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Expressions are developed which permit caleulation of the temperature-dependent
thermal conductivity of a cylindrical specimen from the experimentally determined tem-
perature distributions on its surfaces and from the heat flow through a central circular area

at one end of the eylinder.

Numerical factors are tabulated which permit rapid hand

computation of thermal conductivity values from experimental data for the case of axially
symmetric parabolic boundary conditions on the flat surfaces and a linear longitudinal

temperature distribution on the convex surface.

Applications to several published methods

of thermal conductivity determinations are shown and examples are given.

1. Introduction

In a recent paper by Glaser et al. [1],' a method
of measuring the thermal conductivity of solids was
described in which the principal heat flow was
parallel to the axis of a small circular disk-shaped
specimen, but in which significant radial heat
flows also occurred. Assuming axial symmetry, the
authors used a least-mean-squares parabola to
represent the measured radial temperature profile
on each face of the specimen and assumed a linear
longitudinal temperature distribution along the
cylindrical surface of the specimen. Utilizing these
boundary conditions, longitudinal temperature gradi-
ents at the cooler face of the specimen were deter-
mined by numerical solution of a finite difference
equation using a digital computer. The thermal
conductivity of the specimen was calculated from
the average computed temperature gradient at the
cooler surface and the measured heat flow leaving
this surface.

A somewhat similar heat flow analysis is being
used in the Heat Transfer Section of the National
Bureau of Standards in conjunction with thermal
conductivity measurements employing a guarded
steam calorimeter for the measurement of heat
flow through the central 3-in.-diam area of a 6-in.-
diam disk-shaped specimen [2]. The method is one
of chiefly longitudinal heat flow, but corrections are
occasionally necessary to account for radial heat
flows. In order to effect such corrections, an exact
analytical solution was obtained to the boundary
ralue problem in which parabolic temperature dis-
tributions having axial symmetry are assumed on
the two plane end surfaces, and a linear longitudinal
temperature distribution is assumed on the convex
surface, of a right circular eylinder.

Subsequent to the development of this analysis
at NBS, a paper was published by Hoch et al. [3],
in which a somewhat similar, although less general,

I Figures in brackets indicate the literature references at the end of this paper.

1 analytical solution was derived. In the latter paper,
' the heat conduction equation was solved for the
case of a finite cylinder with the convex surface at
a uniform temperature and the same axially sym-
metric parabolic temperature distribution on the
two faces of the cylinder. The thermal conductivity
of the specimen was calculated from the computed
values of the temperature gradient at the center of
the faces of the cylinder and of the heat flux radiated
from these surfaces at the center, as determined by
their temperature and emissivity.

In view of the general interest in this heat flow
problem, it was decided to present, prior to formal
publication of the paper [2] describing the NBS steam
calorimeter apparatus, the mathematical analysis de-
veloped for it. The analysis given first treats the
case of a right circular cylinder with arbitrary tem-
perature boundary conditions, and then develops
solutions for specific boundary conditions applicable
to the determination of thermal conductivity.

2. Mathematical Development

Consider a homogeneous, isotropic, opaque, solid
richt cylinder of radius, b, and thickness, /. In
general, the thermal conductivity of the cylinder
material may vary with temperature. If so, the
steady-state heat flow equation in cylindrical co-
ordinates, assuming axial symmetry, is

NGO »aa;(k(p)rg:j)+§: (ko O—0, ()

oz

where temperature above an arbitrary datum is
denoted by the symbol o, the temperature-dependent
thermal conductivity by k(»), and the radial and
longitudinal coordinates by 7 and z, respectively.
Equation (1) can be reduced to a simpler form by
introduction of a new variable, y, defined by the
relation

1 (" p
Y= L k@")dv’,
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where /* 1s the value of k(») at »=0.2
(1) reduces to [4, 5]

Utilizing (2),

vy _o%
T o?

10y

ofy ‘
~or T35 =)} (3)

a P
The variable, 7, is essentially a potential whose

gradient is proportional to the heat flux [6].

