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E xpress ions :1 re cleveloped which p el'llli L cnlcu l"t ion o f tlw Le mperaLu re-de pl'ndeIl L 
th erm al cOllclu ct ivi t y of a cylin d rical sp eci men fro m Lhe ('x p(' rim enLaIV d('LPr mi nl'c1 Le m­
p erat ure clls tl'lbu t lOl lS on ltS surfaces and from t Il(' 11('"t fl ow th rou gh a ce ntml circuLt r :1 rea 
at one end of the cylinder . N um eri cal f 'lclo l's a re tabulat('cI which p ermi t rapid h!tn d 
co mputation of thcrm al co nduct iviLy va lu cs from ('xpe l'imenLll cl aLa fOI' Lhe case of nx i!tlh' 
sy mm et ri c p a rabolic boundary con di Lions on the rI a t s urfaces ancl a li neal' 10ng iLuclimll 
Lempcrature d ist ri bu t ion o n th\' co n vex s urface. Applicat ion s to s('v('ra l publi shed ml't horis 
of t herma l conduct i I-ity dekrminat ions arc s holl'll ane! examples aI'(' g iven . 

1. Introduction 

Tn a recenl p,Lpor by Glaser 01 aI. [1], 1 a melh od 
of me,lsul'ing l!to 1 herill al co ndu cLi\'i ly of solids was 
doscribed in which Lho principal !toaL flow was 
parallel Lo Lho axis of a s llwll circular disk-shaped 
specimen, but ill whiclt sigllificant radial helll 
flows also occurred . Assumin g axial sy nllll etry, the 
authors used ,L leclsl-m eall-squares pambola 10 
represenL lho mo,lsul'od radial tempomlu ro proftlo 
on oach faco of Lhe s pecimcn and assum cd a lin car 
longitudinal tempenltu rc disLribution along t be 
cylindric'Ll surface of th e specimen. Utilizing these 
boundary conditions, longit udinal temperaL urc gradi­
ellts at the cooler face of thc specimcn wcrc dclcl'­
mined by numcrical sol ulion of i1, fi niLe dirT'cren ce 
equation usin g a digital co mputer . The th ermal 
conductiv ity of Lh e speeim en was calculat ed from 
t he average co mputed te mperatme g[,n,dicnl n,t Lite 
cooler sur face and the measurcd h e,1,t flow leaying 
this surface. 

A somewhn,t similar hea t flow a nalysis is being 
used in the H eat Transfer Section of t he National 
Bureau of Standn,rds in con junction with thermal 
conductivity measurements employing a guarded 
steam calorimeter for the metLsurement of heat 
flow through the central 3-in.-diam area of a 6-in.­
diam disk-shaped specimen [2]. The method is one 
of chiefly longitudinal heat flow, but conections are 
occasionally necessary to accoun t for radial heat 
flows. In order to effect such correct ion s, an exact 
analytical solution was obtained to the boundary 
value problem in which parabolic temperature dis­
tributions having axia l sfmm etry ,L1'e ass um ed on 
the two plane end surfn,ces, and a lineal' longi tudinal 
temperature distribution is assumed on the co nvex 
surface, of a right circular cylinder . 

Subsequent to the development of this ann,lysis 
at NBS, a paper was published by Hoch et aI. [3], 
in which a somewhat similar , altho ugh less genel'n,l, 

l l;' igurcs in brackeL'i in dicate the literature rc[crcnc('s at the e nd of this paper. 

,Lllalv tical solution Wf1,S deril"ed. '1 n Lhe laUer p,lpe1', 
L1le 'heat concluction cq wLtion was soh'ecl for th e 
cnse o i' a fini te c'ylind el' with lh e cO lwex surf,1,ce at 
a uniform temper ature ,Lnd the sam c ILxially sym­
meLri c parabolic tempenLture dist ribulion on lhe 
two f,Lees of the cylinder. Th e t i1 erm ,tl co nducti vil:IT 
or Lhe specim en was calculat ed from Ul e computed 
nducs of th e tem pera ture gmdi en t ,lot lh e cen ter or 
Llte f,lces of th e cylind er a nd of Lile he,LL fI ux radiated 
from these s u'daces at '0he center , ,LS deLe1'Jnined by 
their temperature and emissi "ity. 

