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Theory of Mirror Spectographs
III. Focal Surfaces and Slit Curvature of Ebert and Ebert-
Fastie Spectographs
Klaus D. Mielenz

(July 28, 1964)

A spatial theory of the focal surfaces and slit curves of Ebert and Ebert-Fastie mono-

chromators and spectrographs is presented.

In a second-order approximation, it yields closed expressions for the focal surface,
from which a “stop-shift” theory is developed to study the influence of the position of the

grating in the spectrograph upon the curvature of the spectrum.

The condition for an

extended flat spectrum is derived, and the Ebert-TFastie system is shown to be the prefer-

able one for spectrograph design.

The curvature of long monochromator slits is also derived as a closed, second-order

expression.

The Ebert system, only, can be equipped with long slits, so that it, in turn,

constitutes the superior monochromator mounting.
A fourth-order approximation is also included for still more accurate computations.

1. Introduction

In two previous papers [1, 2]," a general theory
was developed for calculating the focal surfaces and
slit curves of Czerny-Turner type mirror spectro-
eraphs and monochromators. This theory will now
be applied to Ebert and Ebert-Fastie systems with
either plane reflectance gratings or Littrow prisms
as dispersive elements (though gratings, only, will
be explicitly treated in the following).

2. Exact Theory

2.1. Basic Expressions

In Ebert and Ebert-Fastie monochromators and
spectrographs ([3, 4]; figs. 1 and 2), a single concave
mirror is used to fulfill the tasks of both collimator
and camera. Let » be the radius of curvature of the
mirror, which we assume to be spherical.

A coordinate system (fig. 3), with its origin at the
center of curvature, M, of the mirror, is chosen so
that the z-axis intersects the grating center 0, the
y-axis encloses an angle 6 with the grating tangent
vector

T = (sin 0, cos 0, 0), (1)

and the z-axis is parallel to the grating grooves.
Then, let

m—mni, (2)

1 Figures in brackets indicate the literature references at the end of this paper.
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Ebert monochromator.

Ficure 1.

(a) Horizontal cross section with grating in zero-order pogition. (b) Vertical
cross section; principal ray from upper end of entrance slit, S, to lower end of
exit slit, &', is shown.



Ficure 2.  Ebert-Fastie spectrograph.

(a, Horizontal cross section with grating in symmetrical position; 5 is outermost
line of spectrum. (b) Vertical cross section.

Ficgure 3.

One-mirror spectrograph.

Beam path and coordinate system.

with i=(1, 0, 0), be the point vector OM, and let
(3)
(37)

E=(4, B, 0),
E'=(A", B, ),

represent the unity vectors of the principal rays

incident upon and diffracted by the grating at O.
From eqs (2.7, 2.5, 2.17, and 2.4),® the point

vector, s, of a slit point S'is thea obtained as

s:m: (z, 9, 2) =— (p+q—2pquw/r*)E

4+ (1—2qw/r*)mi, (4)

with
p=w—+mA, (5)
i % ’ZU"I‘ m*( '2//(27’(.) ) (G>
w=++r—m2(1—A3). (7)

With (2.6), the direction of the principal ray
leaving S is given by the unity vector

—q/q= ~~1’_AS;/}I’S} = (1—2pw/r ) E+ 2mw/r®)i, (8)

where /2 is the point of reflection on the collimator
portion of the mirror.

Likewise, one obtains from [2], for the image
point 8,
—_—

S'=MS"= (', y', ") =(p'+q¢ —2p ¢ w'[r)E’

+ (1 —2¢"w’/r¥)mi, (4')
p'=w'—mA’, (5")
¢ =3w'+m>C"%/(2w’), (6")

w'=4+r'—m?1—A4"?, (7)
_—
q'/¢'=P'S’||P'S'|=(1—2p'w'[r})E’
—(2mw'/r?)i. (8

We see that the equations for S’ are the same as
those for S, with —E’ substituted for E. Hence, S
and S’ lie on a common focal surface, and it suffices to
consider S, only, to determine this surface.