2.1. General Boundary Conditions

Assume the following boundary conditions:

z=0 0<r<b y=7@)5 (4a)

z=1 0<r<h  y=g(), (4D)

0<e<l r=b y=/®)+lgB) —/®)] 7
+hz), (40)

where f(r) and ¢(r) are arbitrary potential distribu-
tions on the flat surfaces of the disk, and where, in
order to insure continuity, we shall require that the
function h(z) vanishes at the flat surfaces of the
disk, so that h(0)=~h(l)=0. The solution is [7]:?

y=1(0)+[g(b)—7(b)] +,§J° <a" %>

. ALY
X {An sinh <a,, %)—FB,L sinh (a”, l—b'%)}
—{—i 1, (@‘@‘) sin <klg>’
k=1 l l

where J, and I, are, respectively, the ordinary and
the modified Bessel functions of the first kind; the
a,’s are the positive roots of Jy(a,)=0. In order to
satisfy the boundary conditions, the coefficients
must be:

9 b
A= e i ). (10— e D),
(®)
2 0
B e i () Jo IO D,
™
and

! .
ﬂfﬁz— f h(z) sin <I~”ﬁ> dz. (8)
kb Jo l
U, (T >

Equation (5) can be used to calculate the steady-
state potential distribution in a finite cylinder corre-

2 This is a special case of the more general relation dy= Ck(p)dr, where C is an
arbitrary constant.

# This specific problem is not handled by Carslaw and Tfug(r the form of solu-
tion and the necessary integrals are given in the chapter cited.

sponding to arbitrary potential boundary conditions,
g(r), f(r), and h(z). If the indicated integrations of
(6), (7), and (8) cannot be obtained zmalytically,
values can be determined by numerical integration.

2.2. Parabolic Boundary Conditions
The boundary conditions used by Glaser et al. [1],

Robinson et al. [2], and Hoch et al. [3] are all of the
form

S 732
f(r) =) D+ EOP)

o I
§V=Y\+E ®
and h(z)=0,

where Y, and Y, are the potentials (corresponding
to ) at the centers of the faces of the disk, and F
and F are the potential differences between the edge
and the center of the disk at z=0 and z=/[, respec-
tively. With these boundary conditions, (5) becomes

y=Cot-Eo) + V1= Yot Er—Eo) 7
= Jo(anr/b)

S ) e )

X {El sinh <an %)—}—EO sinh <a,L l—_bi>} - (10)

3. Calculation of Thermal Conductivity

The thermal conductivity of the disk is to be
determined from the measured heat flow leaving a
central portion of the disk of radius, »=a, and from
the observed potential distributions on the surfaces
of the disk. A mathematical expression giving the
appropriate relationship between these quantities is
derived by determining the total heat flow through a
circle of radius a, at z=0:

Q=2m f 7k (v) (%) dr=2rk* f " (?) d
JO 2/ z2=0 0 2/ =0
(11)

Performing the indicated differentiation andintegra-
tion on (5),

Qe [LOIO 2505 (8

a/l

{An B, cosh <a,, >}—|— Z( 1, <£?ﬂ>]
(12)

Equation (12) can be rewritten in terms of the
parabolic boundary conditions (9) discussed in sec-
tion 2.2. If this 1s done, the heat flow through a
circle of radius, a, becomes
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in which

=16 20 )

and

T=1—16 :;: @

heat flow is measured.

1 (Ol,,v(lr/b)

(L/b)

TasLe 1.

el (@)

J](a,,(l/b)
/b) arlle (an)

are factors which depend only on the geometry of the
disk and on the fraction of the disk from which the
If all of the other quantities

The coefficient ¥y as a function of 1/b and alb for parabolic bounrlmr/ condilions

sinh (a,l/b)

(1)

tanh (a,l/b)

(13)

(14)

(15)

are known, eq (13) can be used to compute the
thermal conductivity, £*. In order to compute the
values of the potential, y, for use in eq (13), some
assumption must be made regarding the temperature-
dependence of the thermal conductivity of the disk
(see eq (2)). This is discussed in section 4.