Tn view of the geneml interest in this It at flow 
problem, it was decided to present, prior to for mal 
publication of the paper [2] describin g th e NBS s team 
calorim eter appamtus, lhe math ematical analfs i de­
veloped 1'0 1' it. The analysis gi \'en first tJ'eats th e 
case of ,1, righ t circular c)'li nder with arbitml'Y tem­
pemture boundarf co ndiLions, ancl then del'elops 
solu tions for specific bound ary conditions appli cable 
to the determination of t hermal conductivity. 

2. Mathematical Development 

Co nsider a homogeneo us, isotropic, opaque, solid 
right cylinder or radius, b, and thickn ess, t. In 
general , t he th erm al conductivi ty or the cylind er 
material may vary with tempel'n,tme. J[ so, tlt e 
steady-state heat flow equation in cylindric,Ll co­
ordinates, assuming axi,Ll symmetry, is 

~ ~ 1 0 ( oV) 0 ( OV) 
Y'. (kY'v) = r: or k (v)1' or + 02 k(v) o z = 0, (1) 

wh ere temperatme above an arbitrary dtLtum. is 
denoted by the symbol v, t he temperature-dependent 
t hennn,l conductiyity by k (v), a nd the mdial and 
longitudinal coordinates by T lwd Z, respectively. 
Equn,tion (1) can be reduced to a simpler form by 
introduction of a new vari,Lble, y , defined by the 
reh1,tion 

y= ~* r o k(v' )dv' , .Jo 
(2) 
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where lc* is the value of lc (v) at V= 0.2 
(1 ) reduces to [4, 5) 

Utilizing (2), 

\72 = 02y+~oY+02y= 0 
Y 01'2 l' 01' OZ2 . (3) 

The variable, y, is essentially a potential whose 
gradient is proportional to the heat flux [6). 

2.1. General Boundary Conditions 

Assume the following boundary conditions: 

2= 0 (4a) 

sponding to arbitrary potential boundary conditions, 
g(r), j(r), and h( z). If the indicated integrations of 
(6), (7) , and (8) cannot be obtained analytically, 
values can be determined by numerical integration. 

2.2. Parabolic Boundary Conditions 

The boundary conditions used by Glaser et al. [1], 
Robinson et al. [2], and Hoch et al. [3) are all of the 
form 

1'2 

g(1')=Y I + E 1 b2' (9) 

z=z 
y = j(1') , 

y = g(1'), (4b) and h(z) = O, 

1'= b 
z 

y = j(b) + [g(b) - j(b) ) Y 

+ h(z), (4c) 

where j (1' ) and g(1') are arbitrary potential distribu­
tions on the flat surfaces of the disk, and where, in 
order to insure continuity, we shall require that the 
function h( z) vanishes at the flat surfaces of the 
disk, so that 11,(0) = 11,(1) = 0. The solution is [7]: 3 

z 00 (1') y= f(b )+ [g(b)-j(b)] y+ ;7;Jo an b 

{ . ( z) . ( Z- z) 1 X A n smh an b +Bn smh an - b- r 
00 (hrl') (hrz) + (;t Ck10 - Z- sin - 1- , (5) 

where J o and 10 are, respectively, the ordinary and 
the modified Bessel functions of the firs t kind ; the 
an's are the positive roots of J o(a n) = 0. In order to 
satisfy the boundary conditions, the coefficients 
must be: 

A n= b2J i(a,,) si~h (anI/b) Sob {g(r) - g(b ) } rJ o(an1'/ b ) dr, 
(6) 

B n= b2J 2( ) ? h ( lib) f bU(I' )_j (b) }rJ o(anr/ b)dr, 
1 an SID an J o 

(7) 
and 

2 f l . (hrz) 
lIo C;b) J o h(z ) S1l1 - 1- dz . (8) 

Equat ion (5) can be used to calculate the steady­
state potential distribution in a finite cylinder corre-

2 rr'his is a spcci:ll rase of the nlore general relat ion d!J= CkW) dv, "here C is an 
ar bit ra"y constant. . . 