Separate expressions for S and S” are then merely
needed to find the location of conjugate points on the
focal surface. S’ is a spectral image of S when the
grating equations,

T-(E—E’) +uNd=0, (9)

C—(C'=0, (10)

are satisfied (p=spectral order, \=wavelength, d—=
grating constant; see reference [1]).

2 Equations (7), (5), cte., of reference [2].
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2.2. Focal Surface
From (4) through (8), one derives

s=—aE-+bi,

(11)

with

a=(w*+m?C? | 2w) +m*B*(w+mA)/r?, (12a)
b=m?*B?/r? (12b)

as a vector representation of the focal surface.
Hence, for the coordinates of S,
r=—aA+b, y=—aB, z=—al. (13)
From here, a closed expression is obtained in two
. ., . )
limiting cases, only:
For m=0 (grating at center of curvature of mirror),
the above equations yield
si= oty 2= (37, (14)
which describes a sphere of radius 47 about M.
For m=7r (grating at vertex of mirror), one obtains
(x—§n)’+y*+2*@—3r)/(z—r)=©r)*.  (15)
At the paraxial focus, where z(z—37) is negligibly
small, this describes a cylinder of radius 17 about the
axis x=43r, y=0.
Yet, no workable closed expression for the focal
surface can be derived for arbitrary values of m.
The following parameter representation may be used

instead.
Write, as a general expression for E,

A=—co0S a, {(16a)
B— T s a—sin®y, (16b)
C= —sin v, (16¢)

where the choice of signs is due to the negative
direction of E in figure 3. Hence, from (13),

r=a cos a+t0b, (17a)
Y=+ ay/sin? a—sin2y, (17b)
z=a sin v, (17¢)
where
a=(r*/2w)
—[(1/2w) — (w—m cos «)/r*lm?*(sin®* a—sin®vy), (17d)
b= (m?/r?) (sin® a—sin’ v), (17e)
and -
w=—4++/r’—m? sin? o (17f)

are functions of m, a, and v.

2.3. Slit Curve

The curvature of long monochromator slits, as

derived in [2] from the grating equations, is now
. e (= te 5]
obtained as follows:

Let the above eqs (17a, b, . . .) represent an
arbitrary point, S=(z, y, z), of the entrance slit.
Then, let the shit center, S;= (x, 70, 2,), be given b

) ) )y J0) ) )

To=0q CO3 oo+ by, (18a)
Yo= = @py/SIN® ap—sin? 7y, (18b)
20=0yp SIN 7y, (18¢)

with
ao=(r*/2wy)

—[(1/2w,) — (wy—m cos o) [ri]m?* (sin? ay—sin? v,),

(18d)
bo=(m3/r?) (sin® ay—sin? v,), (18e)
W=+ /12— m? sin? g (18f)

[t was shown in [2], eq (2.21), that, as a con-
sequence of the grating equations, the first direction
cosine of E is the same for all slit points. Thus we
may write in eqs (17a, b, . . ),

ay=0ayp, W="W,, (19a)
so that

a=ay+m?*[(1/2w,) — (wy—m cos ay) /r?] (sin?y—sin?7,),

(19b)

b =by— (m3/r?) (sin? y—sin? v,)- (19¢)
Hence,

r=1x,+ (@a—a,) cos ag+ (b—by), (20a)

Y=1o4a+/sin? ag—sin? v T ag/sin? ay—sinZ v, (20b)

z2=2z¢}a sin y—a, sin v,, (20¢)

which, upon introduction of an additional parameter

2

Y=v¢1+3, (20d)
is the parametric representation of a curve on the
focal surface along which the entrance slit must
extend.

It is then seen from eqs (2.25 and 26) that, on the
image portion of the focal surface, the exit slit must
lie on the same curve.