In the special case, [/b=0, (14) and (15) reduce to

o o = J10[naz/b
N=W=1-16 27 o i () z<b> (16)

In the special case, a/b=0, used by Hoch et al. [3],

" a/b| 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00 alb /
\ b
0.0 | 0.00000 0.00500 0. 02000 0. 04500 0. 08000 0.12500 0. 18000 0. 32000 0. 40500 0. 50000 0.0
0.1 - 00667 01167 L 02667 L05167 L 08667 .13167 (18667 . 32667 L 41164 . 50621 0.1
0.2 | 02667 L03167 . 04667 .07167 . 10667 15166 . 20665 . 34643 . 43072 . 52307 0.2
0.3 | 05998 L 06498 L 07997 10495 . 13991 L18481 - 23958 .37778 - 45980 . 54809 0.3
0.4 | 10632 (11129 . 12620 L 15102 L 18567 .23005 . 28392 . 34686 - 41806 . 49616 . 57896 0.4
0.5 | 16434 16923 . 18385 . 20815 . 24197 28505 33609 .39712 46439 . 53726 (,um 0.5
0.6 | 23135 . 23605 25011 .27341 - 30571 . 34664 . 39561 L 45181 - 51408 . ] 0.6
0.7 | 30880 L 30822 .32145 .34330 .37347 L41149 ~45670 - 50820 56481 0.7
0.8 | .37813 . 38221 . 39438 . 41444 . 44204 47667 .51764 . 56402 . . 668 0.8
0.9 | 45129 . 45497 L 46596 L 48404 L 50885 . 53986 . 57638 .61755 L 70951 0.9
1.0 | .52097 . 52424 . 53401 55004 . 57200 59937 63149 . 66758 . 70670 74781 78979 1.0
1.2 | 64440 . 64690 . 65431 66646 68305 .70365 .72773 . 75466 . 78372 .81414 . 84512 1.2
14| 74323 . 74505 .75047 . 75935 77144 L 78643 .80390 . 82340 . 84439 . 86632 88861 1.4
16| 81842 .81971 . 82357 . 82989 83849 .84913 .86152 . 87533 .89017 - 90567 L 92140 1.6
1.8 | .87364 . 87454 . 87724 88165 88765 89507 .90370 . 91332 . 92365 . 93443 L 94537 1.8
2.0 | .91317 .91379 91565 L 91869 L 92281 .92792 03386 . 94757 . 95497 L 96248 2.0
2.2 | .94094 . 94137 . 94263 94470 . 94751 . 95098 ) . 96435 . 96938 . 97449 2.2
2.4 .96017 . 96045 . 96131 96 . 96460 96694 96967 L 97596 .97935 L 98280 2.4
2.6 | .97332 .97351 .97409 .97502 .97629 L97786 .97969 ¢ . 98390 L 98617 L8848 2.6
2,8 | .98224 . 98237 L98275 | 98337 L 98422 08526 . 98648 L UST83 L 98028 . 99080 . 99233 2.8
3.0 | .9o8824 L 98832 98857 L 08898 . 98954 .99024 . 99104 . 99194 . 99290 . 99390 L 99492 3.0
3.5 | .99588 . 99591 L 99599 . 99614 . 99633 .99658 L 99686 L99717 . 99751 99786 . 99822 3.5
4.0 | . 99858 . 99859 99862 L 99867 L 99874 - 99892 99903 L99915 4.0
4.5 . 99952 . 99952 . 99954 5 .9 . 99964 s 4.5
5.0 . 99984 . 99984 99 . 99988 5.0