. 3 Th is sppcinc problem is not handled by Carsl"w and J aeger; th e form of SO!ll ' 
tW!1 and the n ecessary in tegrals are given in the chnptC'r cited. 

where Y o and Y1 are the potentials (corresponding 
to y) at the centers of the faces of the disk, and Eo 
and E t are the potential differences between the edge 
and the center of the disk at z= o and z= l, respec­
tively. With these boundary conditions, (5 ) becomes 

z 
y=(Y o+E o) + (Y1-Yo+Et-Eo) y 

-8 f: Jo (anr/b) 
n= la~Jl (an) sinh (anI/b) 

X { El sinh (an ~)+Eo sinh (an Z~ Z) }. (10) 

3. Calculation of Thermal Conductivity 

The thermal conductivity of the disk is to be 
determined frolIl the measured heat flow leaving a 
central portion of the disk of radius, 1'= a, and from 
the observed potential dis tributions on the surfaces 
of the disk. A mathematical expression giving the 
appropriate relationship between these quantities is 
derived by determining the total heat flow thl'ough a 
circle of radius a, at z= O: 

Q= 27l' fa Tk (v) (~V) dT= 27l'k* fa r (~Y) dr. 
J o v Z z~ o J o v Z z=o 

(11) 

Performing the indicated differentiation and integra­
tion on (5), 

Q= 7l'a2k* [ g(b) -;.f(b) +~ f: J 1 (an ~b) 
a n= l 

Equation (12) can be rewritten in terms of the 
parabolic boundary conditions (9) discussed in sec­
tion 2.2. Jf this is done, the heat flow tlll'ough a 
circle of radius, a, becomes 
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111 which 

'It = 1- 16 2: JJan.a/ b) X (lib) 
1 12= 1 (alb)a~,JI(an) sinh (a/J ib) 

(14) 

and 

% = 1- 16 -t Jl(~;,a/b ) X . (l/b) (15) 
n= 1 (alb)anJ 1(a,J tlLllh (an l /b) 

are known, eq (13) can be used to compute the 
t hermal cond uctivity, k* . In order to compute the 
values of the potential, y, for use in eq (13), some 
assumption must be made regarding the temperature­
dependence of the thermal conductivity of the disk 
(see eq (2» . This is discussed in section 4. 

In the special case, l/b= O, (14) and (15) reduce to 

a~'e factors which depend only on the geometry or the 
disk and on the fraction 01' t he disk from which t he 
heat fl ow is measured. J[ all of the other quantities Tn t he special case, a/b= O, used by H och et al. [3], 

TABLE 1. Th e coeffi c1;ent \]I, as Ct Junction oj lib and alb J01' lJarabolic boundary conditions 

~ 0. 00 0. 10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 alb 
l ib l ib 

0.0 0.00000 0.00500 0. 02000 0.04500 0.08000 0.12500 O. 18000 0.24500 0.32000 0.40500 0.50000 0.0 
0. 1 .00667 .01167 . 02667 .05 167 .08667 . 13 167 . 1 667 .25167 .32667 .4 1164 .5062 1 0. 1 
0.2 .02667 .03 167 . 04667 .07 167 . 10667 . 15166 .20665 . :l7161 . 34643 .43072 · .52307 0.2 
03 .05998 . 06498 .07997 . 10495 .la991 . 18481 .23958 .30404 .3777 . 45980 · 54809 o. a 
0.4 . 10632 . 1lJ29 . 12620 . 15102 . 18567 .23005 .28392 .3'1686 . '11 806 .49616 .57896 0.4 

0.5 . 16434 . 16923 .18385 .208 15 .24 197 .28505 .33699 .397 12 .46439 .53726 .61363 0.5 
0.6 .23135 .23605 .250 11 .2734 1 .3057 1 .34664. .3956 1 .45 181 .51408 . . ,8086 . 651JZ4 0.6 
0.7 .30380 .30822 .32145 .34330 .37347 .41 149 . '15670 .50820 . 56481 .62507 .68726 0.7 
0.8 .3781a . a8221 .3943 .41444 .44204 . '17667 . 51764 .56402 .E IHO .66833 · 72344 0.8 
0.9 .4,,129 . 45497 . 46596 .48404 .50885 .53986 . 57638 .61755 .66232 .70951 · 75783 0.9 

