2z)/d(log x) as tabulated in table 1. The
resulting values of n are plotted in figure 6. If
2 <1, n=2;if 2 >">1,n=2/3. The mid-transition
value n=4/3 occurs when d(In z)/d(In 2)=7/9. An
approximate but explicit relation can be found for
n versus x by evaluating the derivative of (41)
using the brideing formula (37).

4 0.6902207

Ilv%’u—'g m}leﬁ 3 TorE=—I% (42)
If m=2 (three-body attachment) (39) becomes
n= 2 d(ln 2) for m=2 (43)

3 d(n x)

for which the mid-transition value n=3/2 occurs if

S .y AT e d(In 2)/d(In 2)=5/6. Evaluating the derivative
If m=1 (two-body attachment), (39) becomes feemitia badpiank ol 05 ) S
2 6d(n z2) . 0.9274z .
N = for m=1. Lo - m=2. 44
5 5dIna " = " 109274z O™ (44)
I I [ [ T I T
10 |= Y
0.5 [ ASYMPTOTE
mo= 2
ASYMPTOTE
m =1
= 0.0 [~ —
S
3 -0.5 [~ =
-0 =
ASYMPTOTE
m=1,2
-.s | —
L 1 1 | ] |
-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.8

log Qno T constant

Frcure 4. Vectors showing direction and magnitude of shift in log tw versus log Qme curves for 2 to I change in v, A, A, or D,.
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5.0 T | T T I
4.0 [T 7
3.0 — =
2.0 — —_
>
o
o
1.0 — —
0.0 — —
-1.0 [~ —
-2.0 [~ =
1 | | | |
-2.0 -1.5 -1.0 -0.5 0.0 0.5

log u == 0.434 (h, = hyo)/H

Ficure 5. The relation between normalized line density x and log Ww=0.43} (hym—hue) /H; hy is final echoing height, h,.., is
height of maximum ionization production.
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2.0

| 1 |

-2.0

=066 0.0

log z

FiGure 6. Exponent n of the wavelength dependence of duration, tys/tui= (No/N)", for two- and three-body attachment (m=1 or 2).

10. Discussion

The theory of meteor echo duration including
attachment, as developed in the present paper, has
been kept as general as possible so that detailed
comparison can be made with experimental data
taken at various laboratories under a variety of
conditions. In a companion paper, the experimental
results will be analyzed and values deduced for the
physical parameters entering into the theory. The
valuable earlier work by Davis, Greenhow, and Hall
[1959] implies some of the results of the present
theory, but unfortunately their curves were obtained
largely by numerical or graphical methods applied
to particular combinations of wavelength and other
parameters, and so are not useful for further de-
velopment. In addition to being analytic and more
general, in some particulars the present results
differ from theirs. For instance, Davis, Greenhow,
and Hall state [1959, p. 136] that for high line
densities the duration is proportional to line density
to the power 1/3; the present study shows the ex-
ponent to be 2/5 for the two-body attachment
process they considered. Moreover, the normalizing
factors used by Greenhow and Hall [1962] in plotting

their general curves are inconsistent with the present
theory; they do not give the derivation leading to
these factors.

11. Conclusions

In terms of normalized line-density and duration
parameters, the duration behavior of overdense
meteors can be simply expressed. Most overdense
echoes lie in a transition region between a medium-
density attachment-free domain and a high-density
attachment-controlled domain. Values of the nor-
malized parameters may be found from experimental
plots of duration versus visual magnitude, wave-
length, or meteor velocity; from plots of enduring
echo heights versus velocity or magnitude; or from
detailed observations of the behavior of individual
meteors. From these observations it is possible to
deduce the attachment time constant A, the type
of recombination process (m), the height parameter
K, the relation between luminous and ionizing
efficiency (exponent .J), and the line density corres-
ponding to a given visual magnitude. The diffusion
coefficient D and scale height 7/ may be taken
from the behavior of underdense trails. Upon
inserting the experimental values of these parameters
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(to be derived in a companion paper), the theory
can be used to predict echo height and duration as
a function of radiofrequency, meteor velocity,
radiant position, and line density or magnitude.

12. References

Davis, J., J. S. Greenhow, and J. . Hall (1959), The effect
of attachment on radio echo observation of meteors, Proc.
Roy. Soc. A 253, 130-139.

Greenhow, J. S., and J. E. Hall (1962), Attachment processes
in meteor trails, J. Atmospheric Terrest. Phys. 21, 261-271.

1078

Manning, L. A.; and V. R. Eshleman (1959), Meteors in the
ionosphere, Proc. IRE 47, 186-199.

McKinley, D. W. R. (1961), Meteor Science and Engineering
(MeGraw-Hill Book Co., Inc., New York, N.Y.).

Millman, P. M., and D. W. R. McKinley (1956), Meteor
echo durations and visual magnitudes, Can. J. Phys. 34,
50-61.

Whipple, F. L. (1955), The physical theory of meteors. VII.
On meteor luminosity and ionization, Astrophys. J. 121,
241-249.

(Paper 68D10-407)



	jresv68Dn10p_1067
	jresv68Dn10p_1068
	jresv68Dn10p_1069
	jresv68Dn10p_1070
	jresv68Dn10p_1071
	jresv68Dn10p_1072
	jresv68Dn10p_1073
	jresv68Dn10p_1074
	jresv68Dn10p_1075
	jresv68Dn10p_1076
	jresv68Dn10p_1077
	jresv68Dn10p_1078