0.00 0.10 0.20 040 0.60
Tasre 2. The coefficient Y, as a /undzon of U/b and alb for pambolu bouna’m[/ conditions
N\ | o 0 o J/
\a/b | 0.00 0.10 0.20 0.30 0.40 0.50 0. 60 0.70 0.80 | 0.9 1.00 alv /
b ‘ U
0.0 0. 00000 0. 00500 0. 02000 0. 04500 0. 08000 0.12500 0. 18000 0. 24500 0. 32000 0. 40500 0. 50000 0.0
0.1 | —.01332 | —.00832 . 00667 . 03167 . 06667 (11167 16667 - 23167 - 30667 -39176 L 48728 0.1
0.2 | —.05332 | —. 04832 —.03332 —. 00832 . 02667 L7168 12669 19173 L26691 . 35267 L 45149 0.2
0.3 | —.11997 | —.11497 —. 09996 —. 07494 —. 03989 .00520 - 06043 L 12597 . 20230 .29070 - 39601 0.3
0.4 | —.21297 | —.20794 —. 19285 —. 16767 S1323)) —. 08670 —. 03054 L 03661 11577 L 20918 . 32401 0.4
0.5 | —.33099 | —.32587 —.31050 — . 28479 — . 24859 —.20163 —.14343 =0731'G L01071 11143 . 23839 0.5
0.6 | —.47129 | —.46600 — . 45004 —. 42330 —. 38552 —.33624 —.27476 — . 19987 10948 - 00054 L14178 0.6
0.7 | —.63026 | —.62467 —.60783 —. 57954 —. 53942 — 48688 —. 42095 —. 34009 . 24168 —. 12072 . 03652 0.7
0.8 | —.80408 | —.79811 — 78009 —. 74979 —. 70670 —. 65008 —. 57874 —. 49081 38317 —. 24998 —. 07542 0.8
0.9 | —.98928 | —.98285 —. 96344 —. 93074 — . 88417 —.82283 —. 74531 —. 64945 . 53165 —. 38525 —.19237 0.9
1.0 |—1.18294 [—=1.17599 | —1.15500 | —1.11962 | —1.06917 | —1.00262 —.91837 —. 81394 —. 68528 —. 52496 —. 31301 1.0
1.2 |—1.58699 |—1.57889 | —1.55439 | —1.51307 | —1.45408 | —1.37613 | —1.27724 | —1.15440 | —1.00267 —. 81307 1.2
1.4 |—2.00374 |—1.99439 | —1.96613 | —1.91842 | —1.85029 | —1.76019 | —1.64581 | —1.50358 | —1.32776 | —1.10776 1.4
1.6 |—2.42657 |—2.41593 | —2.38376 | —2.32046 | —2.25189 | —2.14929 | —2.01900 | —1.85694 | —1.63651 —1.40562 1.6
1.8 |—2.85220 |—2.84025 | —2.80412 | —2.74312 | —2.65598 | —2.54072 | —2.39433 | —2. 21221 —1.98694 | —1.70493 1.8
2.0 [—3.27905 |—3.26578 | —3.22566 | —3.15793 | —3.06116 | —2.93319 | —2.77061 —2. 56834 2.31814 | —2.00488 . 58850 2.0
2.2 |—3.70648 |—3.69189 | —3.64776 | —3.57328 | —3.46686 326 —3.14727 | —2.92485 .64967 | —2.30512 .84715 2.2
2.4 |—4.13414 [—4.11823 | —4.07010 | —3.98885 | —3.87276 | —3.71920 | —3.52415 3. 28149 (98133 | —2.60549 2. 10389 oRT
2.6 |—4.56191 |—4.54467 | —4.49253 | —4.40451 —4.97876 | —4.11240 | —3.90111 —3.63823 3.31304 | —2.90590 . 36468 2.6
2.8 [—4.98972 |—4.97115 | —4.91500 | —4.8202 —4.68479 | —4.50564 | —4.27809 | —3.99500 | —3.64479 | —3.20632 2. 62349 2.8
3.0 |—5.41754 |—5.39766 | —b5.33749 | —b5.2: —5.00084 | —4.80889 | —4.65509 | —4.35178 | —3.97656 | —3.50676 | —2.88230 3.0
3.5 |—6.48713 |—6.46393 | —6.39374 | —6.27 —6.10508 | —5.88204 | —5.59761 —5.24374 | —4.80599 | —4.25790 | —3.52034 3.5
4.0 |—7.55668 |—7.53016 | —7.44994 | —7.3 7 —6.86520 | —6.54013 | —6.13572 —5.00903 | —4.17639 4.0
4.5 |—8.62628 |—8.59644 | —8.50620 | —8.35 622 | —7.84830 | —7.48260 | —7.02763 —5.76017 | —4.82345 4.5
5.0 |—9.69588 |—9.66273 | —0.56245 | —9.39319 | —9.15136 | —8.83146 | —8.42512 | —7.91960 —6.51130 | —5.47050 5.0
0.00 0.10 0.30 0.30 0.40 0.50 ’ 0.60 0.70 0.80 0. 90 1.00
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e 1 (/b)
Vi=1-8 3 i7 @) \emh (i) L7
and
P Wy
NS R i ) b (ol Y
For large values of //b,
v,—1 (19)
and
Vo—1—(1/b)®, (20)
where
_ 1n = Jl(“na/b>
=16 2 (albeid () (2