1.0 ,52097 , ii242'1 .53401 . 55004 .57200 .59937 .63 149 ,66758 .70670 .7478 1 · 78979 1.0 
1.2 .64440 .64690 .65431 .66646 .68305 .70a65 .72773 .75466 . 78372 .8141 4 .84512 1.2 
1.4 .74323 .74505 . i50-17 .75935 .77144 . 78643 .80390 .82340 .84439 .86632 .88861 1.4 
1.6 .81842 .8 1971 .82357 .82989 .8a849 .84913 .86 152 .87533 .89017 .90567 .92140 1.6 
1.8 .87364 .87<154 . 87724 .88165 .88765 .89507 .90370 .913:32 . 92a65 .93443 .94537 1. 8 

2.0 .91317 .91379 .9 1565 .91869 .9228 1 .92792 .93386 .9<1047 .94757 .95497 .96248 2.0 
2.2 .9'1094 . 94137 .94263 .94470 .947.\l .95098 .95502 .95952 .9(l43.5 .96938 .97449 2.2 
2.4 .96017 .960'15 .96131 .96270 .96460 .96694 . 96967 .97270 .97596 .97935 .98280 2.4 
2.6 .97332 .97351 .97409 .97502 .97629 .97786 .97969 .98172 .98390 .98617 .98848 2.6 
2.8 .98224 .98237 .98275 .98337 .98422 .98526 .98648 . 98783 .9928 .99080 .99233 2. 8 

3.0 .98824 . 98832 .98857 .98898 , 9S9M .99024 .99104 .99194 .99290 .99390 .99492 3.0 
3.5 .99588 . 99591 .99599 .996 14 .99633 .99658 .9966 .09717 .99751 99786 .9'J822 3.5 
4.0 .99858 .99809 .99862 .9967 .99874 .998 2 .99892 ,9990a .99915 .99927 .99939 4.0 
4.5 .99952 .99952 .99954 .99955 .99957 .99960 .99964 .99967 .99971 .99975 .99')79 'I. 5 
5.0 .9998'1 . 99'J84 .99984 .99985 .99986 .99987 . 90988 .99989 .99990 .99992 .9999:3 5.0 

-----
0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 

T An L J'} 2. Th e coe.Uicient \]1 0 as a function of lib and alb fO!' pambolic boundal'Y conditions 

'-'- alb 0.00 0.10 0.20 0.30 0. 40 0.50 0.60 0.70 0.80 0.90 \. 00 alb 

lib "" 
/ llb 

- - -- ------ ----- ------ "'--
/ 

0.0 0.00000 0.00500 0.02000 0.04500 0.08000 0. 12500 0. 18000 0.24.'00 0.32000 0.40.\00 0. 50000 0.0 
0.1 -.01332 -.00832 .00667 .03167 .06667 . lll 67 . 16667 .23 167 .30(;67 .3917G .48728 0.1 
0.2 -.05332 -.04832 -.03332 -.00832 . 02667 .07 168 . 12669 . 19 173 .26691 .35267 .45 149 0.2 
0.3 -.11997 -. 11497 -.09996 -.07494 -. 0~{989 .00520 .06043 . 12597 .20230 .29070 .39601 0.3 
0.4 -.21297 -. 20794 -.19285 -. 16767 -.13232 -.08670 -. 03054 .O366l . 11 577 .20918 .32401 0.4 

0.5 -.33099 -. 32587 -. 31050 -.28479 -.24859 -.20163 - .14343 -.07317 .01071 . 11143 .23839 0 . .1 
0.6 -.47129 -.46600 -.45004 -.42330 -.38552 -.33624 -.27476 - 19987 -. 10948 .00054 .14 178 0.6 
0. 7 -.63026 -.62467 -.60783 -.57954 -.53942 -. 48688 -.42095 -. 34 009 -.24 168 -, J20i2 .03652 0.7 
0.8 -.80408 -.79811 -.78009 -.74979 -.70670 -.65008 -.57874 -.49081 -.38317 -.24998 -.07542 0.8 
0.9 -.98928 -.98285 -.96344 -. 93074 -.88417 -.82283 -. 74531 -.64945 -.53165 -.38525 -. 19237 0.9 