Z.4. Discussion

It was shown in 2.2 that different values of m may
yield entirely different focal surfaces.  Proper
positioning of the grating is therefore an important
consideration in designing the spectrograph.

For a given m, the above parameter representations
permit a straightforward point-by-point calculation
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of the focal surface and the slit curve. Hence, an
electronic computer may conceivably perform an
analysis of the influence of m upon the system.
Closed expressions for arbitrary values of m,
however, would pl ovide a still better insight. Such
expr essions will be derived in the following chapter
as a second-order approximation for the paraxial
portion of the focal surface, which alone is of interest.

3. Second-Order Approximation

3.1. Focal Surface—Choice of Grating Position

Upon neglecting third-order terms in « and v,
eqs (16) and (12) may be written as

A=—1+1 (21a)
B=F~a*—7*, (21b)
C=—~, (21¢)

afr="%+13(m/r)*—4(m/[r)*]a’—3[(m/[r)*—2(m/r)*]v*,

(21d)
b/r=(m/r)*(a®—7%). (21e)

Hence, as a second-order approximation of (13)
for the paraxial region,

rfr=%2—L1—3(m/r)*|a*—%1(m/r)*>y?,  (22a)
yfr=t3a’—v, (22b)
zfr=3v, (22¢)
which is easily seen to satisfy the relation
1(z, y, 2) = (@/r) +[1—=3(m/r)*] (y/r)*
+[1—(m/r)?(z/r)*—%=0. (23)

The usual discussion [5] shows that this equation
represents

an elliptical paraboloid for 0<<m<r/y/3, (24a)
a parabolic cylinder for m=r//3, (24b)
a hyperbolic paraboloid for r/y/3<m<r. (24c)
At a point S=(z,v,2), the vector
n=— (0f/ox, of/dy, 0f/d2)
or, from (23),
n=—(1/r, 2[1—3(m/r)qy/r% 2[1— (m/[r)Fz/r}) (25)

is normal to the focal surface [6]. The equation of the
tangential plane of the focal surface at S, then, is

(g_ll; n—Y, §_2> -n=0

or, with (25)

(E—x)+2[1—3(m/r)*](y/r) (n—y)
+2[1—(m/r)*| (z/r) ({—2) =0,

where & 7, and ¢ are the coordinates of a point in the
plane [6]. These equations will be needed in the
following discussion.

The horizontal cross sections of the paraxial focal
surface (23), along which the spectrum extends, are

(afr)+[1—30m/r) ()=},  z=0.

(26)

(27)

As shown in figure 4a for different values of m, they
are parabolas whose curvature vanishes for
-
m=r/+3 (28)
and assumes opposite signs for greater and smaller
values of m.

H. Ebert [3] had originally placed the 01atmg at
the paraxial focus of the mirror, where m=3%r. 0.
Vierle [7] claims that peIpendlcuLu light incidence
upon the focal surface is the (Ld\ant(we of this

mounting. It is true that the direction of the
principal ray, which from (8) can be shown to be

—q/q=—(1—3[1+2(m/r)*le?,
[1—2(m/r)Wa®—*, [1=2(m/r)]y)  (29)
is perpendicular to the yz-plane for m=%r. The

focal surface, however, is curved away from that
plane, and the angle of incidence, 7, is therefore
given by

cos 7= - q)/(nq),

with n=|nl. From (25) and (29),

cos T=1—%(m/r)?[4—12(m/r)+9(m/r)*|a®
—4(m/r)*[1—(m/r)]y*

Except for the border case m=0, normal incidence
occurs for no value of m, and m=13%r does not appear
to be distinguished from other values. The numer-
ical example in figure 5 shows, moreover, that = is
a very small angle; so that the whole matter is of
little practical importance.