1s a function of a/b only.

Using a high-speed digital computer, numerical
ralues for W, and ¥, have been calculated for arange
of values of a/b and [/b and are given in tables 1 and 2.
Representative values are plotted in figure 1. The
series for ¥, is rapidly convergent, due to the quan-
tity, sinh («,//b), which appears in the denominator.
The series for ¥, however, converges rather slowly
and it was necessary to sum at least the first one
thousand terms of this series in order to obtain the
number of significant figures given in table 2.

¥, and ¥,

Ficure 1.

The coefficients Yo and Yy for the case of parabolic
boundary conditions; solid lines, Vo; dashed lines, V.

For values of [/b larger than those given in tables 1
and 2, ¥, is substantially unity and ¥, may be com-
puted using (20) and the values of ® given in table 3.

TaBLE 3. The function ® which is used for computing values

of Yy corresponding to large L/b

a/b ‘ P

0.0 ‘ 2.13918
0.1 ‘ 2.13255
M, % 2.11249
0.3 2. 07864
0.4 2. 03028
0.5 1. 99630
0.6 1. 88502
0.7 1. 78393
0.8 1. 65885
0.9 1. 50226
1.0 1. 29410

4. Effective Mean Temperature

The thermal conductivity of the disk at »=0 can
be computed from (12) for the general case or from
(13) for the case of parabolic boundary conditions.
The variable, », is the temperature measured from
an arbitrary reference temperature, say 7% Thus
the conductivity obtained, k*, corresponds to the
reference temperature 7% The variable, 1, as men-
tioned previously, depends on the temperature-
dependence of the thermal conductivity of the disk.
Two particular cases of interest are discussed here.

4.1. Thermal Conductivity Having Linear
Temperature-Dependence

For many materials the thermal conductivity can
be assumed to vary linearly with temperature over a
moderate temperature range, such that

ke(v) =k*[14-Bo]; (22)
then, from (2),

y:z:—l—g V2. (23)

The boundary conditions must be written in terms
of y and then substituted into the appropriate
equations.

For the case of parabolic boundary conditions, the
following relations hold:

B

7E ﬁ Rk
Yo:Vo‘Fs Vs H

71:171‘1“‘2 4 (24>

B

E=Dot5 (Di+2DV)  E=D+E (Di+2Dvy),

(25)

where Vo=Ty—T* and Vi=T,—T%* T, and T, being
the temperatures at the center of the disk at z=0
and z=/, respectively, and D, and D, are the tem-
perature differences between the edge and the center
of the disk at z=0 and z=/, respectively.
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In order to compute the thermal conductivity of
the disk, eqs (24) and (25) must be substituted into
(13). The resultant expression, however, involves
B, the temperature coefficient of the thermal con-
ductivity, a quantity which may not be known.
This dependence can be eliminated by proper choice
of the reference temperature, 7% If 7™ is defined as

TH— T1+ +I) ‘1’1(7 To+D))+De¥o(T,— 'n;[)n)’
2 ‘)| T T‘,-) [)1\1/141)(1‘1'“
(26)
then eq (13) reduces to
I
Q =mra’ [Tl_To‘{‘Dl‘I’x—Do‘I’oJ; (27)

l
which is the expression that would be obtained for
the case of a specimen having constant thermal
conductivity, £*. For the special case in which
there is no radial heat flow, ),=0D,=0, and (26)
reduces to T*=(T,+T,)/2 [8].