1.0 -1. 18294 - I. 17599 - \. 15500 - 1.11962 -1. 06917 - 1. 00262 -.91837 -.81394 -.68528 -.52496 -. a 1301 1. 0 
1.2 - 1. 58699 -I. 57889 - 1. 55439 -1. 51307 - 1. 45408 -1. 37613 - 1. 27724 - I. 15440 - 1. 002(;7 -.81307 - . .56155 1. 2 
1.4 -2. 00374 - \. 99439 - I. 96613 - 1. 91842 - 1. 85029 - 1. 76019 - I. 64581 - 1.50358 - 1. 32776 - 1.1 0776 -.815.58 1.4 
1.6 - 2. 42657 -2.41593 -2.38376 -2.32946 -2 25 189 -2. 14929 -2.01900 - 1. 85694 - 1. 65651 - 1.40562 - 1. 0722a 1.6 
1.8 -2.85220 -2.84025 -2.80412 -2. 74312 -2. 65598 -2.54072 -2.39433 -2.21221 - I. 98694 - 1.7049a -J. a3010 1.8 

2.0 -3.27905 -3.26578 -3.22566 -3. 15793 - 3. 0li I16 -2.93319 -2.7706 1 -2.56834 -2.31814 -2. 00488 - I .. \88.\0 2.0 
2.2 -3.70648 -3.69189 -3.64776 -3.57328 - 3.46686 -3.32608 -3. 14727 -2. 92485 -2. 649{i7 -2.a0512 - 1. 847 15 2 ') 
2.4 -4.13414 -4. 11823 - 4.07010 -3.98885 -3.87276 -3.71920 -3.52415 -3.28149 -2.98133 -2.60549 -2. 10589 2. 4 
2.6 -4.56191 -4.54467 - 4. 49253 - 4.40451 - ,\. 27876 -4. 11 240 -3.90111 -3.63823 -3.31304 -2.90590 -2.36468 2.6 
2.8 -4.98972 -4.97115 -4.9 1500 - 4.82021 - 4.68479 -4.50564 - 4.27809 -3.99500 -3.64479 -3.20632 - 2.62349 2.8 

3.0 -5. 41754 -5.39766 -5.33749 -5.23593 -5. 09084 -4.89889 - 4.65509 -4.35178 -3.97656 -3.50676 -2.88230 3.0 
3.5 -6. 48713 -6.46393 -6.39374 - 6.27526 -6. 10598 -5 88204 -5. 59i6 i - .5.2'1374 - 4.80.599 - 4.25790 - 3. 52934 3.5 
4.0 - 7.55668 -7. 530lG -7. 44994 - 7. 3145a -7. 12107 -6.86520 -6.54013 -6. 13572 -5.63542 -5. 00903 -4. 176a9 4.0 
4.5 -8.62628 -8.59644 -8.50620 -8.35386 -8. 13622 -7.84830 - 7.'1 8260 -7.02763 -6. 46486 -5. 76017 -4.82345 4.5 
5.0 -9.69588 -9.66273 -9.56245 -9.393 19 -9.15 136 -8.83146 -8. '125 12 -7.91960 -7.2942'1 -6.51130 -5.47050 5.0 
------ ----

0.00 0. 10 0.30 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1. 00 
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(17) 

and 

F or vaJues of lib larger than those given in tables 1 
and 2, 'ltt is substan tially unity and 'lto may be com­
puted using (20) and the values of cf> given in table 3. 

'lt0- 1 - 8 ± 1 X (lib) . 
- n= 1 a~Jj (an) tanh (anllb) (18) T ABLE 3. T he function <I> which is used f or computing values 

For large vll,lues of lib, 

and 

where 
'lto~l - (lib ) cf> , 

cf> = 16 ± J 1(a nalb) 
n= 1 (alb )a~JJ (an) 

is a function of alb only. 

(19) 

(20) 

(21) 

Using a high-speed digital computer, numerical 
values for 'lt t and 'lto have been calculated for a range 
of values of al b and lib and are given in tables 1 and 2. 
R epresen tative values are plotted in figure 1. The 
series for 'VI is rapidly convergent, due to t he qua n­
t ity, sinh (a"llb), which appears in the denominator. 
The series for 'ltJ, however , con verges r ather slowly 
and it was necessary to s um at least t he first one 
t housand terms of t his series in order to ob tain the 
n umber of significan t figures given in table 2. 