R. F. Jarrell [4] chose m=%r, with the grating
midway between paraxial focus and mirror, so that
the murror size could be reduced. According to
ficure la, the mirror diameter must be at least

D=W-+2(r—m)a, (31)

in the horizontal cross section of an Ebert mono-
chromator, where W is the grating width and « the
maximum angle. The same formula holds for the
Ebert-Fastie spectrograph also; see figure 2a.
Hence, an increase of m will indeed considerably
reduce the mirror size.

(30)
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Fiaure 4. (a) Horizontal and (b) vertical cross sections of parazial focal surface for diflerent
grating positions m,

Scale of abscissa is 10 times enlarged.
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Ficure 5. Angle of incidence on focal surface, T,

grating position, m.

versus

Yet, a curved focal surface is obtained unless the
“J3-condition” (28) is observed. This condition,
which was first published by S. A. Khrshanovskii [8],
holds as a second-order approximation and is now
seen to apply to horizontal cross sections of the
focal surface, only.

The vertical cross sections,

(x/r)+-[1—(m/r)*)(z[r)*=3,

as shown in figure 4b, all curve away from the mirror.
Their curvature decreases as the grating moves
toward the mirror, and vanishes in the limiting
case m=r, only.

A truly flat spectrum, in the sense of the focal
surface being a plane, can therefore not be produced
at all.  Yet, the y/3-condition defines the only posi-
tion of the grating for which a plane photographic
plate can be made tangent to the focal surface along
a whole straight line, instead of at a single point,
only, as for all other choices of m. Tt is seen from
(26) that the photographic plate must then be
arranged in the plane

(E— ~f())/"+%(20//7") (= 20)//7':0;

y=0, (32)

(33)

where x), 17,=0, and z, are the coordinates of the
center point of the central line.

In a spectrograph, the spectrum lines are usually
short, so that the above described removal of the
horizontal curvature of field, only, is fully sufficient
to yield a flat spectrum.

3.2. Slit Curve—In-Plane and Off-Plane
Monochromators

It is seen from eqs (22) that, upon retention of
second-order terms in « and v, only,

(x—%r)*+y*+2°=1r% sin? a.
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If, in this equation, z, y, and z are assumed to rep-
Iesent an arbitrary polnt of the entrance slit of
amonochromator, the right-hand side of the equation
is seen, from (19(1) to be a constant;

1r? sin? a=1r? sin? ay=pZ, (34a)
where «, pertains to the slit center. Thus,
(e— 1)yt 2= (34b)

This is the equation of a sphere of radius p, about
the paraxial focus (37, 0, 0). As set forth in [2]
the exit slit, too, must obey this equation.

The slits must of course lie on the focal surface
of the monochromator as well. They must there-
fore extend along the curve which is obtained as
the section of the focal surface (23) with the sphere
(34b).

In the vertical cross section

2

TP, (35a)

the slit curve is a circle about the paraxial focus

(y=2=0);
Y2+ 22=p;, (35b)

see figure 6. W. G. Fastie has, indeed, greatly
improved the image quality of an KEbert mono-
chromator by curving the two slits along this circle
[9, 10]. A further improvement might be accom-
plished by fitting the slits to the true spatial slit
curve, as derived above.

In an Ebert-Fastie system, the slit curve inter-
sects the slit center, Sgr in figure 6, in a direction
perpendicular to the grating grooves; i.e., per-
pendicular to the natural direction of the spectrum
lines. It must be concluded, therefore, that the
Ebert-Fastie mounting cannot possibly be equipped
with long slits.

GRATING
/S

_—sLT
CURVE

1
\
|
LLONG SLITS FOR
EBERT MOUNTING-

Fraure 6. End-on view of one-mirror monochromator and

slit curve.



3.3. Validity of Approximation

The angles a and v that occur in practical spectro-
graph design may be determined as follows.

The angle « at which entrance and exit slits are
arranged 1 a properly designed Ebert monochroma-
tor (where o 1s minimized) 1s obtained from figure 1a
as

a~tan a=3W/(r—m), (362)

m . "‘
I h‘a other angle, v, 1s
From figure 1b and

where W is the grating width.
determined by the slit length, /.
eq (22¢),

e=sgl~3ry, y~1r,

(36b)
for the slit ends.