4.2. Thermal Resistivity Having Linear
Temperature-Dependence

For many crystalline dielectric solids, the thermal
resistivity, i.e., the reciprocal of thermal conduc-

tivity, varies xul)sl.mtmllv linearly with temperature
over a considerable temperature range. In this
case, the thermal conductivity can be written as
A*
k(v ; 28
=1 (28)
then, from (2),
1
‘7/:’; In (14+v). (29)

The relation between ¥ and » can be better seen by

expanding (29) in series form,
( 2
Y=0 <1 7 ) )

provided |yv|<1.

In the present case the coefficient v is not so
amenable to elimination by choice of a particular
reference temperature as was the coeflicient g in
section 4.1. In computing thermal conduectivity
values for a material whose thermal conductivity 1s
expected to have a temperature dependence such as
that in (28), one may first assume that |yo| is suffi-
ciently small to permit terminating eq (30) after
the second term of the series; ie., y=v—vy1?/2.
Comparison of this expression with (23) shows that
the assumption that |yp»| is small is equivalent to
assuming a linear temperature dependence for the
thermal conductivity. Thus one may use (26) and
(27) to compute a mean temperature and the ap-
proximate thermal conductivity at that temperature.
The first approximations to the thermal conductivity
thus obtained for several tests at different mean
temperatures can be used to compute values of the

(30)

coefficient v which then can be used in (29) or (30)
to obtain values of 9, which can in turn be used in
(13) to obtain more refined values for thermal
conductivity. The resultant value of k* can be
used to obtain better values of v, etc. The con-
vergence is quite rapid in most practical cases, so
that only one or two iterations will normally be
required.

5. Examples

In order to illustrate the use of the mathematical
developments presented in this paper, we now shall
cite specific examples in which the factors ¥, and
¥, eiven in section 3 for parabolic boundary con-
ditions are utilized to compute thermal conductivity

values from measured temperatures and a measured
hedt flow. One example will be given for each of the
three methods mentioned in section 1 [1, 2, 3].

5.1. Method of Glaser et al.

In the method described by Glaser et al. [1], the
entire heat flow leaving the colder flat surface of the
disk-shaped specimen 1is determined, 1i.e., in the
nomenclature of the present paper, a/b=1.0. We
postulate the following data as having been acquired
experimentally: *

a=b=0.476 cm [=0.160 ¢m
0=9.60 W

Ty=1319 °C Dy=—218 deg

T,=1536 °C D,=—338 deg

Interpolation of table 1 and 2 for the case a/b=1.0

and [/b=0.336 yields,

¥, =0.559 W,=0.372.
Assuming linear temperature dependence, the
thermal conductivity is computed using (27). Sub-

stituting the values given above for the various
parameters and solving for thermal conductivity,

k*=0.0198 W/em deg.
The mean temperature is computed from (26) as:
I =1330) “C\.

It should be remembered that, for a given specimen
size and shape, the factors ¥, and ¥, remain constant.
The only further information needed to compute
thermal conductivity values for a given specimen
is the heat flow and four temperatures (in effect).
Thus the procedure described by Glaser et al. [1], in
which each thermal conductivity value was obtained
by numerical solution of a finite difference equation
on a high-speed digital computer, can now be
replaced by a fairly simple hand calculation using
the values of ¥, and ¥, tabulated in this paper.

1 This is an actual set of data which was made available through the courtesy
of P. E. Glaser of Arthur D. Little, Inc.

219



5.2. Method of Robinson et al.

In the NBS steam calorimeter method [2], the
total heat flow through only a central section of the
specimen measured. Let us assume that the
thermal resistivity, rather than the thermal con-
ductivity, of thespecimen exhibits a linear temperature
dependence; i.e., the thermal conductivity is of the
form given in (28). We postulate the following
data as having been acquired experimentally:

18

b="7.62 cm [=2.29 cm
Q=542 W

°C Dy=—20 deg

°C D= —40 deg

a=3.81 cm

71(): 540
T:=980

For the case a/b=0.5 and [/b=0.3, table 1 and 2 yield

W, =0.18481 ¥,=0.00520.