"0 
c: 
o 
o 

f1-i 

(lI b 

FIG URE 1. T he coefficients \ji 0 and W I f 01' the fUse of parabolic 
boundary conditions; solid lines, wo; dashed lines, W, . 

of "'0 conesponding to large lib 

alb 'I' 

0.0 2. 13918 
0.1 2. 13255 
0. 2 2. 11249 
0. 3 2. 07R64 
0. 4 2. O~02R 
0. 5 1. 99630 
0.6 1. 88502 
0.7 1. 78393 
0. 8 1. 65885 
0.9 1. 50226 
1.0 1. 29HO 

4 . Effective Mean Temperature 

The therm al conducti\'ity of the disk at v= O can 
be compu ted from (12) for the general case or from 
(13) for the case of parabolic boundary condi tions. 
The variable, v, is the temper ature measured from 
an arbi trary reference temperature, say T*. Thus 
the condu ctivity ob tained , k*, corresponds to the 
reference temperature T*. The \"ari able, y, as men­
tioned pre\-iously, depend s on the temperature­
dependence of the t herm al conductivity of the disk. 
T wo par ticular cases of interest ar e discussed here. 

4 .1. Thermal Cond uctivity Having Linear 
Te rn pera ture-De pendence 

For many materials the thermal co nducti\Tity can 
be assumed to vary linearly with temperature O\'er a 
moderate temperature range, such t hat 

k(v) = k*[ l + ,Bv]; (22) 
t hen , from (2), 

(23) 

The boundary conditions must be wri tten in terms 
of y and then substituted in to the appropriate 
equ ations . 

For t he case of par abolic boundary conditions, the 
following relations hold : 

(24) 

El=Dj+~ (Di+ 2D jV j ) , 

(25) 

where Vo = To- T* and F j = T 1 - T *, To and T j being 
the temperatures at the cen ter of the disk at 2= 0 
and 2=l, respectively, and Do and DJ are the tem­
perature differences between the edge and the cen ter 
of the disk at 2= 0 and 2= l, r espectively . 

218 



In order to cOlnpute the thermal conductivity of 
the disk , eqs (24) and (25) m ust be substi t uted in to 
(13). The resultan t expression , however , in vol ves 
{3, the tempera ture coeffi cien t of the thermal con­
ductivity, a quan tity which may noL be known . 
This dependence can be eliminated by proper choice 
of the reference temperature, T *. If T * is defin ed as 

T*= T1 + To+ D 1\fr l (T j- To+ D ,) + Do\fro(T, - To-Do) , 
2 2[TJ - 7~+DJ\fr I -Do\froJ 

(26) 
then eq (13) red uces to 

Q= rrd kl* [T1- To+ D I\frJ- Do\froL (27) 

which is the expression that would be obtained for 
the case of a specimen having constan t thermal 
conducti vity, k*. F or the sp ecial case in which 
there is no r adial heat fl ow, DI = Do= O, and (26) 
reduces to T *= ( TJ + To) /2 [8]. 

4.2 . Thermal Resistivity Having Linear 
Tempera ture-Dependence 

F or many crystalline dielectric solids, the thermal 
r esistivity , i. e., the reciprocal of t hermal conduc­
t i vity , varies su bs tan tially linearl y wit h temperature 
over a co nsiderable temperature range. I n t his 
case, the t hermal conductivity can be wri tten as 

k* . 
k (v)= l + yV' (28) 

then , from (2), 
1 

y=- ln U + yv). 
"I 

(29) 

The relation between y and v can be better seen by 
expandin g (29) in series form, 

( "IV bv) 2 ) 
y = v 1- '2+ - 3- -'" , (30) 

pro v ided \'Yv \ < 1. 