A high-speed Ebert monochromator with a long
slit (W=16"", [=4.5"", r=180"', m=1%r) was con-
structed by W. G. Fastie [10], and a further enhance-
ment of speed or slit length appears to be unlikely in
the present state of the art. The corresponding angles
are a=0.09, y=0.025

In an Ebert-Fastie spectrograph, v is given in the
same manner as « is in an Ebert monochromator, but
with the grating height, 77, substituted for W; see
ficure 2b. Thus,

y~3H/(r—m). (37a)
For «a, the spectrum length, L, is the determining
factor. From figure 2a and eq (22b), for the spectrum
ends,

y=3L~4ral—*, a~~/(L/r)*+7, (37b)

with v from (37a).

For two published designs of Ebert-Fastie spectro-
oraphs (R. F. Jarrell [4]: r=22" H=2}"" m=4ir;
l’. Kroeplin [11]: =4 m, H=5 cm, m (estimated)=

11), we obtain y=0.02 and 0.01, respectively. Jarrell
chose L— 20" or L/r=0.076, and image quality at
the spectrum ends seems to indicate that this con-
stitutes an upper limit [12]. Kroeplin uses =30 cm
and, thus, L/r=0.075. From here and with the above
values of v, « ) and 0.078, respectively.

We may thus accept

a=0.1, y=0.03 (38a)
as maximum values for both Ebert monochromators
and Ebert-Fastie spectrographs. A computation of
the focal surface, from both the exact formulas (17)
and the second-order approximation (22), then shows
that the latter involves a maximum error of approxi-
mately

AS=+/(Az)*+ (Ay)?+(A2)*=5.10"5  (38b)
at these maximum angles and for various values of m
between ir and 3r. Here AS is the distance of the
approximate focal point from the true one.

For the usual mirror radii of a few meters this
error is of the order of 0.1 mm, and it may therefore

be concluded that the second-order approximation
is sufficiently exact for most practical applications
of the theory.

4. Fourth-Order Approximation, Flat
Spectra

Where still more accuracy is needed, a fourth-
order approximation of the focal surface may be
used. If, in (21a, b, and ¢), the next higher terms
mn « dn(l v are also retained one finds, instead of
(22a, b, and ¢),

i ‘15[1_("'/")27"4-.]; (m//’)"v‘:l

—31— {[1=3(m/[r)*]—[(m/[r)*—4(m/[r)*+3(m/r) ]y }a?
+4118 [1—30(m/r)>+48(m/r)*—27(m/[r)*]a!, (39a)

] -
W= .-t2 \ a‘f—'y"’{ 1 _(],) [14-6(m/r)?*—12(m/r)*|y*
_:; [1—9(m/r)*+12(m /1')3]a2}> (39b)

] P
6 [14-6(m/r)*—12(m/r)?]y?

1
z/r 27{ 1

5 [30mr)— 4 (mfr)? Iaz}- (39¢)

These equations permit a point-by-point com-
putation of the focal surface and, upon use of (19a),
of the slit curve as well. The deviation from the
true focal surface is

AS~2.10"7r,

for «=0.1, y=0.03, and 3»<m<3r, as in 3.3. This
is equivalent to about 1g, only, for a mirror radius of
a few meters, so that the fourth-order approximation
will (eltnmlv suffice for any application of the
theory.

Equation (39a) shows that, for m=r/y3, the
x-coordinates of spectrum center and ends (a=ry
and 4 .., respectively) differ by fourth-order
terms. With the grating in the +3-position, the
horizontal cross sections of the focal surface are
therefore still slightly curved.