Substitution into (26) and (27) yields

k*=0.0629 W/em deg at T*=756.5 °C

as a first approximation to the thermal conductivity
at this temperature. If similar sets of data at other
temperature levels are analyzed in this manner, the
resultant thermal conductivity values can be used
to compute values for v, the thermal resistivity
temperature coefficient. Let us assume that this has
been done and that a value of y=9.0<10"* deg™! at
757 °C was obtained. Using 7*=757 °C as a
reference temperature,

Vo=—217 deg V1=223 deg.

Substilution of these values for V, and V; and the
above-mentioned values for )y, D, and v into (29)
vields

Yi=—241.4 deg To=—25.1 deg
Y1=203.2 deg F,=—33.8 deg

Substitution of these values of Y, Y, K, and £

into (13) yields
£*=0.0621 W/em deg at T*=757 °C

as the improved value for the thermal conductivity.

If thought necessary, the improved values for the

tllelllldl (nn(lu(tl\lt\' can be used to compute an

improved value for v for further refinement of the

final thermal conductivity values.

5.3. Method of Hoch et al.

In the method described by Hoch et al. [3], the
heat flux from the center of the flat surfaces of the
disk is calculated from the temperature at that
point and the total hemispherical emittance of the
specimen, using the Stefan-Boltzmann radiation law.
Since Hoch et al. derived an analytical solution for
their case which is quite similar to that developed in

the present paper for more general conditions, it is
of interest to compare these solutions. Hoch et al.
define a characteristic constant, K, which is given
by ?

tanh (oz,,//Qb)

azz']l(an) (;] )

K():Q y‘

n=1

where the notation has been changed to conform with
that of the present paper.

With the simplified boundary conditions assumed
by Hoch et al. (Y=Y, E=£F), the heat flux at
the center of the surface of the disk is given by

() o
} 03 r=0 [
2=0

This expression is analogous to (13), except that it
refers to the heat flux at a point rather than to the
total heat flow through a ecircular area. For the
rase a/b=0, with parabolic boundary conditions, the
factors ¥, and ¥, are given by (17) and (18); the
quantity [¥,—W¥,] becomes

By, — . (32)

[ —¥ol= ,-1a,,.11(a,1>[‘mh (cl/b)

33)
~sinh a,,//b):l (33)
which reduces to
o )
[ — o =8 (1/8) 33 W@l /2D) gy
n=1 CY,,J[ (an)
Comparison of (31) and (34) yields
K=" 1w, —w (35)
“'*'4[ 1 0l D

Since Hoch et al. included a numerical example in
their paper, it is needless to present one here. Values
for K, can be computed using eq (35) and the appro-
priate values of ¥, and ¥, from the first column in
tables 1 and 2. Hoch and Nitti [9] more recently
have published an expanded version of their previous
paper [3] in which they tabulate values of K, for
several specimen shapes.

6. Discussion

For the case of parabolic radial potential distri-
butions on the flat surfaces of the disk and a linear
longitudinal potential distribution on the convex
surface, the equations and tabulated coeflicients
given in this paper permit rapid hand computation
of thermal conductivity values from experimental
data. If boundary conditions other than those of
eq (9) are required or indicated, thermal conductivity
values should be computed from (12), rather than
(13), with the appropriate coefficients being given

5 Cf. equation (12), page 514, reference [3]; in the present paper this equation
has been reduced, by means of recurrence relations, to a simpler form than that
given originally by Hoch et al.
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by (6), (7), and (8). Equation (12) is completely
rigorous for the axially-symmetric boundary con-
ditions (4a), (4b), and (4¢). Proof of adequate
compliance with these boundary conditions would
appear to be indicated for any given test method.
Hoch et al., [3, 9] have discussed the influence of one
particular type of boundary condition, other than
linear, on the convex surface of the disk. Other
boundary conditions can be handled by evaluation
of the appropriate integrals given in this paper.

The author thanks B. A. Peavy for checking the
mathematical analysis given in this paper.
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