In the present case the coefficient "I is not so 
amenable to elimination by choice of a particular 
reference temperature as was the coefficient {3 in 
section 4.1. In computing thermal conductivity 
values for a material whose thermal conductivity is 
expected to have a temperature dependence such as 
that in (28), one may first assume that \'Yv \ is suffi­
ciently small to permit terminating eq (30) after 
the second term of the series; i. e., y = V- 'Yv2/2. 
Comparison of this expression wi th (23) shows that 
the assumption that \ "IV \ is small is equi valen t to 
assuming a linear temperatm e depend ence for t he 
thermal conductivity. Thus one may use (26) and 
(27) to compute a mean temper ature and t he ap­
proximate thermal condu cti vity at t hat temperat LU·e. 
The first approximations to the thermal cond ucti vi ty 
thus obt ain ed for several tests at difl'eren t mean 
temper atures can be u ed to compu te values of t he 

coefficien t "I which then can be used in (29) or (30) 
to obtain values of y , which can in turn be used in 
(13) to obtain more refined values for thermal 
conductivi ty. The resultant value of k* can be 
used to obtain better values of 'Y, etc. The con­
verge nce is qui te rapid in most practical cases, so 
t hat only one or two i tera tions will normally be 
required. 

5. Examples 

In order to illustrate the use of the mathematical 
developments presen ted in this paper , we now shall 
cite specific example in which the factors \fr l and 
\fro given in section 3 for par abolic bound ary con­
ditions ar e utilized to compute t hermal conductivity 
values fromrn eas ured temperatures and n, measured 
heat flow. One example will be gi ven for each of t he 
t hree methods men tioned in section 1 [1, 2, 3]. 

5.1. Method of Glaser et 01. 

I n the meth od described by Glaser et a1. [1], the 
en tire heat flow leavin g the colder flat surface of the 
disk-shaped specimen :is deternilned, i. e., in the 
nomenclature or t he pr esen t paper , a/b= 1.0. We 
postulate the foll owing data as havin g been acquired 
experimentally: 4 

a = b= 0.476 cm l= 0 .160 cm 
Q= 9.60 W 

To= 1319°C Do=-21 8 deg 
T I= 1536°C D I=-338 deg 

In terpolation of table 1 and 2 for the case a/b= 1.0 
andl/b= 0. 336 yields, 

\fro= 0. 372. 

Assuming linear temperature dependence, t he 
thermal cond ucti vity is compu ted using (27). Su b­
stituting the values given above for th e varioLls 
panuneters and solvin g 1'0 1' t hermal conductivi ty, 

k* = 0.01 98 W/cm deg. 

The mean temper ature is computed from (26) as: 

T *= 1370 °C. 

I t should be remember ed th at, for a gi ven specimen 
size and shape, th e factors \frl and \fro remain constant. 
The only furth er informa Lion needed Lo compu te 
thermal conductivity values 1'01' a gi\ren specimen 
is the hea t flow and four temper atures (in effect) . 
Thus the procedure described by Glaser et al. [1], in 
which each thermal conductivity value was obtained 
by numerical solu tion of a fini te difference equation 
on a high-speed digital compu ter , can now be 
r eplaced by a fairly simple h and calculation using 
t he values of \fr t and \fro tabula ted in this paper. 

4 rrhis is an actual set of data which was nlade available th rough the courtesy 
of P . E . G laser or Arthur D. L itt le, lnc. 
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5.2. Method of Robinson et 01. 

Tn the XBS s team calorimeter method [2], the 
total heett flow through only a central section of the 
specimen is measmed. Let us assume that the 
thermal resisti"ity, rather than the thermal con­
ducLi"ity, of t he specimen exhibits a linear temperature 
dependence ; i.e. , tIle thermal conductivity is of the 
form given in (28) . We postulate the following 
data as having been acquired experimentally: 

a= 3.81 cm b= 7.62 cm l= 2.29 cm 
Q= 542 W 

To= 540 °0 Do=-20 deg 
T 1= 980 °0 D I =-40 deg 

For the case ajb= 0.5 and ljb= 0.3 , table 1 and 2 yield 

% = 0.00520. 

Substitution into (26) and (27) yields 

lc* = 0.0629 W jcm deg at T* = 756.5 °0 

as a first approximation to the thermal conductivi ty 
at this tempemture. Tf similar sets of data at other 
temperatme le\'e]s are analyzed in this manner, t he 
resul tan t thernml cond ucti vity yalu es can be used 
to compute values for 'Y, the t hermal resistivity 
temperature coefficient. Let us assume that this has 
been done and th at a value of 'Y = 9.0 X I0- 4 deg- 1 at 
757 °0 was obtained. Usin g T* = 757 °0 as a 
reference temperature, 

Vo=- 217deg VI = 223 deg. 