The flatness of the spectrum may now be further
improved by slightly correcting the grating position
by an amount e for which, in the fourth-order
approximation of (39a), the spovtrum center and the
spectrum ends lie on a straight line. Thus, introduce

m=r//3+e (40)

into (39a), calculate z=u(e) for a=vy and a= + a,.,,
and equate the two z-values so obtained in order to
find e.

(39d)
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The procedure, which has previously been pub-
lished by this author [13] for in-plane mountings and
is now extended to off-plane ones also, is best ex-
plained by a numerical example:

Consider an Ebert-Fastie spectrograph of 7=2 m
mirror radius, /=80 mm grating height, and L=360
mm spectrum length. Thus, with (37a, b),

y=0.05, Gtmay= 0.2, (41a)

and, with (39a) and (40),

2=[(999.167 +2.884¢/r) — (0.129—1 731.381¢/r)a®
—(115.1004+309.401¢/r) o] mm, (41b)

where linear terms in ¢/r are retained, only. Hence,
for the spectrum center (a=vy=0.05),

2o=(999.166+1.442¢/r) mm, (41c)
and, for the spectrum ends (o= .= +0.2),
L= (998.9784-65.862¢/r) mm, (41d)
so that
e/r=0.002 918, e=5.836 mm, (41e)

if one demands that z, and ... be equal.
The focal curves obtained from (39 a and b) for

the uncorrected and the corrected v 3-position of the
grating  (m=1154.700 mm, and 1160.536 mm,
respectively) are shown in figure 7. For the latter,

200

— \LAh0.0ZIMr
mm \ .| //
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|
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| |
|
|
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-200
999.0 9991 999.2
x(mm)
Ficure 7. Horizontal cross sections of focal surfaces of Ebert-

Fastie spectograph.

Left: uncorrected, right: corrected +/3-position of grating. Scale of abscissa

1000 times enlarged.

the position of the photographic plate may be chosen
as indicated by the broken line. In our example, a
displacement of the grating of about 6 mm has thus
resulted in a residual curvature of the spectrum of
only Az=0.02 mm.

For the uncorrected +3-position, the residual
curvature is of the order of 0.1 mm and so is on the
verge of being acceptable without further improve-
ment [13]. Also, the above example involves a rather
extreme relative spectrum length, where image
quality at the ends of the spectrum, rather than
deviation from flatness, is likely to be the chief con-
sideration.

It may therefore again be concluded that the
fourth-order approximation of the focal surface will
be needed only rarely.

5. Conclusions

The chief results of the above theory of Ebert and
Ebert-Fastie systems, and their consequences, may
be summarized as follows.

(1) Closed expressions for the focal surfaces and
slit curves can be derived in a second-order approxi-
mation only, but the accuracy obtained with it is
sufficient in most practical cases.

(2) The curvature of the focal surface is strongly
dependent upon the position of the grating in the
spectrograph. An extended flat spectrum is obtained
when the grating is arranged at the y/3-position (28),
which may be slightly corrected for still better
flatness.

(3) The off-plane Ebert-Fastie system is the pre-
ferred mounting for spectrographs as it yields, other
parameters equal, a spectrum twice as long as the
n-plane Ebert system.

~SPECTROGRAPH

MONOCHROMATOR SLITS

/- PHOTOGRAPHIC
PLATE

Ebert-Fastie spectrograph combined with Ebert

monochromator.

Ficure 8.
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(4) Long slits, as required to maximize the energy
throughput of monochromators, must be curved but
can be used in an in-plane arrangement only. The
Ebert system is therefore the preferred mounting for
monochromators.

(5) These relative merits of the two mountings
immediately suggest the combined spectrograph-
monochromator system of figure 8, where the mere
addition of two curved monochromator slits to an
Ebert-Fastie spectrograph converts the instrument
into an Ebert monochromator as well. A versatile
double-purpose system is obtained in this manner at
little extra cost and effort. G. W. King [14] has
actually built such an instrument.

The programming of numerical computations
needed for this paper was done by J. J. Spijkerman,
of NBS.

(Paper 68C4-165)
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