Substitution of these values for Vo and VI and the 
above-mentioned values for Do, D I , ltnd 'Y in to (29) 
yields 

Yo = - 241.4 deg 
1'1 = 203.2 deg 

E o=-25.1 deg 
EI = - 33.8 deg 

Substitution of t hese ntlues of Y o, Y 1, Eo, and El 
into (13) yields 

lc* = 0.0621 '~Tjcm deg at T* = 757 °0 

as the impl'o,'ed 'Talue for the thermal cond ucti"ity. 
H thougb t necessary, the improved values for the 
thennal cond ucti vity can be used to compute a ll 
improved value for 'Y for further refinement of the 
fimtl t hermal conductivi ty values. 

5 .3 . Method of Hoch et 01. 

In the method described by Hoch et a1. [3], the 
heat flux from the center of the fl at surfaces of the 
disk is calculated from t he temperatme at that 
point and the total hemispherical emittance of the 
specimen, usin g t he Stefan-Boltzmann radiation law. 
Since Hoch et a1. cleri ved an analytical solution for 
their case which is quite similar to tbat developed in 

t he present paper fo], more general co nditions, iL is 
of interest to compare these solutions. Hoch et a1. 
define a characteristic constant, K o, which IS gn 'en 
by 5 

(31) 

where the notation has been changed to conform with 
that of the present paper. 

'With the simplified boundary conditions assumed 
by Hoch et a1. (YI = Yo, EJ = Eo) , the heat flux at 
the center of the surface of t he disk is given by 

(32) 

This expression is analogous to (13), except that it 
refers to the heat flux at a point rather than to the 
total heat flow through a circular area. For t he 
case ajb= O, with parftbolic boundary condi t ions, the 
factors \)II and % are given by (17) and (18); the 
quantity [\)11- \)10] becomes 

1 J' (3;)) sinh (anl/b) 
which reduces to 

[\)II - %] = 8(l/b) ::t tan ~ (anl j2b ). (34) 
n~1 a"J 1 (a,,) 

Oomparison of (31) and (34) yields 

(35) 

Since Hoch et a1. included a llumerical example in 
their paper, it is needless to present one here. Values 
for Ko can be compu ted using eq (35) and t he appro­
priate values of ':II I and % from the first column in 
tables 1 and 2. Hoch ewd Nitti [9] mo]'e recently 
have published an expanded version of their previous 
paper [3] in which they tabulate values of K o for 
se \Teral specimen shapes. 

6. Discussion 

For the case of parabolic radial potential distri­
butions on the flat surfaces or the disk a nd a lineal' 
longitudin al potential distribution on the cOlwex 
surface, t he equations and tabulated coefficien ts 
given in t his paper permit rapid hand compu tatio n 
of t hermal conductiyi ty values from expel'imentltl 
data. If boundary condit ions other t han those of 
eq (9) are required 01' indicated, t hermal conductivi ty 
values should be com puted from (12), rather t han 
(13) , with the appropriate coeffi cients being gi ,' en 

, Of. equaLion (12), page 014. rcferen ce [31 ; in the present pa per this eq ua tion 
has heen red uced, by moans of recurrence relations, to a s impl er fOfn1 than that 
gi ven originally by 110ch et al. 
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by (6), (7), and (8). Equation (12) is completely 
rigorous for the axially-symmetric bouJldary co n­
ditions (4a) , (4b) , and (4c). Proof or adequate 
compliance with these boundal'~T cOllditions would 
appear to be illdicated (o r any gi \'on LesL meL hod . 
Hoch et al., [3, 9] hH\' e discussed Lh o inflUCll co o( olle 
particular type of boundary cO lldition , othcr than 
linear , on t he CO I1\'ex surfacc of thc disk. Othor 
boundary condiLions C,tIl b e h andled by entluatioll 
of the appropriatc inLegrals gi \'Cll ill this paper. 

The auth o r t h,tIlics B. A . Peavy for ch ecki ll g thc 
rna thematical a nalysis gi \'en in this paper. 
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